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Abstract
Lima bean, Phaseolus lunatus, is a crop legume that produces the cyanogenic gluco-
sides linamarin and lotaustralin. In the legumes Lotus japonicus and Trifolium repens, 
the biosynthesis of these two α-hydroxynitrile glucosides involves cytochrome P450 
enzymes of the CYP79 and CYP736 families and a UDP-glucosyltransferase. Here, 
we identify CYP79D71 as the first enzyme of the pathway in P. lunatus, producing 
oximes from valine and isoleucine. A second CYP79 family member, CYP79D72, was 
shown to catalyze the formation of leucine-derived oximes, which act as volatile de-
fense compounds in Phaseolus spp. The organization of the biosynthetic genes for 
cyanogenic glucosides in a gene cluster aided their identification in L. japonicus. In the 
available genome sequence of P. vulgaris, the gene orthologous to CYP79D71 is adja-
cent to a member of the CYP83 family. Although P. vulgaris is not cyanogenic, it does 
produce oximes as volatile defense compounds. We cloned the genes encoding two 
CYP83s (CYP83E46 and CYP83E47) and a UDP-glucosyltransferase (UGT85K31) 
from P. lunatus, and these genes combined form a complete biosynthetic pathway for 
linamarin and lotaustralin in Lima bean. Within the genus Phaseolus, the occurrence 
of linamarin and lotaustralin as functional chemical defense compounds appears re-
stricted to species belonging to the closely related Polystachios and Lunatus groups. 
A preexisting ability to produce volatile oximes and nitriles likely facilitated evolution 
of cyanogenesis within the Phaseolus genus.
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1  | INTRODUC TION

The legume family contains a large number of economically im-
portant crops that are high in protein content. Within the genus 
Phaseolus, multiple species were domesticated, and in the cases of 
the common bean (P. vulgaris) and Lima bean (P. lunatus), domestica-
tion occurred twice independently (Schmutz et al., 2014; Serrano-
Serrano, Andueza-Noh, Martínez-Castillo, Debouck, & Chacón, 
2012). The full potential of P. lunatus as a legume crop for food or 
feed has been hampered by the release of toxic hydrogen cyanide 
(HCN) from damaged leaves and seeds (Baudoin, Barthelemy, & 
Ndungo, 1991), whereas P. vulgaris is not known to be a cyanogenic 
species. Within the genus Phaseolus, cyanogenesis has only been 
reported for five species cross-compatible with P. lunatus (Baudoin 
et al., 1991).

Cyanogenesis is characterized by the release of HCN from 
damaged tissues and is an example of a two-component plant 
chemical defense system (Gleadow & Møller,  2014). Cyanogenic 
glucosides are synthesized from specific amino acids and the pre-
dominant cyanogenic glucosides in P. lunatus are linamarin, which 
is derived from valine, and lotaustralin, derived from isoleucine. 
In plant tissues, cyanogenic glucosides are stored separately from 
the β-glucosidase enzymes triggering HCN release, and the two 
components only come into contact following tissue disruption, 
such as caused by feeding insects (Frehner & Conn,  1987; Lai 
et  al.,  2014). The hydrolysis of cyanogenic glucosides releases 
their unstable α-hydroxynitrile aglycone, which dissociates with 
the formation of toxic HCN.

The first biosynthetic pathway for a cyanogenic glucoside to 
be elucidated was that of dhurrin in the monocot Sorghum bicolor. 
Dhurrin is synthesized from tyrosine which is converted to an 
oxime, E-p-hydroxyphenylacetaldoxime, by the action of the cyto-
chrome P450 enzyme CYP79A1 (Koch, Sibbesen, Halkier, Svendsen, 
& Møller,  1995). A second cytochrome P450, CYP71E1, catalyzes 
conversion of the oxime to p-hydroxymandelonitrile, which is gluco-
sylated by the UDP-glucosyltransferase UGT85B1 to yield dhurrin 
(Bak, Kahn, Nielsen, Møller, & Halkier, 1998; Jones, Møller, & Høj, 
1999; Laursen et al., 2016). Similar biosynthetic pathways involving 
oximes and α-hydroxynitrile producing cytochrome P450 enzymes, 
have been shown to exist for the synthesis of specific cyanogenic 
glucosides in cassava (Manihot esculenta), the model legume Lotus 
japonicus, white clover (Trifolium repens), Japanese apricot (Prunus 
mume), almond (Prunus dulcis), and sugar gum (Eucalyptus cladocalyx) 
(Andersen, Busk, Svendsen, & Møller, 2000; Forslund et al., 2004; 
Hansen et al., 2018; Olsen & Small, 2018; Sánchez-Pérez et al., 2019; 
Takos et al., 2011; Thodberg et al., 2018; Yamaguchi, Yamamoto, & 
Asano, 2014). Whereas the first enzyme is invariably a cytochrome 
P450 of the CYP79 family converting a specific amino acid into an 
oxime, the α-hydroxynitrile producing second enzymatic step can be 
catalyzed by members of the CYP71, CYP736, or CYP706 families 
(Bak et al., 1998; Hansen et al., 2018; Takos et al., 2011; Yamaguchi 
et al., 2014). Although cyanogenesis was initially thought of as an “an-
cient” chemical defense trait because of its widespread occurrence 

in over 130 plant families (Bak et al., 2006), we more recently pro-
posed that cyanogenesis repeatedly evolved independently in sev-
eral plant lineages by the recruitment of members from the same 
or similar gene families (Takos et al., 2011). This type of “repeated” 
or convergent evolution is surprisingly common in plant specialized 
metabolism (Pichersky & Lewinsohn, 2011).

