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Abstract

The purpose of this manuscript is to provide an overview of the technical specifications and 

architecture of the Cancer imaging Phenomics Toolkit (CaPTk www.cbica.upenn.edu/captk), a 

cross-platform, open-source, easy-to-use, and extensible software platform for analyzing 2D and 

3D images, currently focusing on radiographic scans of brain, breast, and lung cancer. The 

primary aim of this platform is to enable swift and efficient translation of cutting-edge academic 

research into clinically useful tools relating to clinical quantification, analysis, predictive 

modeling, decision-making, and reporting workflow. CaPTk builds upon established open-source 

software toolkits, such as the Insight Toolkit (ITK) and OpenCV, to bring together advanced 

computational functionality. This functionality describes specialized, as well as general-purpose, 

image analysis algorithms developed during active multi-disciplinary collaborative research 

studies to address real clinical requirements. The target audience of CaPTk consists of both 

computational scientists and clinical experts. For the former it provides i) an efficient image 
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viewer offering the ability of integrating new algorithms, and ii) a library of readily-available 

clinically-relevant algorithms, allowing batch-processing of multiple subjects. For the latter it 

facilitates the use of complex algorithms for clinically-relevant studies through a user-friendly 

interface, eliminating the prerequisite of a substantial computational background. CaPTk’s long-

term goal is to provide widely-used technology to make use of advanced quantitative imaging 

analytics in cancer prediction, diagnosis and prognosis, leading toward a better understanding of 

the biological mechanisms of cancer development.
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1 Introduction

The bane of computational medical imaging research has been its translation to the clinical 

setting. If novel research algorithms can be validated in ample and diverse data, then they 

have the potential to contribute to our mechanistic understanding of disease and hence 

substantially increase their value and impact in both the clinical and scientific community. 

However, to facilitate this potential translation a Graphical User Interface (GUI) is essential, 

supportive, and tangential to medical research. Designing and packaging such a GUI is a 

lengthy process and requires deep knowledge of technologies to which not all researchers 

are exposed. Providing a computational researcher an easy way to integrate their novel 

algorithms into a well-designed GUI would facilitate the use of such algorithms by clinical 

researchers, hence bringing the algorithm closer to clinical relevance.

Towards this effort, numerous open-source applications have been developed [1-4] with 

varying degrees of success in either the computational and/or clinical research communities. 

However, each of these had their own limitations. To address these limitations, we developed 

the Cancer imaging Phenomics Toolkit (CaPTk1) [5,6], which introduces a mechanism to 

integrate algorithms written in any programming language, while maintaining a lightweight 

viewing pipeline. CaPTk is a cross-platform (Windows, Linux, macOS), open-source, and 

extensible software platform with an intuitive GUI for analyzing both 2D and 3D images, 

and is currently focusing on radiographic scans of brain, breast, and lung cancer. CaPTk 

builds upon the integration of established open-source toolkits to bring together advanced 

computational functionality of specialized, as well as general-purpose, image analysis 

algorithms developed during active multidisciplinary collaborative research studies.

2 Tools Preceding CaPTk

Prior to beginning the development of CaPTk in 2015, we conducted a literature review of 

the current open-source applications developed by the community to address specific 

scientific needs such as Quantitative Image Phenomic (QIP) extraction and image 

1www.cbica.upenn.edu/captk.
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annotation. While some of these tools (such as MIPAV [11] and MedINRIA [4]) could not 

be extended with customized applications, others (namely, 3D-Slicer [1] and MITK [2]) had 

complex software architecture that would be challenging for a limited team to extensively 

modify. Additional considerations in the decision to launch CaPTk as an independent toolkit 

included the substantial code base internal to the Center for Biomedical Image Computing 

and Analytics (CBICA) relating to existing software applications implemented in C++, 

existing research directions, software development expertise in C++, and licensing 

considerations. Furthermore, none of these applications could provide customized 

interactions for initializing seedpoints, as required by applications such as GLISTR [7] and 

GLISTRboost [8,9]. Below we refer to specific packages that preceded the development of 

CaPTk and we attempt to describe their advantages and disadvantages (at that time) 

compared to the requirements of CaPTk that led to its design and development.

