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Abstract

The NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 

2015 to provide global mapping of high-resolution soil moisture and freeze–thaw state every 2–3 

days using an L-band (active) radar and an L-band (passive) radiometer. The Level 2 radiometer-

only soil moisture product (L2_SM_P) provides soil moisture estimates posted on a 36-km Earth-

fixed grid using brightness temperature observations from descending passes. This paper provides 

the first comparison of the validated-release L2_SM_P product with soil moisture products 

provided by the Soil Moisture and Ocean Salinity (SMOS), Aquarius, Advanced Scatterometer 

(ASCAT), and Advanced Microwave Scanning Radiometer 2 (AMSR2) missions. This 

comparison was conducted as part of the SMAP calibration and validation efforts. SMAP and 

SMOS appear most similar among the five soil moisture products considered in this paper, overall 

exhibiting the smallest unbiased root-mean-square difference and highest correlation. Overall, 

SMOS tends to be slightly wetter than SMAP, excluding forests where some differences are 

observed. SMAP and Aquarius can only be compared for a little more than two months; they 

compare well, especially over low to moderately vegetated areas. SMAP and ASCAT show similar 

overall trends and spatial patterns with ASCAT providing wetter soil moistures than SMAP over 
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moderate to dense vegetation. SMAP and AMSR2 largely disagree in their soil moisture trends 

and spatial patterns; AMSR2 exhibits an overall dry bias, while desert areas are observed to be 

wetter than SMAP.

Index Terms

Level 2 radiometer-only soil moisture product (L2_SM_P); microwave remote sensing; soil 
moisture; Soil Moisture Active Passive (SMAP); Soil Moisture and Ocean Salinity (SMOS)

I. Introduction

NASA’S Soil Moisture Active Passive (SMAP) satellite was launched on January 31, 2015. 

It carries an L-band radar and an L-band radiometer that provide global radar backscatter 

and brightness temperature measurements, respectively, every 2–3 days. SMAP aimed to 

retrieve the soil moisture content of the upper ~5 cm of soil and its freeze–thaw state [1] and 

to provide three Level 2 (L2) geophysical soil moisture products: radiometer-only, radar-

only, and combined radar/radiometer. The radar ceased operation on July 7, 2015, but the 

radiometer continues to operate nominally. In this study, only the L2 radiometer-only soil 

moisture product (L2_SM_P) posted on a 36-km Earth-fixed grid is investigated.

The SMAP project created a detailed calibration and validation plan that has been developed 

and implemented to assess random errors and spatial/temporal biases in the satellite-based 

soil moisture estimates [2]. The plan includes five methodologies: 1) in situ core validation 

sites; 2) in situ sparse networks; 3) satellite product intercomparison; 4) model-based 

product intercomparison; and 5) field experiments [3]. The SMAP project relies heavily on 

in situ core validation sites to provide soil moisture for product validation. It has identified 

34 candidate validation sites that provide multiple soil moisture sensors within an L2_SM_P 

36 km grid pixel [4]; 15 core validation sites are used for L2_SM_P product validation. 

Additionally, the SMAP project utilizes in situ sparse soil moisture networks that provide 

only one sensor within an L2_SM_P grid pixel for soil moisture validation [5]. Field 

experiments conducted at a small scale but with high fidelity of observations offer a venue to 

improve specific aspects of the retrieval algorithms, to explore anomalous behavior of the 

data products, and to enhance the accuracy of the core validation site estimates [6]. Model-

based product intercomparison complements the assessment [7]. The five methodologies are 

best used in combination to thoroughly assess the different aspects of the calibration and 

validation.

This paper focuses on the satellite product intercomparison. L2_SM_P is intercompared 

with other satellite soil moisture products to examine relative spatial/temporal patterns and 

similarities/differences among them. Satellite missions such as Soil Moisture and Ocean 

Salinity (SMOS), Aquarius, Advanced Scatterometer (ASCAT), and Advanced Microwave 

Scanning Radiometer 2 (AMSR2) produce soil moisture products from their observations 

that overlap in time and space with SMAP. The comparison is conducted with close attention 

to limiting factors such as the quality of the alternative products, differences in overpass 

times, instrument resolution, operating frequencies, and differences in retrieval algorithms. It 

is emphasized that it is not the intention of this paper to encompass all known satellite-based 
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soil moisture products. Availability, maturity, and reliability were all considered in the 

selection. Also, the intercomparison study presented here is not a validation in the 

conventional sense since each satellite soil moisture data set has its own unique and 

unknown error characteristic. Nevertheless, the desired outcomes that can be achieved from 

this study include insights into spatial and temporal patterns, statistics to support the SMAP 

soil moisture product validation, and recommendations on SMAP algorithm refinement and 

upgrades.