Genome analysis has contributed to the elucidation of the bio-
synthetic pathway for cyanogenic glucosides in some species. 
Analysis of the L. japonicus genome revealed that the biosynthetic 
genes for linamarin and lotaustralin are organized in a biosynthetic 
gene cluster and helped identify CYP736A2 as responsible for the 
second enzymatic step (Takos et al., 2011). We also reported the ex-
istence of biosynthetic gene clusters for cyanogenic glucosides in 
the genomes of cassava and sorghum, of which the latter was shown 
to contain additionally a vacuolar MATE-type transporter for dhurrin 
(Darbani et al., 2016). A gene cluster in barley (Hordeum vulgare) con-
tains the CYP79 and CYP71 genes that encode the enzymes for the 
production of five leucine-derived α-, β-, and γ-hydroxynitrile gluco-
sides, including the cyanogenic glucoside epiheterodendrin (Knoch, 
Motawie, Olsen, Møller, & Lyngkjær, 2016). Biosynthetic gene clus-
ters are being reported for an increasing number of plant special-
ized defense metabolites, and may form by selection for reduced 
recombination between interacting alleles for traits that are under 
balancing selection, thus promoting the co-inheritance of functional 
pathways (Boycheva, Daviet, Wolfender, & Fitzpatrick, 2014; Takos 
& Rook, 2012).

Within the legumes, linamarin and lotaustralin are the pre-
dominant cyanogenic glucosides found in L. japonicus, white clover 
(T. repens), and P. lunatus, whereas Vicia spp. produce the phenyl-
alanine-derived cyanogenic glucosides prunasin and vicianin (Ahn, 
Saino, Mizutani, Shimizu, & Sakata,  2007; Aouida et  al.,  2019). 
Recently, Olsen and Small (2018) reported that all the biosynthetic 
genes for the two cyanogenic glucosides in white clover were or-
thologous to the ones in L. japonicus and also organized in a biosyn-
thetic gene cluster. Within the legume subfamily Papilionoideae, 
the genera Lotus and Trifolium are part of the Hologalegina clade, 
whereas the genus Phaseolus is more distantly related and part of 
the phaseoloid/millettioid group (Figure 1a; Doyle & Luckow, 2003; 
Wojciechowski, Lavin, & Sanderson,  2004). Determining if cyano-
genesis in the genus Phaseolus evolved independently or not from 
its occurrence in the Hologalegina clade, will, therefore, provide fur-
ther insights into the evolutionary dynamics of this plant chemical 
defense system.

Besides being an important legume crop, P. lunatus is also exten-
sively used as an experimental plant in chemical ecology to study 
variations in cyanogenesis and their effects on herbivore behavior, 
and the various trade-offs between defense traits (Ballhorn, Kautz, 
Heil, & Hegeman, 2009; Ballhorn et al., 2011). For example, cyano-
genesis as a direct defense was negatively correlated with the emis-
sion of volatile organic compounds (VOCs) as an indirect defense 
against herbivores (Ballhorn, Kautz, Lion, & Heil, 2008). Therefore, 
identifying the genes encoding the biosynthetic pathway for cyano-
genic glucosides in P. lunatus benefits breeding efforts, supports 
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F I G U R E  1   (a) Simplified phylogenetic tree of selected species belonging to the NPAAA-clade within the legume family. It shows the 
Millettioid subclade containing the genus Phaseolus, and the Hologalegina subclade containing the genera Lotus, Trifolium, and Vicia. The 
presence of cyanogenic glucosides in a species is indicated by circles: linamarin/lotaustralin (blue) and prunasin/vicianin (red). The age of 
the Hologalegina diversification is estimated at about 50 million years ago, and that of the Millettioid clade at 45 million years ago (Lavin, 
Herendeen, & Wojciechowski, 2005). IRLC indicates the inverted-repeat-lacking clade. The phylogenetic analysis is based on chloroplast 
matK amino acid sequences. For a comprehensive overview of legume phylogeny see Wojciechowski et al. (2004). (b) A phylogenetic analysis 
of legume cytochrome P450 enzymes of the CYP79D-subfamily. CYP79 protein sequences from six legume species are included: P. lunatus 
(Lima bean), P. vulgaris (common bean), Glycine max (soybean), Cajanus cajan (pigeon pea), Trifolium repens (white clover), and Lotus japonicus. 
Names represent GenBank accession numbers and/or with chromosomal locations and assigned names in parentheses. Phylogenetic 
analyses were performed with the Maximum Likelihood method and the Jones-Taylor-Thornton (JTT) matrix-based model for amino acid 
sequences, using the MEGA X software. Positions containing gaps were eliminated and bootstrap values (1000x) are indicated at the branch 
points. Branch lengths are measured in the number of substitutions per site
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ecological research, and allows a comparative analysis of cyanogen-
esis and its evolution in a third legume species.

2  | RESULTS

2.1 | Cloning of two CYP79 genes from P. lunatus 
using sequence homology

The first step in biosynthetic pathways for cyanogenic glucosides 
in seed plants is the conversion of an amino acid into an oxime by 
a cytochrome P450 of the CYP79 family. To identify CYP79 can-
didate genes from P. lunatus involved in cyanogenic glucoside bio-
synthesis, we used a PCR-based approach using degenerate primers. 
Four conserved amino acid motifs present in legume CYP79s were 
selected that distinguish these enzymes from other cytochrome 
P450 families. The four amino acid motifs were GNLPEMLAN, 
MKEMNTEIACIRL, LAEMINQPELL, and LGTTMT (V/I) (M/I) LFAR. 
The corresponding DNA sequences were obtained from L. japoni-
cus (CYP79D3), T. repens (CYP79D15), and P. vulgaris (CYP79D39) 
and used in the design of degenerate primers (Table S1). Using the 
primers in different combinations, four separate PCR products of 
expected lengths were amplified from P. lunatus cDNA obtained 
from young leaves, a tissue with a high level of cyanogenic gluco-
side production (Figure S1). Cloning and sequencing of the PCR 
fragments revealed that they represented fragments of two distinct 
gene sequences. Subsequent use of gene specific primers (Table S1) 
in 5′- and 3′-RACE-PCR procedures provided the full-length cDNA 

sequences for both genes. Phylogenetic analysis of their amino acid 
sequence placed both cytochrome P450 enzymes in the CYP79D-
subfamily (Figure 1b), and they were assigned the names CYP79D71 
and CYP79D72 by the cytochrome P450 nomenclature committee 
(Nelson, 2009). For clarity, in this paper prefixes are used to indicate 
the plant species, for example, PlCYP79D71.