2.1 Medical Imaging Interaction Toolkit (MITK)

One of the earliest works towards an open source extensible toolkit by the scientific 

community, MITK [2] had spearheaded the adoption of DICOM ingestion by the research 

community. Designed to be cross-platform, it had been extensively tested on various types of 

datasets, modalities and organ-systems and has arguably provided one of the best DICOM 

parsing engines in the community with a very nice mechanism for incorporating plugins that 

integrate natively into the application. Although MITK’s native plugin integration was not as 

user-/developer-friendly and required expert knowledge of MITK, it made incorporation of 

other tools such as XNAT [10] possible. However, we ended up not choosing MITK as an 

option for our solution as integrating an application written in a different programming 

language could not be done easily and any modifications of the graphical capabilities, such 

as custom interaction (e.g., GLISTR/GLISTRboost initializations) or quick GUI 

modification, was not possible without extensive background knowledge of toolkit’s 

internals.

2.2 Medical Image Processing, Analysis, and Visualization (MIPAV)

One of the earliest tools funded by the National Institutes of Health (NIH), the MIPAV [11] 

package was written to provide an easy-to-use user interface for image visualization and 

interaction. MIPAV is a cross-platform application, with a back-end written in Java. There 

were some performance issues with algorithms that required a high amount of computation 

capabilities and it was targeted for specific functionality and had no way to integrate third-

party applications.

2.3 3D Slicer

Perhaps the most popular open source tool for the imaging community, 3D Slicer 

incorporated a lot of functionality via its extension management system. It was relatively 

easy for a developer to write a Slicer extension since it provided out-of-the-box support for 

Python, which potentially resulted in performance issues. It was cross-platform and very 

well tested by the community and had extensive DICOM support. The user interface, 

however, was not very friendly for clinical researchers and any changes to either the 

interactive capabilities or the user interface could not be done easily. In addition, integrating 

an application written in a language that was not in C++ or Python was also not trivial.
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2.4 MeVisLab

MeVisLab [3] was a semi-commercial tool made available by Fraunhofer MEVIS2 which 

was well tested by their industrial partners, had extensive DICOM support and was well-

received by clinicians as well. However, it had limited capability of handling the number (5 

in total) and size (2kB source) for extensions in the free version, a serious constraint if we 

were to use MeVisLab as the basis for providing multiple complex imaging applications to 

researchers. In addition, non-native extensions were not currently supported.

2.5 medInria

medInria [4] was an imaging platform that focused on algorithms related to image 

registration, diffusion image processing and tractography. Combined with extensive support 

for different types of DICOM image formats and its cross-platform capabilities, medInria 

had excellent annotation capabilities and was extensively used by clinical researchers by 

virtue of its easy-to-use interface. Nevertheless, because of its inability of assimilating 

extensions, it became a narrowly focused tool.

2.6 ITK-SNAP

ITK-SNAP [12] was one of the most widely used tools for segmentation and has been used 

to solve annotation problems in multiple organ systems. It was cross-platform and very well-

tested. Nonetheless, because of its inability to support extensions and the architectural 

complexity of the visualization system, it was not a candidate to use as a base for CaPTk’s 

development.

3 CaPTk’s Infrastructure

The development of medical imaging tools that can be clinically relevant is driven by a 

specific medical need around which algorithms are developed, and involves understanding of 

a researcher’s/clinician’s workflow. As illustrated in Fig. 1, the planning begins with 

defining the clinical requirement of the task to be accomplished, followed by acquiring 

relevant sample datasets. Using these initial requirements and datasets, an algorithm is 

designed and then its usability is established using a series of refinements, including a robust 

visualization and interaction tool-chain.

3.1 Functionality

By keeping the data flow practices in mind (Fig. 1), CaPTk has been designed as a general-

purpose tool spanning brain, breast, lung, and other cancers. It has a broad, three-level 

functionality as illustrated in Fig. 2. The first level provides basic image pre-processing tasks 

such as image input-output (currently supporting NIfTI [13] and DICOM file types), image 

registration [14], smoothing (denoising) [15], histogram-matching, and novel intensity 

harmonization for brain magnetic resonance imaging (MRI) scans (namely WhiteStripe 

[16]), among other algorithms. The second level comprises various general-purpose routines 

including extensive QIP feature extraction compliant with the Image Biomarker 

Standardization Initiative (IBSI) [17], feature selection, and a Machine Learning (ML) 

2www.mevis.fraunhofer.de.
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module. These routines are used within CaPTk for specialized tasks, but are also available to 

the community as general-purpose analysis steps that sites can use as the basis for pipelines 

customized for their data. In particular, this level targets extraction of numerous QIP features 

capturing different aspects of local, regional, and global visual and sub-visual imaging 

patterns, which, if integrated through the available ML module, can lead to the generation of 

predictive and diagnostic models. Finally, the third level of CaPTk focuses on specialized 

applications validated through existing scientific studies keeping reproducibility [18] as the 

cornerstone of development. These studies include: predictive models of potential tumor 

recurrence and patient overall survival [19-26], generating population atlases [27], 

automated extraction of white matter tracts [28], estimation of pseudo-progression for 

glioblastoma (GBM) [19], evaluating the Epidermal Growth Factor Receptor splice variant 

III (EGFRvIII) status in GBM [29,30], breast density estimation [31,32], estimation of 

tumor directionality & volumetric changes in 2 time-points [33], among others.