This paper begins with an overview of the selected data sets in Section II, detailing key 

characteristics, regridding, and masking schemes. Four soil moisture intercomparisons are 

presented in Section III: Global patterns and statistics are described in Section III-A. Section 

III-B presents the soil moisture comparison for a transect through the African continent. Soil 

moisture intercomparison statistics of SMAP with other satellite products for a full year of 

data are presented in Section III-C for different land cover types and in Section III-D for 

different seasons. This paper is concluded in Section IV.

II. Overview of Selected Soil Moisture Data Sets

Four satellite missions were selected for comparison with SMAP data products according to 

the following criteria:1) must overlap in space and time with SMAP; 2) should be publicly 

available through a data center portal; 3) should have good documentation and Algorithm 

Theoretical Basis Document (ATBD) or equivalent; and 4) exclude model value-added 

products such as those produced by data assimilation and by ancillary data-driven 

disaggregation. Only a single soil moisture product was selected per satellite and priority 

was given to official products. The key characteristics of the original soil moisture source 

data are summarized in Table I and will be described in detail in the following sections.

Example data for each satellite soil moisture product are displayed as global images in Fig. 

1. Fig. 1 indicates the data processing levels of the original source data used, i.e., L2 data for 

SMAP, Aquarius, and ASCAT and Level 3 (L3) data for SMOS and AMSR2. The L3 soil 

moisture data were obtained from their original sources as global gridded maps. The L2 soil 

moisture data were acquired as single-pass swath data and composited onto global grids with 

interpolation schemes as described in the following sections. Each soil moisture product is 

delivered with its own product-specific quality control (QC) flags, from which users can 

generate the desired product-specific QC mask. This study strives to apply the same masking 

rules to all satellite soil moisture products. Due to discrepancies in the meaning and 

interpretation of the QC flags of the various satellite products, the various algorithm teams 

were closely involved to strike a balance between creating similar masking schemes and 

adjusting the QC flags to consider only high-quality pixels for each soil moisture product. 

This approach resulted in differences between the QC masks. For example, the strict radio-

frequency interference (RFI) filtering applied to SMOS eliminates most of Northeast Africa, 

Europe, the Middle East, and Asia. For AMSR2, on the other hand, no QC flags exist.

A. Soil Moisture Active Passive

SMAP observes the Earth at L-band frequency, its nominal incidence angle is 40°, and 

global coverage is achieved on average every 2–3 days. The soil moisture product 
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investigated here is the validated release of the L2 passive soil moisture product (L2_SM_P) 

posted on a 36-km Earth-fixed grid using the global cylindrical Equal-Area Scalable Earth 

Grid projection Version 2 (EASEv2) [8]. SMAP is on a Sun-synchronous orbit with 6:00 

A.M. (descending)/6:00 P.M. (ascending) local equatorial overpass times; vertical profiles of 

soil temperature and dielectric properties are expected to be more uniform during early 

morning overpasses than during other times of the day [9]. The SMAP soil moisture retrieval 

algorithms are based on the simplified radiative transfer equation known as the τ-ω model. 

Of the five soil moisture retrieval algorithms produced for the SMAP L2_SM_P product, 

only the baseline V-pol single-channel algorithm (SCA-V) is discussed because the most 

recent assessment based on in situ data from core validation sites indicated that it is the best 

overall option [10]. SMAP data version 3.0 (composite release ID: 13080) was used for this 

analysis; it is available through the NASA Distributed Active Archive Center (DAAC) at the 

National Snow and Ice Data Center (NSIDC) [11]. The “recommended for retrieval” quality 

flag provided with the product was used in this study to consider only those pixels that are 

expected to meet the performance requirement of the mission. Pixels with static water 

fraction <5%, coastal proximity >36 km, urban fraction <50%, precipitation/snow/

permanent ice/frozen ground fraction <5%, slope standard deviation <3°, vegetation water 

content (VWC) <5 kg/m2, and converged geophysical inversion are considered 

“recommended for retrieval.” A detailed description of the flags used in the L2_SM_P 

product can be found in [10]–[12]. For this comparison, the 6:00 A.M. overpass is 

considered and the orbit closest to 6:00 A.M. is chosen when selecting the other satellite soil 

moisture products. Example nominal and masked SMAP data for June 1–7, 2015 are shown 

in Fig. 1(a) and (b). Nominal data indicate unflagged data and masked data denote data after 

application of the product-specific QC mask.