Although members of the same sub-family, PlCYP79D71 
and PlCYP79D72 only shared 65% amino acid identity between 
them. Both genes have likely orthologs in the available P. vulgaris 
genome sequence (Schmutz et  al.,  2014). PlCYP79D71 showed 
91% amino acid sequence identity with the enzyme encoded by 
Phvul.010G076800, whereas PlCYP79D72 shared 92% amino acid 
sequence identity with the protein encoded by Phvul.006G002300. 
Of the two, PlCYP79D71 was most closely related to LjCYP79D3 
and LjCYP79D4 from L. japonicus and TrCYP79D15 from T. repens, all 
three of which produce valine and isoleucine-derived oximes in the 
biosynthesis of the cyanogenic glucosides linamarin and lotaustralin.

To evaluate both enzymes for their ability to function in the bio-
synthesis of linamarin and lotaustralin, the cyanogenic glucosides 
found in P. lunatus (Figure 2a), both genes were transiently expressed 
in leaves of Nicotiana benthamiana using Agrobacterium infiltration. 
Separately, the two CYP79 genes from P. lunatus were co-expressed 
with LjCYP736A2 and LjUGT85K3, encoding the second and third 
enzymes of the biosynthetic pathway for the cyanogenic gluco-
sides linamarin and lotaustralin in L. japonicus (Takos et  al.,  2011). 
Chemical analysis of the infiltrated leaves using liquid chromatog-
raphy–mass spectrometry (LC–MS) showed that the combination of 
PlCYP79D71/LjCYP736A2/LjUGT85K3 resulted in the production of 

F I G U R E  2   Extracted ion 
chromatograms of linamarin and 
lotaustralin production in the leaves of 
P. lunatus and following co-expression 
of PlCYP79D71 in N. benthamiana. (a) 
Metabolic profile of a young P. lunatus 
leaf. (b) Metabolic profile of infiltrated 
tobacco leaves co-expressing CYP79D71 
from P. lunatus, with CYP736A2 and 
UGT85K3 from L. japonicus. (c) Metabolic 
profile of infiltrated tobacco leaves co-
expressing CYP79D72 from P. lunatus, 
with CYP736A2 and UGT85K3 from L. 
japonicus. Extracted ion peaks are for 
sodium adducts: linamarin (m/z 270, cyan), 
lotaustralin (m/z 284, blue), epidermin (at 
2.7 min in panel c, m/z 284, blue)
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linamarin and lotaustralin (Figure 2b). Some lotaustralin was present 
in the samples extracted from tobacco leaves expressing the gene 
combination PlCYP79D72/LjCYP736A2/LjUGT85K3 (Figure  2c), but 
here the main product was a compound with a mass-to-charge ratio 
(m/z) of 284 eluting at 2.7  min Based on these characteristics, its 
MS2 fragmentation pattern, and comparison with a standard, this 
compound was identified as the β-hydroxynitrile glucoside epi-
dermin (Figure 2c, Figure S2). A minor compound with m/z 284 at 
5.6  min was identified as the cyanogenic glucoside epiheteroden-
drin. Both these hydroxynitrile glucosides are derived from leucine 
and occur naturally in barley (Hordeum vulgare) (Knoch et al., 2016), 
but have not been reported in P. lunatus. We, therefore, propose 
that PlCYP79D72 prefers leucine as its main substrate, whereas 
PlCYP79D71 is the enzyme likely responsible for producing the 
valine and isoleucine-derived oximes in the synthesis of the cyano-
genic glucosides linamarin and lotaustralin in P. lunatus.

2.2 | A small gene cluster in P. vulgaris associates 
CYP79D71 with CYP83s

In cassava (M. esculenta), sorghum (S. bicolor) and L. japonicus, the 
biosynthetic pathways for cyanogenic glucosides are organized 
in genomic gene clusters (Takos et  al.,  2011). Such an organiza-
tion greatly facilitates gene discovery, but requires the availability 
of a genome sequence. A draft genome sequence is available for 
P. vulgaris (Schmutz et  al.,  2014) and although this species is non-
cyanogenic, reports of the occurrence of low amounts of linamarin 
exist (Johne, 1991). In addition, P. vulgaris produces valine, leucine 
and isoleucine-derived oximes as volatile defense compounds (Wei, 
Zhu, & Kang,  2006). We, therefore, considered the possible exist-
ence of synteny between the P. vulgaris and P. lunatus genomes. 
In the P. vulgaris genome, Phvul.10G076800, the gene orthologous 
to PlCYP79D71, is localized on chromosome 10. This genomic re-
gion additionally contains cytochrome P450 genes belonging to 
the CYP83 gene family, the sister-family to the CYP71s (Nelson & 
Werck-Reichhart,  2011). Oxime metabolizing CYP83s were previ-
ously reported in the biosynthesis of glucosinolates, which made 
these CYP83s plausible candidate enzymes for the oxime to nitrile 
conversion in the production of volatiles and cyanogenic glucosides 
(Halkier & Gershenzon, 2006; Naur et al., 2003). Phvul.010G076700 
encodes a member of the CYP83-family and is positioned immedi-
ately upstream of Phvul.10G076800 in both the original draft (v1.0) 
and the current release of the P. vulgaris genome (v2.1, https://phyto​
zome.jgi.doe.gov/pz/portal.html). A second functional CYP83 is en-
coded by Phvul.010G077000, showing 60% amino acid identity with 
the CYP83 encoded by Phvul.010G076700, but its relative position 
to the other two genes is more distant in version 2.1 of the P. vulgaris 
genome.