CaPTk’s GUI was designed after multiple interactions with radiologists and other clinical 

collaborators, targeting single subject analysis primarily for clinical research. Along with the 

easy-to-use GUI, every specialized application within the CaPTk has an accompanying 

command-line interface (CLI) executable. These CLI applications allow the use of CaPTk 

functions as components of larger, more complicated pipelines and for efficient batch 

processing of large numbers of images.

3.2 Architecture

The architecture of CaPTk is depicted in Fig. 3. At the lowest level of the architecture 

(shown as blue in Fig. 3) is the operating system (OS) and its core components, such as 

system libraries (OpenGL, OpenMP) and hardware drivers. One level above (in green) are 

the libraries (e.g., ITK, VTK, OpenCV, Qt) that provide the lower level functionality of 

CaPTk. The next level consists of CaPTk core libraries constituting the algorithmic 

functionality of CaPTk, including all its three levels previously described and graphically 

shown in Fig. 2. At the very top (in orange), lie the GUI and the CLI components.

The Insight Toolkit (ITK) [34] has helped take research in the field of medical imaging to 

new heights by providing a set of common Application Programming Interfaces (APIs) and 

offered the ability for users to easily read, write, and perform computations with medical 

imaging datasets. ITK is used in CaPTk for tasks related to medical image registration (via 

the Greedy algorithm3) and segmentation, and ITK functions are components in new image 

analysis algorithms. The Visualization Toolkit (VTK) [35] has provided powerful 

functionalities for rendering and interaction of complex datasets. The Open Source 

Computer Vision Library (OpenCV) [36] has long fostered a healthy community of 

computer vision researchers and has established an industry-standard library for providing 

ML algorithms that can be used out-of-the-box, upon which CaPTk is building. For 

DICOM-related functionalities we leverage the DICOM Toolkit (DCMTK4), Grassroots 

DICOM (GDCM5), and have incorporated the DCMQI [37] tool for DICOM-Seg output. 

Qt6 is used for GUI related tasks and cross-platform features. We build upon these open 

3sites.google.com/view/greedyreg/about.
4www.dcmtk.org.
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source and well-validated tools for CaPTk’s development, with major emphasis towards 

being computationally efficient and fully cross-platform across the major desktop operating 

systems (i.e., Windows, Linux and macOS).

The architecture of CaPTk provides all source-level applications with efficient access to 

every imaging action and all common functions, treating imaging data as objects that can be 

passed between applications. This allows multiple applications access to common tasks (ie., 

pre-processing) without duplication of code or inefficient I/O. Simultaneously, the CaPTk 

design model that implements procedures written in C++ as both graphical and command-

line applications also enables easy incorporation of stand-alone executables, such as ITK-

SNAP7 and DeepMedic [38], written in any language.

The CaPTk core provides libraries for different specialized applications, such as those 

developed for brain, breast, and lung cancer. To ensure reproducibility of the algorithms as 

originally written, each of these specialized tools is designed as a monolithic application, 

and is independent of the other general-purpose applications.

3.3 Extending CaPTk

CaPTk can be easily extended with customized applications while leveraging all the 

graphical and algorithmic functionalities present in the application core. There are two ways 

for a developer to integrate their application into CaPTk8:

3.3.1 Application-Level Integration—This is the easiest way to call a custom 

application from CaPTk’s GUI. This can be done for an application written in any language 

as long as a self-contained executable can be created. Essentially, these applications are 

called in the same way as they would be executed interactively from the command line. 

Their dependencies can be provided through the OS platform, distributed as part of the 

CaPTk distribution (preferable), or can be downloaded from an external site during 

installation. Once the executable is created, integration in CaPTk requires only minor 

modification to the build script (CMake) and user interface code. An example of such an 

integration is the LIBRA application [31,32].

3.3.2 Source-Level Integration—This is the deeper level of application integration and 

is available if the application is written in C++, possibly incorporating ITK, VTK, and/or 

OpenCV. To ensure that a source-level integration happens for an application, it needs to be 

written as a CMake project, i.e., a CMakeLists.txt is essential to define the requirements, 

project structure, generated libraries and/or executable(s), and the corresponding install 

targets for CaPTk’s installation framework. The location of the entire project needs to be 

added to CaPTk’s build path via the appropriate CMake script files. The developer also has 

the option to add a customized interface for the application. Examples of this kind of 

integration are the Feature Extraction, Preprocessing and Utilities applications of CaPTk.