B. Soil Moisture and Ocean Salinity

The SMOS spacecraft was launched on November 2, 2009 by ESA, CNES, and CTDI to 

primarily map soil moisture and ocean salinity, but also many other secondary geophysical 

parameters [13], [14]. SMOS observes the Earth with a synthetic aperture in the 1.4-GHz (L-

band) range and with multiple incidence angles ranging from 0° to 65°. SMOS measures all 

stokes vectors of the brightness temperature on a Sun-synchronous orbit with 6:00 A.M. 

(ascending)/6:00 P.M. (descending) local equatorial times and achieves global coverage 

every 3 days. The SMOS soil moisture retrieval algorithm is based on the τ-ω model. In 

essence, the algorithm utilizes an iterative approach where the sum of squared weighted 

differences between measured and modeled brightness temperature data is minimized for a 

variety of incidence angles [15]. The reader is referred to the SMOS L2 processor soil 

moisture ATBD [16] for more details on the SMOS soil moisture retrieval algorithm. Data 

version v300 of the SMOS L3 soil moisture product posted on a 25-km Earth-fixed EASEv2 

grid (P11p) available from the Centre Aval de Traitement des Données SMOS [17] was 

used. In this study, the product was regridded to EASEv2 at 36 km by bilinear interpolation 

and a conservative flagging was applied. Pixels were included only if: 1) VWC <5 kg/m2 or 

classified as vegetated surfaces or temperate forests in the ECOCLIMAP land use map [18], 

[19] (S_Tree_1= =11 or S_Tree_1= =12); 2) under nominal conditions, hence discarding 

pixels that are barren, snow covered, or frozen, or that contain dense forest, high topography, 

or too much open water (Science_Flags (Bit 1)= =0); and 3) with an RFI probability <10% 
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(Rfi_Prob<0.1). Example nominal and masked SMOS data for June 1–7, 2015 are shown in 

Fig. 1(c) and (d).

C. Aquarius/Satélite de Aplicaciones Científicas-D

NASA’s Aquarius instrument on board the Argentine SAC-D satellite was launched on June 

10, 2011. It carried an L-band radar and an L-band radiometer and observed the Earth with 

three beams at different resolutions and incidence angles (29.36°, 38.49°, and 46.29°). 

Together, they formed a 390-km ground swath with an exact 7-day repeat orbit. Aquarius 

primarily aimed at providing global measurements of sea surface salinity [20], but it also 

produced a global soil moisture product based on the radiometer observations [21]. Aquarius 

was on a Sun-synchronous orbit with 6:00 A.M. (descending)/6:00 P.M. (ascending) local 

overpass times. The Aquarius soil moisture retrieval algorithm is based on the τ–ω model 

and is implemented as an H-pol single-channel algorithm (SCA-H). For more details, the 

reader is referred to the Aquarius VSM ATBD [22]. For this study, the Aquarius L2 soil 

moisture product, available through the NASA DAAC at the NSIDC [23], was regridded to 

EASEv2 at 36 km by averaging the data using inverse distance weighting for each day. Flags 

from the Aquarius soil moisture and radiometer products were applied during regridding: 

only pixels with VWC <5 kg/m2 (Radiometer_flags Bit 0), land fraction >90%, and 

containing no RFI were considered. The Aquarius satellite ceased operation on June 7, 2015, 

and hence it overlaps with the SMAP data set for a little more than two months, from April 

1, 2015 to June 7, 2015. Example nominal and masked Aquarius data for June 1–7, 2015 are 

shown in Fig. 1(e) and (f).

D. European Meteorological Operational (MetOp-B) Advanced Scatterometer

ESA’s and EUMETSAT’s European Meteorological Operational-B spacecraft carrying the 

ASCAT was launched on September 17, 2012. ASCAT is a real aperture radar, operating at 

5.3 GHz (C-band) using vertically polarized antennas. It set out to measure wind speed and 

wind direction over the oceans, but also provides a global soil moisture index. It observes 

the Earth on a Sun-synchronous orbit with 9:30 A.M. (descending)/9:30 P.M. (ascending) 

local overpass times and has a temporal revisit of 3 days. The ASCAT soil moisture retrieval 

algorithm is based on a physically motivated change detection algorithm for use with C-band 

scatterometers developed by Vienna University of Technology (TU Wien). More information 

on the soil moisture retrieval algorithm can be found in the ATBD [24]. The ASCAT L2 soil 

moisture index, available through the EUMETSAT Earth Observation portal [25], was 

regridded to EASEv2 at 36 km by interpolating the data using inverse distance weighting for 

each day. Additionally, pixels were masked if the probability of snow, frozen ground, 

wetland, and increased topography >50%, and if the soil moisture estimation uncertainty due 

to other sources >50%. Soil porosity on EASEv2 grid at a 9-km resolution is delivered as 

ancillary data to the SMAP L4 soil moisture product [26], [27]; it was averaged to 36 km 

and multiplied with the soil moisture index. Hence, the ASCAT soil moisture index on 