Based on the DNA sequences of Phvul.010G076700 and 
Phvul.010G077000 we designed degenerate primers (Table S1) 
to isolate CYP83 genes from P. lunatus cDNA. Full length cDNA 
clones of two distinct CYP83 genes expressed in young leaves of 

P. lunatus were obtained, and the encoded proteins were assigned 
the names CYP83E46 and CYP83E47 (Nelson, 2009). Both P. luna-
tus genes were most closely related to Phvul.010G076700, show-
ing, respectively, 90% and 86% amino acid sequence identity. Their 
similarity to the enzyme encoded by Phvul.010G077000 was much 
lower at around 60% amino acid sequence identity. CYP83E46 and 
CYP83E47 shared 82% amino acid sequence identity between them, 
and as the P. vulgaris genome only seems to contain a single gene 
copy, they potentially are diverging paralogs.

2.3 | CYP79D71, CYP83E46/47, and UGT85K31 
constitute a functional biosynthetic pathway for 
linamarin and lotaustralin in P. lunatus

The genomic region in P. vulgaris surrounding the CYP79 and 
CYP83 genes, does not contain an UDP-glucosyltransferase en-
coding gene. Known UDP-glucosyltransferases involved in cya-
nogenic monoglucoside biosynthesis belong to the UGT85 family. 
The UGT85 encoding genes in the P. vulgaris genome that show 
most sequence similarity with LjUGT85K3 from L. japonicus are 
Phvul.006G017500 and Phvul.006G017600. Using degenerate prim-
ers based on these gene sequences (Table S1), we isolated a sin-
gle partial UGT85 gene sequence from leaf cDNA. Using 3′ and 
5′ RACE, a full-length sequence was subsequently obtained. The 
encoded protein showed 89% amino acid sequence identity with 
Phvul.006G017500 and 69% with LjUGT85K3, and was assigned 
the name UGT85K31.

All P. lunatus genes identified in this study were obtained from 
the same leaf cDNA sample, indicating that the genes are simultane-
ously expressed in this cyanogenic glucoside producing tissue. To es-
tablish if the genes constituted a functional biosynthetic pathway for 
linamarin and lotaustralin, we transiently co-expressed various gene 
combinations by Agrobacterium-mediated co-infiltration of N. ben-
thamiana leaves. Expression of the two possible combinations that 
made up a full P. lunatus gene set, CYP79D71/CYP83E46/UGT85K31 
and CYP79D71/CYP83E47/UGT85K31, both resulted in efficient pro-
duction of linamarin and lotaustralin (Figure 3). The production of 
these compounds required the presence of all three genes. These 
results, therefore, suggest that a functional biosynthetic pathway 
for linamarin and lotaustralin in P. lunatus consists of CYP79D71, 
CYP83E46/47, and UGT85K31 (Figure 4).

This is the first report of a role for CYP83s in the biosynthesis 
of cyanogenic glucosides. In L. japonicus, LjCYP736A2 is the en-
zyme converting the oximes to the corresponding cyanohydrins 
(Takos et al., 2011). To evaluate if CYP736A2-like enzymes play a 
similar role in linamarin and lotaustralin biosynthesis in P. lunatus, 
we additionally cloned a full-length CYP736 gene from leaf cDNA 
using degenerate primers based on the P. vulgaris genes most 
closely related to LjCYP736A2 (Table S1). This gene was assigned 
the name CYP736A222 (Nelson,  2009) and showed the highest 
sequence similarity (90% amino acid sequence identity) to one 
of the selected P. vulgaris genes (Phvul.004G159600) localized on 

https://phytozome.jgi.doe.gov/pz/portal.html
https://phytozome.jgi.doe.gov/pz/portal.html
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chromosome 4. Transient expression of PlCYP736A222 in com-
bination with PlCYP79D71 and PlUGT85K31 did not result in the 
production of linamarin or lotaustralin, or any other notable com-
pound (Figure S3a). Combining PlCYP736A222 with the pathway 
genes from L. japonicus, LjCYP79D3, and LjUGT85K3 also did not 
result in product formation (Figure S3b), demonstrating that 
PlCYP736A222 could not substitute for LjCYP736A2 from L. ja-
ponicus. These results support the notion that within the legumes, 
different cytochrome P450 families, CYP736 in L. japonicus and 
T. repens, and CYP83 in P. lunatus, have been recruited for the 

production of the cyanogenic glucosides linamarin and lotaus-
tralin (Figure 4).

2.4 | Distribution of cyanogenic glucosides 
within the genus Phaseolus

Unlike P. lunatus, the common bean P. vulgaris is not known to be cya-
nogenic, and reports of the presence of small amounts of linamarin in 
P. vulgaris have been questioned (Johne, 1991). However, P. vulgaris 