EASEv2 grid at 36 km was converted into volumetric soil moisture by multiplication with 

soil porosity. Note that this soil moisture product is not the official ASCAT product and will 

have embedded within it errors originating from the soil porosity product. Other satellite soil 

moisture products considered in this study may also contain errors originating from their 
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respective soil texture ancillary data sets and dielectric models. Example nominal and 

masked ASCAT-derived data for June 1–7, 2015 are shown in Fig. 1(g) and (h).

E. Advanced Microwave Scanning Radiometer 2

The AMSR2 instrument was launched on JAXA’s Global Change Observation Mission-

Water Shizuku (GCOM-W1) spacecraft on May 18, 2012. AMSR2 is similar to the JAXA-

provided AMSR2-EOS (AMSR-E) instrument launched in 2002 on the NASA EOS Aqua 

satellite [28]. AMSR2 has 7 frequencies and 14 channels, and 1:30 A.M. (descending)/1:30 

P.M. (ascending) local overpass times at the equator. The incidence angle is fixed at 55° and 

global coverage is achieved every 2–3 days. The AMSR2 soil moisture retrieval algorithm 

utilizes the 10.65- (H- and V-pol) and 36.5-GHz (V-pol) channels and simultaneously 

retrieves soil moisture and VWC from two indices that are derived from polarization and 

frequency brightness temperature differences. More information on the soil moisture 

retrieval algorithm can be found in the description of the GCOM-W1 AMSR2 Level 1R and 

L2 algorithms [29]. In this study, the AMSR2 L3 soil moisture posted at 0.25°, available 

through the GCOM-W1 Data Providing Service [30], was regridded to EASEv2 at 36 km by 

bilinear interpolation. No flags are provided in the AMSR2 soil moisture. The AMSR2 soil 

moisture product is reported to have some known issues (i.e., overestimation over deserts) 

[31], [32]. It should be noted that such algorithm incompleteness can have a larger impact on 

soil moisture comparisons than differences between satellites, such as frequency or retrieval 

type. Example nominal and masked AMSR2 data for June 1–7, 2015 are shown in Fig. 1(i) 

and (j). In this case, since no flags are provided, the masked data are identical to the nominal 

data.

III. Soil Moisture Intercomparison

This section describes comparison results between SMAP L2_SM_P and other satellite-

based soil moisture products.

A. Global Patterns and Statistics

Global maps of soil moisture serve as a first qualitative step in assessment. Fig. 1 shows 

global composites of the nominal and masked soil moisture over a 1-week period from June 

1–7, 2015; it will be discussed in detail in the following paragraphs. Global coverage is 

achieved by SMAP in 2–3 days; however, a 1-week period was chosen so that the same 

coverage of soil moisture by SMAP and all other satellites can be compared; Aquarius 

requires 1 week for global coverage. Figs. 1(a), (c), (e), (g), and (i) show nominal pixels, 

while Figs. 1(b), (d), (f), (h), and (j) show pixels after the application of the product-specific 

QC flags; the white areas indicate where data has been masked. The nominal retrievals have 

to be interpreted with caution as they contain pixels with surface/instrument conditions (e.g., 

mountainous terrain, dense vegetation, RFI, and frozen ground) that can lead to inaccurate 

soil moisture retrievals. The root-mean-square difference (RMSD), unbiased RMSD 

(ubRMSD), bias, and correlation (R) between SMAP and the other satellite products after 

the application of product-specific QC flags are shown in Figs. 2 and 3, respectively, which 

were taken from April 1, 2015 to April 1, 2016 for SMAP with SMOS, ASCAT, and 

AMSR2 and from April 1, 2015 to June 7, 2015 for SMAP and Aquarius. Results in Figs. 2 
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and 3 include only pixels where both data sets have valid retrievals after masking. Other 

more advanced metrics, such as triple collocation, generally require a longer record period 

and were therefore not utilized in this study focusing on the first year of operation. It is 

furthermore emphasized that the comparison periods of Figs. 1–3 are very different: Fig. 1 

compares global patterns over a 1-week period, while Figs. 2 and 3 present statistics over a 

longer time span (1 year for SMAP with SMOS, ASCAT, and AMSR2, and a little more 

than 2 months for SMAP with Aquarius). This should be considered in the following 

analysis.

The nominal soil moistures of SMAP and SMOS [Fig. 1(a) and (c)] compare well over most 

land cover types, but differences are apparent over the northern latitudes (Alaska, Russian 

Taiga, and Tundra), for densely vegetated areas (Amazon, Congo, and Indonesia), and areas 

where SMOS is impacted by RFI (such as parts of Europe, the Middle East, and Asia). 

Similar observations were made by Leroux et al. [33]. Both the SMAP and SMOS soil 

moisture retrieval algorithms are based on the τ-ω model, but they employ different land 

cover maps to select their respective (τ, ω, and h) parameters; SMAP uses the International 

Geosphere Biosphere Program (IGBP) classification [3], [34] and SMOS uses 

ECOCLIMAP. This can in part explain some of the observed differences, especially over the 

northern latitudes and densely vegetated areas. The masked soil moistures of SMAP and 

SMOS [Fig. 1(b) and (d)] show differences in coverage: SMOS shows masked areas over 

Northeast Africa, Europe, Middle East, and Asia, whereas much of the dense forest in the 

Amazon and central Africa is not masked. These differences in coverage are due to 

differences in the product-specific QC flags. The RMSD, ubRMSD, and R in Figs. 2(a) and 

(b) and 3(b) suggest similar conclusions. SMOS generally shows a slightly wetter trend than 

SMAP, with the exception of a drier trend for desert-like biomes and denser vegetated 

regions, as seen in Fig. 3(a).

Aquarius [Fig. 1(e) and (f)] compares well with SMAP [Fig. 1(a) and (b)] for bare to 

moderately vegetated areas, but shows higher soil moisture over denser vegetation. This can 

also be observed from the RMSD, ubRMSD, and bias maps in Figs. 2(c) and (d) and 3(c). 

Note that the bias in Figs. 2(c) and (d) and 3(c) is calculated for a little over two months and 

should only be used to investigate general trends. Similar to SMAP, Aquarius operates at L-

band with an algorithm based on the τ-ω model, but uses different (τ, ω, h) parameters due 

to its coarser resolution. Differences in algorithm parameter could explain differences in soil 

moisture patterns that are tied to land cover type. The R in Fig. 3(d) is generally very high, 

but is low over the Sahara since desert-like biomes exhibit a very small dynamic range.

SMAP [Fig. 1(a) and (b)] and ASCAT [Fig. 1(g) and (h)] show similar spatial patterns, but 

ASCAT tends to be wetter (and drier) than SMAP. Specifically, ASCAT is wetter in the high 

northern latitudes and over moderate to dense vegetation and drier over desert-like regions, 

i.e., it exhibits a greater dynamic range at both wet and dry ends. This can also be observed 

from the RMSD, ubRMSD, and bias maps in Figs. 2(e) and (f) and 3(e). ASCAT operates at 

a higher frequency (C-band) at which electromagnetic waves are not expected to be able to 

penetrate far into or originate from deep inside denser vegetation. SMAP at L-band is 

capable of retrieving soil moisture within the accuracy requirement for areas with VWC up 

to 5 kg/m2. The R between SMAP and ASCAT in Fig. 3(f) is low over bare soil regions; as 
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mentioned in the previous paragraph, this is due to desert-like biomes exhibiting a very 

small dynamic range. In addition, scatterometer signals such as from ASCAT can become 

more sensitive to scattering from deeper soil layers under extremely dry conditions; this can 

further decrease correlation [35].

AMSR2 [Fig. 1(i) and (j)] shows a compressed soil moisture range compared with SMAP 

[Fig. 1(a) and (b)] and the other satellite products. It exhibits an overall dry bias, but over 

desert areas it is wetter than SMAP, as shown in Fig. 3(g). The RMSD and ubRMSD in Figs. 

2(g) and (h) show low to moderate RMSDs over desert areas and larger differences with 

increasing vegetation. The R in Fig. 3(h) is highest in dry areas, low in the northern 

latitudes, and moderate over the rest of the Earth. The AMSR2 product does not contain any 

flags to further assess the quality of the product.

For all subsequent analyses, the product-specific QC-masked data sets are used.