F I G U R E  3   The biosynthetic pathway 
for linamarin and lotaustralin in P. lunatus 
consists of CYP79D71, CYP83E46/
CYP83E47, and UGT85K31. Metabolic 
profiles of N. benthamiana leaves 
co-infiltrated with the P. lunatus gene 
combinations: (a) CYP79D71, CYP83E46, 
and UGT85K31. (b) CYP79D71, CYP83E47, 
and UGT85K31. Extracted ion peaks 
are for sodium adducts: linamarin (m/z 
270, cyan) and lotaustralin (m/z 284, 
blue)
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F I G U R E  4   Schematic drawing of the biosynthetic pathway for linamarin and lotaustralin in three legume species. Members of the CYP79 
family convert valine and isoleucine into their corresponding oximes. The oxime metabolizing enzyme is a CYP83 in P. lunatus, and a CYP736 
in L. japonicus and T. repens. The hydroxynitriles are glucosylated by members of the UGT85 family. The stereochemistry of the oximes 
produced by P. lunatus is presently unknown, the forms shown are the Z-isomer. Colored boxes indicate that genes belong to the same gene 
family
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is able to produce the oximes derived from valine and isoleucine, 
and uses these as volatile defense compounds (Wei et al., 2006). The 
CYP83E46/47 ortholog present in the P. vulgaris genome accounts 
for an oxime-metabolizing enzyme. Subsequent glucosylation of 
the resulting reactive hydroxynitrile compounds, for instance by a 
promiscuous UDP-glucosyltransferase, would result in the synthesis 
of linamarin and lotaustralin. This suggests a plausible evolutionary 
pathway toward cyanogenesis, which would require the additional 
recruitment of an activating β-glucosidase.

To clarify the occurrence of cyanogenesis, we tested the leaves 
of 60 wild (natural) and cultivated accessions of P. vulgaris and 71 
P. lunatus accessions for their ability to release HCN using detec-
tion with Feigl-Anger paper, and performed metabolite analysis of 
leaf extracts using LC–MS (Table S2). All of the P. vulgaris accessions 
were acyanogenic, and LC–MS analysis showed that they essen-
tially lacked linamarin and lotaustralin. Trace amounts of linama-
rin seemed to be present in a few accessions (e.g., G24576, a wild 
type from Oaxaca, Mexico) based on the presence of a matching 
m/z value and retention time (Figure S4). However, due to the low 
levels, no MS2 spectrum could be obtained for a more conclusive 
identification of the compound. In contrast, most of the P. lunatus 
accessions contained linamarin and lotaustralin and were either 
HCN positive or polymorphic. Among the five P. lunatus accessions 
that were acyanogenic in our tests, a single cultivar (G26193, a land-
race from Kivu, Congo) lacked both linamarin and lotaustralin. Such 
polymorphisms typically result from the absence of an activating 
β-glucosidase or lack of cyanogenic glucoside production, and occur 
in natural populations as a result of balancing selection pressures 
(Olsen & Small, 2018).

Cyanogenesis was previously reported for P. maculatus, P. mare-
chalii, P. polystachios, P. ritensis, P. jaliscanus, and P. salicifolius, which 
are all cross-compatible with P. lunatus (Baudoin et al., 1991). In the 
phylogeny of the genus Phaseolus, these six species belong to the 
Polystachios group, the sister group to the Lunatus group named 
after P. lunatus (Delgado-Salinas, Bibler, & Lavin, 2006). We obtained 
a broader overview of the occurrence of linamarin and lotaustralin 
within the Phaseolus genus by analyzing leaf extracts from a selec-
tion of wild and cultivated accessions drawn from the germplasm 
collection at CIAT (International Center for Tropical Agriculture) 
(Table 1, Table S2). The accessions were selected based on estab-
lished phylogenetic relationships and represented 35 distinct spe-
cies from all eight groups within the Phaseolus genus. Apart from P. 
lunatus, three other species belonging to the Lunatus group, P. au-
gusti, P. lignosus, and P. pachyrrhizoides, were cyanogenic and clearly 
contained linamarin and lotaustralin. We also confirmed cyanogen-
esis and the presence of these two cyanogenic glucosides in mem-
bers of the Polystachios group, which included the newly tested 
species P. rotundatus and P. nodosus. In the accessions of P. marechalli 
(G40812) and P. nodosus (G40899) we tested, lotaustralin was the 
more dominant compound.

The Vulgaris group of the genus Phaseolus contains several other 
domesticated legumes, such as P. acutifolius (tepary bean), P. coc-
cineus (runner bean), and P. dumosus (year-long bean). Cultivars and 

natural accessions of these three species, as well as natural acces-
sions of P. parvifolius, P. albescens, and P. costaricensis, were shown 
to essentially contain no, or occasionally trace amounts, of the cy-
anogenic glucosides (Table  1, Table S2). Species in the Filiformis, 
Pedicellatus, Tuerckheimii, Pauciflorus, and Leptostachyus groups of 
the Phaseolus genus were represented by a single natural accession 
of each selected species, and exhibited a similar absence of linama-
rin and lotaustralin. Our data support the notion that in the genus 
Phaseolus, the occurrence of linamarin and lotaustralin as functional 
cyanogenic defense compounds is limited to species belonging to 
the closely related Polystachios and Lunatus groups.

3  | DISCUSSION

3.1 | Oxime-metabolism and the repeated evolution 
of cyanogenesis

Cyanogenic glucosides occur widely in the plant kingdom as chemi-
cal defense compounds, and these α-hydroxynitrile glucosides are 
synthesized from a selected set of amino acids, depending on the 
species. The synthesis of dhurrin from tyrosine in S. bicolor was the 
first biosynthetic pathway for a cyanogenic glucoside to be eluci-
dated, revealing the role of a cytochrome P450 of the CYP79 family 
(CYP79A1) in the conversion of an amino acid into an oxime, and the 
role of a CYP71 (CYP71E1) in the production of the α-hydroxynitrile 
aglycone (Bak et al., 1998; Koch et al., 1995). The conversion of an 
amino acid into an oxime by a member of the CYP79 family as a 
first step in cyanogenic glucoside biosynthesis, is observed in both 
gymnosperms and angiosperms (Gleadow & Møller,  2014; Luck 
et  al.,  2017). And although oxime production by members of the 
CYP79 family has evolutionary ancient roots, cyanogenic glucoside 
production and cyanogenesis are traits that we now consider to have 
evolved repeatedly within a number of plant lineages, which is fur-
ther supported by our present findings (Takos et al., 2011).