B. Transect Comparison

Transect comparisons, while localized in space, can indicate the relative performance of soil 

moisture retrieval algorithms over different biomes. For this purpose, a transect through the 

African continent spanning from the Saharan desert and semiarid Sahel in the north, through 

the Sudanian Savanna, Congolian rainforest, and the flood deltas of the Zambezi and 

Okavango rivers to the Namibian desert in the south, was selected. Plots of soil moisture 

versus latitude for SMAP, SMOS, Aquarius, ASCAT, and AMSR2 for May 5–11, 2015 after 

the application of product-specific QC flags are shown in Fig. 4. This transect is especially 

interesting as it cuts across the Zambezi and Okavango floodplains that are influenced by the 

monsoon season of southeast Asia (late October to April) [36]. During this time, floods are 

frequent and surface water covers most of the flood plain. In May, the dry season is 

generally underway and surface water is disappearing, but high soil moisture is still 

expected; this can be clearly seen in Fig. 4. Toward July/August, the floodplains are 

generally dry and the average soil moisture should be at its minimum in late August/

September. Fig. 5 shows the SMAP soil moisture after the application of SMAP-specific QC 

flags for April 1, 2015–April 1, 2016; the expected dry and wet seasons of the Zambezi and 

Okavango floodplains can be clearly observed.

SMAP and SMOS show similar sharp soil moisture transitions when crossing into/out-of 

denser vegetated areas. SMOS exhibits a few very dry pixels over the Congolian rainforest 

where most other satellite products are masked. On the other hand, many SMOS pixels over 

the Sahara and Sahel are masked due to RFI. For the remaining pixels, SMAP and SMOS 

compare well, with SMOS exhibiting wetter soil moisture over the floodplains and at the 

northern onset of the Congolian rainforest.

SMAP and Aquarius show similar transitions, although some differences can be observed in 

the Sudanian Savanna and the floodplains. Aquarius tends to be overall wetter than SMAP. 

This is especially visible in the region between the Congolian rainforest and the floodplains 

where Aquarius does not decrease to the lower soil moisture level of SMAP and SMOS.
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SMAP and ASCAT show similar overall trends, but ASCAT exhibits a more variable soil 

moisture signal. This can be seen in the Sahara where the ASCAT soil moisture seems to 

fluctuate more than the soil moisture by SMAP. ASCAT is much wetter than SMAP, SMOS, 

and Aquarius in the region between the Congolian rainforest and the floodplains; its soil 

moisture does not decrease as the other soil moisture products indicate. ASCAT furthermore 

shows a soil moisture peak of 0.16 cm3/cm3 in the Namibian desert, which is not seen in any 

other soil moisture product.

SMAP and AMSR2 largely disagree in their soil moisture spatial patterns. AMSR2 exhibits 

a persistent wet bias for the drier regions such as the Sahara, Sahel, and the Namibian desert 

and a consistent dry bias for the denser vegetated biomes. Furthermore, it does not show any 

sensitivity over the floodplain deltas.

C. Intercomparison of SMAP With Existing Satellite-Based Soil Moisture Products by 
IGBP Land Cover Type

Statistics such as ubRMSD, bias, RMSD, and R are calculated over 1 year, specifically April 

1, 2015–April 1, 2016, for SMAP with SMOS, ASCAT, and AMSR2. SMAP and Aquarius 

only overlap for a little more than two months (April 1, 2015–June 7, 2015), and hence the 

statistics are derived for that time period. The statistics are calculated by IGBP classification, 

as given in Table II, and are listed in Table III. It is noted that the number of data point pairs 

can vary depending on land cover class and the applied product-specific QC flags.

Generally, the forested classes (ENF, EBF, DNF, DBF, and MXF) contain fewer pixels than 

other classes due to masking schemes of the satellite products. The statistics in the forested 

classes have to therefore be treated with caution. The permanent wetland (PEW) class 

performs overall poorly, accumulating very high ubRMSDs, biases, and RMSDs, and low or 

negative Rs across all comparisons. PEWs usually contain standing water or marsh 

conditions over which soil moisture retrieval algorithms may perform poorly. The urban and 

built-up (URB) and snow and ice (SNI) classes are generally masked out in soil moisture 

products. Pixels where the respective soil moisture algorithm identifies open water surfaces 

are masked out. Overall, we observe that SMAP compares well with SMOS and Aquarius 

showing similar values for ubRMSD, bias, and RMSD. SMAP and SMOS show lower 

ubRMSDs and higher R for barren or sparsely vegetated soils (BAR), cropland/natural 

vegetation mosaic (MOS), and cropland and grassland (CRP, GRS), while SMAP and 

Aquarius agree better for savannas (SAV), woody SAV (WSV), and the shrubland classes 

(OSH, CSH). The R of SMAP and Aquarius seems to be slightly higher than SMAP and 

SMOS, although this is likely due to SMAP and Aquarius only overlapping for two months 

and significant differences in satellite resolutions.