In cassava (M. esculenta), Japanese apricot (P. mume), and almond 
(P. dulcis), the second enzymatic steps in the production of their cy-
anogenic glucosides, are also catalyzed by members of the CYP71 
family (Jørgensen et  al.,  2011; Thodberg et  al.,  2018; Yamaguchi 
et al., 2014). However, work on cyanogenesis in L. japonicus revealed 
that a related gene family, CYP736, was recruited for this oxime-me-
tabolizing step and results indicated that cyanogenesis evolved inde-
pendently in the three plant lineages leading to either L. japonicus, M. 
esculenta or S. bicolor (Takos et al., 2011). Recent work in Eucalyptus 
cladocalyx, which produces the phenylalanine-derived cyanogenic 
glucoside prunasin, showed that in this species the conversion of the 
oxime to a hydroxynitrile involves the sequential action of not one 
but two cytochrome P450 enzymes, CYP706C55 and CYP71B103, 
providing a further example of the repeated evolution of cyanogenic 
glucoside biosynthesis (Hansen et al., 2018).

This report on cyanogenesis in P. lunatus, adds the CYP83s 
to the list of cytochrome P450 families involved in a cyanogenic 
glucoside biosynthetic pathway. Olsen and Small (2018) reported 
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that the genes of the pathway in white clover (T. repens) were 
orthologous to the ones in Lotus, making the argument that cy-
anogenesis in these legumes was present in their common an-
cestor. Whereas TrCYP79D15 is a clear ortholog of LjCYP79D3 
and LjCYP79D4 from L. japonicus, the same cannot be said of 
PlCYP79D71 (Figure  1b). The identification of PlCYP83E46 and 
PlCYP83E47 as oxime-metabolizing enzymes in P. lunatus sup-
ports the idea that within the legumes, cyanogenesis evolved at 
least twice (Figures 1a and 4), with the biosynthetic pathway in 
Vicia spp. remaining to be elucidated. Therefore, this study con-
tributes to an emerging picture of variations and flexibilities in 
oxime-based biosynthetic pathways in plant specialized metab-
olism, of which cyanogenesis is only one possible incarnation 
(Sørensen, Neilson, & Møller, 2018).

For example, members of the CYP79, or the CYP71 and CYP83 
families, acting on specific amino acids or their derived oximes, 
respectively, have been shown to function in a variety of non-cy-
anogenic plant chemical defense pathways. In poplar (Populus 
trichocarpa), the enzymes CYP79D6 and CYP79D7, and CYP71B40 

and CYP71B41, produced oximes and nitriles as volatile de-
fense compounds upon herbivory (Irmisch et  al.,  2013, 2014). In 
Arabidopsis thaliana, CYP79B2 and CYP79B3 convert tryptophan 
into indole-3-acetaldoxime (IAOx), which is the substrate taken by 
CYP71A13 to produce indole-3-acetonitrile as an intermediate in 
the biosynthesis of the indole phytoalexin camalexin (Glawischnig, 
Hansen, Olsen, & Halkier,  2004; Nafisi et  al.,  2007). But IAOx is 
also the substrate for the oxime-metabolizing enzyme CYP83B1, 
which channels it into the biosynthetic pathway for indole gluco-
sinolates (Bak, Tax, Feldmann, Galbraith, & Feyereisen,  2001). In 
Arabidopsis, CYP79A2 is the first enzyme in the biosynthesis of 
phenylalanine-derived aromatic glucosinolates, whereas CYP79F1 
and CYP79F2 are involved in the biosynthesis of the various al-
iphatic glucosinolates that are produced from chain-elongated 
methionine derivatives (Halkier & Gershenzon,  2006). CYP83A1 
is the main oxime-metabolizing enzyme in the production of ali-
phatic glucosinolates, whereas both CYP83A1 and CYP83B1 are 
involved in the biosynthesis of the aromatic glucosinolates (Naur 
et al., 2003).

Clade Species Cyanogenesis Cyanogenic glucosides

Tuerckheimii P. chiapasanus
P. oligospermus
P. zimapanensis

No
No
No

trace
No
No

Pauciflorus P. pluriflorus No No

Pedicellatus P. altimontanus
P. grayanus
P. esperanzae
P. pedicellatus

No
No
No
No

No
No
trace
No

Filiformis P. angustissimus
P. carterae
P. filiformis

No
No
No

No
No
No

Vulgaris P. acutifolius
P. albescens
P. coccineus
P. costaricensis
P. dumosus
P. parvifolius
P. vulgaris

No
No
No
No
No
No
No

No
No
No/trace
No/trace
No
trace
No/trace

Leptostachyus P. lepstostachyus
P. macvaughii

No
No

No
trace

Lunatus P. augusti
P. lignosus
P. lunatus
P. pachyrrhizoides

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

Polystachios P. maculatus
P. marechalii
P. nodosus
P. polystachios
P. rotundatus
P. salicifolius

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

Unassigned P. glabellus
P. macrolepis
P. magnilobatus
P. microcarpus
P. oaxacanus

No
No
No
No
No

trace
trace
trace
No
No

TA B L E  1   Species of the genus 
Phaseolus tested in this study for the 
occurrence of cyanogenesis and the 
presence of the cyanogenic glucosides 
linamarin and lotaustralin. The species are 
grouped according to the eight recognized 
clades within the genus (Delgado-Salinas 
et al., 2006). P. lunatus and P. vulgaris are 
indicated in bold
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3.2 | From oxime-based volatiles to cyanogenic 
glucosides in Phaseolus spp

The cytochrome P450 enzymes orthologous to PlCYP79D71 and 
PlCYP83E46/E47 in Phaseolus species that do not produce cyano-
genic glucosides, such as P. vulgaris, are likely to play a related role in 
plant defense. In P. vulgaris, the release of volatile oximes in response 
to agromyzid flies was previously reported (Wei et al., 2006). Tissue 
damage by adults and the leaf mining larvae of two Liriomyza species 
resulted in the release of 2-methylpropanal oxime, 2-methylbutanal 
oxime, and 3-methylbutanal oxime. These are the oximes produced 
from the amino acids valine, isoleucine, and leucine, respectively, 
by the action of cytochrome P450 enzymes of the CYP79 family 
(Figure 4). The presence of PlCYP79D71 and PlCYP79D72 orthologs 
in P. vulgaris, therefore, accounts for the biosynthesis of all three 
types of oxime volatiles observed. A report of the release of oxime 
and nitrile volatiles also exist for P. lunatus in response to jasmonic 
acid treatment and feeding damage by two-spotted spider mites 
(Tetranychus urticae) (Dicke, Gols, Ludeking, & Posthumus,  1999). 
The oximes reported by Dicke et al. were O-methylated derivates 
of the ones observed in P. vulgaris, and part of a complex blend of 
volatiles from different biosynthetic pathways that attracted the 
carnivorous mite Phytoseiulus persimilis. These observations support 
a role for PlCYP79D72 in the production of leucine-derived oximes 
in P. lunatus, and suggest that PlCYP79D71 has an additional role in 
volatile production.

The preexistence of plant chemical defenses based on the release 
of volatile oximes and nitriles, would greatly facilitate the subse-
quent evolution of cyanogenic defense strategies. Possible evolu-
tionary steps may include changes in gene expression, for example 
from insect damage-induced CYP79 expression (Irmisch et al., 2013) 
to expression during early leaf development, and the recruitment 
of appropriate UDP-glucosyltransferase and β-glucosidase enzyme 
activities. Both of these classes of enzymes are notoriously promis-
cuous, given for example the involvement of UGTs in the detoxifica-
tion and sequestration of reactive metabolites and xenobiotics. The 
traces of linamarin observed in some of the P. lunatus samples, could 
result from unspecific UDP-glucosyltransferase activities associated 
with avoiding auto-toxicity issues. Following recruitment, increased 
substrate specificity may evolve over time (Khersonsky & Tawfik, 
2010; Lai et al., 2014).

3.3 | Biosynthetic gene clusters and 
pathway evolution

The fact that the biosynthetic genes for linamarin and lotaustra-
lin were clustered in the genome of L. japonicus, aided the identi-
fication of LjCYP736A2 as the oxime-metabolizing enzyme (Takos 
et al., 2011). Although we do not have genomic sequence data for 
P. lunatus, the initial identification of PlCYP83E46 and PlCYP83E47 
was also based on co-localization of CYP79 and CYP83 genes in the 
related P. vulgaris genome. In addition to L. japonicus, the presence of 

biosynthetic gene clusters for cyanogenic glucosides or related non-
cyanogenic β- and γ-hydroxynitrile glucosides has now been reported 
in cassava, sorghum, white clover, and barley (Ehlert et  al.,  2019; 
Knoch et al., 2016; Olsen & Small, 2018; Takos et al., 2011).

We have proposed that gene clustering results from and pro-
motes the co-inheritance of favorable combinations of alleles that 
are under balancing selection pressures, as is the case for the bio-
synthetic genes of chemical defense pathways that provide a condi-
tional advantage (Takos & Rook, 2012). White clover is a well-studied 
example of a species in which such an adaptive polymorphism 
(presence/absence) of cyanogenesis occurs in natural populations 
by either lack of cyanogenic glucoside production or the absence 
of an activating β-glucosidase. Interestingly, Olsen and Small (2018) 
observed that in T. repens the adaptive polymorphism that involves 
loss of cyanogenic glucoside biosynthesis occurs through presence 
or absence of the complete gene cluster. Similarly, barley cultivars 
that lacked hydroxynitrile glucoside production, contained a de-
letion of the central part of the gene cluster (Ehlert et  al.,  2019). 
The genomic organization in a biosynthetic gene cluster is not an 
inherent trait of the cyanogenic glucoside biosynthetic pathway as 
it is not observed in almonds (Thodberg et al., 2018) or sugar gum 
(Hansen et al., 2018). Individuals of these two perennial species are 
likely to experience seasons with high herbivore pressure during 
their lifetime and consequently cyanogenesis is more of a constitu-
tively beneficial trait. Our present analysis of cyanogenesis and cy-
anogenic glucosides in P. lunatus (Table S2), shows the characteristic 
presence/absence polymorphisms that are observed in other annual 
legumes, reflecting the balancing selection pressures necessary to 
promote gene cluster formation (Takos & Rook, 2012).

Once a gene cluster is established, the resulting co-inheritance 
could greatly facilitate co-evolution of the interacting genes and 
support the formation of alternative biosynthetic routes following 
local gene duplications and functional divergence. This is observed 
for a number of biosynthetic gene clusters in plant specialized me-
tabolism. The gene cluster for cyanogenic glucosides in L. japonicus 
has gained the ability to produce a set of alternative, non-cyano-
genic β- and γ-hydroxynitrile glucosides called rhodiocyanosides, 
with the pathways diverging at the oxime metabolizing step (Takos 
et al., 2011). This ability to additionally produce rhodiocyanosides is 
restricted to a single clade within the Lotus genus (Lai et al., 2014). 
Similarly, the biosynthetic gene cluster in barley contains several 
members of the CYP79, CYP71 and UGT85 gene families, coordi-
nately producing a mixture of five leucine-derived hydroxynitrile 
glucosides (Ehlert et al., 2019; Knoch et al., 2016).