SMAP agrees less with ASCAT and AMSR2. SMAP and AMSR2 show lower ubRMSD 

values across all IGBP classes than SMAP with ASCAT, likely due a slight improvement 

when removing the bias between SMAP and AMSR2. SMAP and ASCAT show higher R 
values than SMAP and AMSR2 for most land cover classes.
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D. Seasonal Intercomparison of SMAP With Existing Satellite-Based Soil Moisture 
Products

A seasonal analysis of the comparison statistics for SMAP with SMOS, ASCAT, and 

AMSR2 over the available 1-year period is conducted; April 1, 2015–April 1, 2016. In this 

analysis, the northern and southern hemispheres are separated to avoid mixing seasonal 

variations of the hemispheres. Furthermore, the forested classes (ENF, EBF, DNF, DBF, and 

MXF), the PEW class, the URB class, the SNI class, and pixels where the respective soil 

moisture algorithm identifies open water surfaces are excluded when calculating the 

statistics shown in Tables IV and V.

The comparison of SMAP and SMOS, and SMAP and ASCAT shows a seasonal variation; 

they agree better during the spring and winter months in both hemispheres (December–May 

in the northern hemisphere and June–November in the southern hemisphere), as observed by 

lower ubRMSD, RMSD, bias, and higher R during these months. This points toward 

retrieval differences over vegetated classes that show an increased/decreased biomass during 

the summer and autumn months. Albergel et al. [37] assessed seasonal variability of SMOS 

and ASCAT with in situ soil moisture in 2010 and observed a similar trend. It is interesting 

to note that the lowest ubRMSD and RMSD and the highest R coincide in the same months 

(December–May) on the northern hemisphere. In contrast, on the southern hemisphere, the 

lowest ubRMSD and RMSD fall into June to November, while the highest R falls into 

December to May. The comparison of SMAP and AMSR2 shows some seasonal variation, 

but it is not clear which contributing factors lead to this behavior. Excluding several IGBP 

classes when calculating these statistics, we observe that SMAP and SMOS compare better 

than SMAP and ASCAT or SMAP and AMSR2. This does not point toward a superiority of 

any particular product; it assesses the SMAP L2_SM_P product in context with the other 

satellite soil moisture products globally over diverse biomes.

IV. Conclusion

This paper provides the first intercomparison between the passive SMAP soil moisture 

product and soil moisture products from SMOS, Aquarius, ASCAT, and AMSR2. Detailed 

analyses spanning investigations of global patterns and statistics, transect comparisons and 

assessments of land cover dependence, and seasonal variations reveal differences and 

similarities between the intercompared soil moisture products.

In summary, SMAP and SMOS appear to be the most similar among the five soil moisture 

products considered in this paper, exhibiting the smallest ubRMSD and highest R overall. 

Observed differences such as low/high soil moisture over densely vegetated areas such as the 

Amazon and the Congolian forests can in part be explained by the use of different land cover 

type maps in the respective soil moisture retrieval algorithms. Overall, SMOS tends to be 

slightly wetter than SMAP, excluding forests. A significant difference between SMAP and 

SMOS is SMAP’s use of sophisticated RFI filtering hardware and software allowing it to 

acquire brightness temperature observations that are relatively free of RFI.

SMAP and Aquarius overlap only for a little more than two months, and as a result, any 

conclusions should be made with caution. SMAP and Aquarius compare well especially 
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over low to moderately vegetated areas, but disagree over denser vegetated areas. It is 

interesting to note that SMAP and SMOS seem to compare better over low vegetated land 

cover types (such as barren soils, croplands, and grasslands), while SMAP and Aquarius 

compare more closely over moderately vegetated land cover types (such as savannas and 

shrublands). However, this conclusion could be in part biased through the overlap of only 

two summer months between SMAP and Aquarius.

The comparison of SMAP and ASCAT differs from the other comparison pairs, as ASCAT 

is originally delivered as a soil moisture index, operates at a higher frequency (C-band), and 

is also the only radar-based soil moisture product within the five intercompared soil moisture 

products. Ideally and for local comparisons, a porosity from in situ measurements is 

multiplied with the soil moisture index; the use of a global porosity map is assumed to 

introduce some errors due to approximations. Despite these withholdings, SMAP and 

ASCAT show similar overall trends and spatial patterns. ASCAT tends to be wetter than 

SMAP, especially over moderate to dense vegetation; this may possibly be caused by 

reduced microwave penetration at C-band. Furthermore, ASCAT exhibits a more variable 

soil moisture signal.

SMAP and AMSR2 share a similar nominal spatial resolution, but AMSR2 observes at 

different times of the day and its algorithm operates at higher frequencies (X- and Ka-band); 

it therefore observes soil moisture from a shallower depth. SMAP and AMSR2 largely 

disagree in their soil moisture trends and spatial patterns. AMSR2 exhibits an overall dry 

bias, while desert areas are observed wetter than SMAP. Unfortunately, the AMSR2 product 

neither applies RFI mitigation nor provides any flags to further assess the quality of the 

product.

This satellite intercomparison study, in combination with the other four SMAP calibration 

and validation methodologies, has provided and confirmed insights into the SMAP 

algorithm. For example, the comparison of the radiometer-only soil moisture to in situ, 

sparse networks, and soil moisture data from other satellites has resulted in selecting the V-

pol SCA-V as the baseline algorithm. These and other analyses have been conducted over 

the past few years and no further redesigns of the SMAP algorithm based on this study are 

expected at this point.
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Fig. 1. 
Global patterns of soil moisture retrieved by (a) and (b) SMAP, (c) and (d) SMOS, (e) and 

(f) Aquarius, (g) and (h) ASCAT, and (i) and (j) AMSR2 over a 1-week period from June 1 

to 7, 2015. (a), (c), (e), (g), and (i) Nominal and (b), (d), (f), (h), and (j) masked soil 

moisture maps are shown. ASCAT-derived soil moisture data in (g) and (h) are converted 

from soil moisture index (see the text). The AMSR2 masked data are identical to the 

nominal data since AMSR2 is provided without flags.
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Fig. 2. 
Global statistics of RMSD and ubRMSD for SMAP with SMOS, Aquarius, ASCAT and 

AMSR2. Statistics are calculated for April 1, 2015–April 1, 2016 for SMAP with SMOS, 

ASCAT, and AMSR2, and for April 1–June 7, 2015 for SMAP with Aquarius. (a) RMSD of 

SMAP and SMOS. (b) ubRMSD of SMAP and SMOS. (c) RMSD of SMAP and Aquarius. 

(d) ubRMSD of SMAP and Aquarius. (e) RMSD of SMAP and ASCAT. (f) ubRMSD of 

SMAP and ASCAT. (g) RMSD of SMAP and AMSR2. (h) ubRMSD of SMAP and AMSR2.
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Fig. 3. 
Global statistics of bias and correlation (R) for SMAP with SMOS, Aquarius, ASCAT, and 

AMSR2. Statistics are calculated for April 1, 2015–April 1, 2016 for SMAP with SMOS, 

ASCAT, and AMSR2, and for April 1–June 7, 2015 for SMAP with Aquarius. Bias is 

defined as the difference between SMAP and the compared soil moisture product; red 

indicates SMAP with lower soil moisture and blue indicates SMAP with higher soil 

moisture. (a) Bias of SMAP and SMOS. (b) Correlation R of SMAP and SMOS. (c) Bias of 

SMAP and Aquarius. (d) Correlation R of SMAP and Aquarius. (e) Bias of SMAP and 

ASCAT. (f) Correlation R of SMAP and ASCAT. (g) Bias of SMAP and AMSR2. (h) 

Correlation R of SMAP and AMSR2.
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Fig. 4. 
(Top) North–south transect across Africa at lon = 17.7386° (red line in top left inset) 

showing SMAP, SMOS, Aquarius (AQRS), ASCAT, and AMSR2 soil moisture after the 

application of product-specific QC flags for May 5–11, 2015. (Bottom) Approximate 

location of major biomes.
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Fig. 5. 
(Top) North–south transect across Africa at lon = 17.7386° showing SMAP soil moisture 

after the application of SMAP-specific QC flags for April 1, 2015-April 1, 2016. The white 

areas represent masked pixels. (Left) Approximate latitude bands of the major biomes. The 

red box outlines the location of the Zambezi and Okavango floodplains. (Bottom) Expected 

dry and wet seasons of the Zambezi and Okavango floodplains.
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TABLE II

IGBP Classification

Acronym IGBP land cover class

ENF Evergreen Needleleaf Forest

EBF Evergreen Broadleaf Forest

DNF Deciduous Needleleaf Forest

DBF Deciduous Broadleaf Forest

MXF Mixed Forest

CSH Closed Shrublands

OSH Open Shrublands

WSV Woody Savannas

SAV Savannas

GRS Grasslands

PEW Permanent Wetlands

CRP Croplands

URB Urban and Built-up

MOS Cropland / Natural Vegetation Mosaic

SNI Snow and Ice

BAR Barren or Sparsely Vegetated
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