A genomic, phylogenetic, and biochemical comparison in several 
species of the genus Solanum was used to describe the evolution 
of a terpene biosynthetic gene cluster and its various products, 
which involved gene duplication, gene conversion, pseudogeniza-
tion, and the functional divergence of terpene synthases (Matsuba 
et  al.,  2013). Similarly, gene duplication without translocation and 
functional divergence played an important role in the evolution 
of two diterpenoid gene clusters in the genus Oryza (Miyamoto 
et al., 2016; Swaminathan, Morrone, Wang, Fulton, & Peters, 2009). 
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Our results in Phaseolus suggest that a small clustered pathway for 
oxime-based metabolism, as present in P. vulgaris, has evolved to 
produce cyanogenic glucosides. This is supported by the restricted 
occurrence of cyanogenesis to the Lunatus and Polystachyus clades 
of the genus, whereas the occurrence in P. lunatus of two paralo-
gous CYP83 genes, PlCYP83E46 and PlCYP83E47, may have resulted 
from a gene duplication event. The future availability of genome se-
quences of additional Phaseolus species will provide further insights 
in the genomic organization of oxime-based chemical defense path-
ways and their evolution in this genus.

4  | MATERIAL S AND METHODS

4.1 | Plant materials and growth conditions

Phaseolus lunatus accession “Hopi Lima” (PHAS8445) was ob-
tained from the Leibniz Institute for Plant Genetics and Crop Plant 
Research (IPK) seed collection in Gatersleben, Germany. The seeds 
were germinated on wet cotton, seedlings transferred to soil, and 
grown under greenhouse conditions in Copenhagen, Denmark. 
Similarly, Nicotiana benthamiana plants were germinated from seed 
and grown in soil. Phaseolus spp. cultivars and accessions selected 
from the CIAT germplasm collection were grown in the institute's 
greenhouses in Cali, Colombia.

4.2 | RNA extraction, cDNA synthesis, and 
gene cloning

RNA was prepared from P. lunatus leaves accession “Hopi Lima” 
(100 mg) using a RNeasy plant mini kit with on-column DNase I di-
gestion (Qiagen). First-strand cDNA was synthesized from 2.5 μg of 
total RNA using SuperScript III reverse transcriptase (Invitrogen) in 
a reaction primed with 50  μM oligo (dT)20. PCR products of gene 
fragments were obtained using Hotmaster Taq DNA polymerase, gel 
purified and cloned into the pDrive Cloning Vector (Qiagen). 5′ and 
3′ RACE PCR were performed using the FirstChoice™ RLM-RACE 
Kit (Ambion). cDNA clones of complete coding regions were ob-
tained using Phusion High-Fidelity DNA Polymerase, gel purified, 
and cloned by Gateway recombination reaction into the entry vector 
pDONOR207 (Invitrogen).

4.3 | Transient expression in leaves of N. 
benthamiana plants

Expression constructs containing cDNAs of CYP79D71, CYP79D72, 
CYP83E46, CYP83E47, CYP736A222, and UGT85K31 from P. lunatus 
under control of the CaMV 35S promoter, were generated by clon-
ing into the pJAM1502 vector, and transforming the plasmids to A. 
tumefaciens strain AGL1 by electroporation, as previously described 
(Takos et al., 2011). Constructs for the L. japonicus genes CYP79D3, 

CYP736A2, and UGT85K3 in pJAM1502, and transient expression in 
N. benthamiana leaves by co-infiltration of selected cultures are as 
described in Takos et al. (2011). After 4 days, leaf disks of 1 cm diam-
eter were cut from the infiltrated leaves and extracted in 85% (v/v) 
methanol for metabolite analysis by LC–MS.

4.4 | Detection of cyanogenesis with Feigl-
Anger paper

Cyanogenesis was visualized using Feigl-Anger paper, which was 
prepared as described in Takos et  al.  (2010). Plant tissue was dis-
rupted by grinding in 300 µl of 20 mM MES buffer, pH 6.5 in 96-
well plates and exposed to Feigl-Anger paper. After incubation for 
10–30 min at room temperature, the paper was removed and HCN 
release was detected by the development of blue color.

4.5 | LC–MS analysis

For metabolite profiling of hydroxynitrile glucosides, plant material 
was extracted by boiling in 85% methanol, essentially as described 
in Takos et  al.  (2011). Samples of extracts prepared at CIAT were 
dried down in 96-wells microtiter plates and shipped to Copenhagen 
for analysis, where they were redissolved in 85% methanol (v/v) 
and filtered prior to analysis. Analytical LC–MS was performed 
using an Agilent 1100 Series LC (Agilent Technologies) coupled to a 
Bruker HCT-Ultra ion trap mass spectrometer (Bruker Daltonics). A 
Zorbax SB-C18 column (Agilent, 2.1 mm × 50 mm, 1.8 μM) was used 
with chromatography conditions as described previously (Takos 
et  al.,  2010). Compounds were localized in extracted ion chroma-
tograms as sodium adduct ions: linamarin (m/z 270) and lotaustralin 
(m/z 284).

4.6 | Phylogenetic analysis

Homologous protein sequences were obtained by database searches 
using blastp at NCBI (www.ncbi.nlm.nih.gov), Phytozome (phyto-
zome.jgi.doe.gov), and from the L. japonicus genome sequence avail-
able at the Kazusa DNA Research Institute (www.kazusa.or.jp/lotus/​
index.html). Chloroplast matK sequences were obtained from NCBI 
by text search for the various legume species. Amino acid sequences 
were aligned using the MUSCLE algorithm, followed by an analy-
sis of phylogeny in MEGA version X (Kumar, Stecher, Li, Knyaz, & 
Tamura, 2018).

4.7 | Accession numbers

Sequence data of the P. lunatus genes identified in this study 
have been assigned the following accession numbers: CYP79D71 
(LR699072), CYP79D72 (LR699067), CYP83E46 (LR699068), 

http://www.ncbi.nlm.nih.gov
http://www.kazusa.or.jp/lotus/index.html
http://www.kazusa.or.jp/lotus/index.html
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CYP83E47 (LR699069), CYP736A222 (LR699070), UGT85K31 
(LR699071).
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