5gdcm.sourceforge.net.
6www.qt.io.
7www.itksnap.org.
8cbica.github.io/CaPTk/tr_integration.html.
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3.4 Utilizing CaPTk in Custom Pipelines

The Common Workflow Language (CWL) [39] is an open standard to enable easy 

description of an executable for analysis workflows and tools in a way that ensures 

portability and scalability across a wide range of software and hardware environments, 

ranging from different operating systems to personal machines and High Performance 

Computing (HPC) environments. CWL has been conceived to meet the needs of high-

throughput data-intensive scientific areas, such as Bioinformatics, Medical Imaging, 

Astronomy, High Energy Physics, and ML.

CaPTk leverages CWL as a means of relaying compact, human- and machine-readable 

descriptions of applications within the software suite. These descriptions, either in memory 

or as text files, are used to validate the optional and required inputs to an application. Each 

native application is specified in the CWL grammar in it’s abstract form that includes all 

possible parameters, and CWL is further used to pass the actual arguments used in applying 

an analysis routine to a specific set of data. These CWL descriptions can improve validity of 

results and enhance data provenance for end-users by recording all details about data and 

options used to generate results from any CWL pipeline in a compact, reproducible, 

verifiable format.

We have contributed the C++ implementation of the CWL parser that is used within 

CaPTk’s CLI9 to the CWL development community. This CWL parser is an easy and 

portable tool for developers to structure and write a CLI application (Fig. 4). Our 

contribution should i) allow the easy construction of pipelines without requiring any 

additional scripting, and ii) provide the ability to run both local and cloud applications. The 

reading and writing of a CWL definition file is embedded within the Command Line Parser 

itself to reduce the effort of writing pipelines.

3.5 Online Accessibility

CBICA’s Image Processing Portal (IPP10) can be used by anyone to run resource-intensive 

applications of CaPTk on CBICA’s HPC servers at no charge. CaPTk can be used to 

initialize the inputs that are required for all applications that are semi-automated, such as 

GLISTR [7] and GLISTRboost [8]. In addition, applications that may be impractical to run 

on a personal machine due to their long-running nature can be run remotely on IPP.

3.6 Code Maintenance

To ensure that good practices in open science principles are followed during the CaPTk 

development, the source code and issue tracker for CaPTk are maintained publicly on 

GitHub11. The entire history of the source code can be found on the repository. A stable 

version of CaPTk is compiled and released twice every year, and it includes the source code, 

as well as self-contained installers for multiple platforms.

9github.com/CBICA/CmdParser.
10ipp.cbica.upenn.edu.
11github.com/CBICA/CaPTk, github.com/CBICA/CaPTk/issues.
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CaPTk also follows the software development best practices [40] and employs Continuous 

Integration and Continuous Deployment (CI/CD) via GitHub and Azure DevOps12 as 

mechanisms to encourage a rapid development cycle while incorporating work from 

multiple developers. Any code contributions, either from the CaPTk development team or 

external users, are merged into the master only after successful completion of CI/CD checks 

and a code review13. Each push into the master GitHub code repository for CaPTk 

automatically produces a new binary installer for each supported OS that gives users 

immediate access to the bleeding edge development of CaPTk.

4 Example of General Purpose Applications

4.1 Quantitative Image Phenomic (QIP) Feature Panel

Building around the functionalities provided by ITK [34] and MITK [2], we have made the 

Feature Panel available in CaPTk as generic as possible, while at the same time maintaining 

safeguards to ensure clinical validity of the extracted features. For example, all computations 

are performed in the physical space of the acquired scan instead of the image space. Options 

to control the Quantization Extent (i.e., whether it should happen for the entire image or 

only in the annotated region of interest), the Quantization Type (e.g., Fixed Bin Number, 

Fixed Bin Size or Equal width [17]), resampling rate, and interpolator type, are all defined in 

the physical space and accessible to the user to alter as needed for a particular study. The 

user also has the capability to perform lattice-based feature computations [41,42] for both 

2D and 3D images.

There are two broad types of features getting extracted by CaPTk (detailed mathematical 

formulations can be found at: cbica.github.io/CaPTk/tr_FeatureExtraction.html):

1. First Order Features:

a. Intensity-based: Minimum, maximum, mean, standard deviation, 

variance, skewness and kurtosis.

b. Histogram-based: Bin frequency & probability, intensity values at the 

5th and 95th quantiles, statistics on a per-bin level.

c. Volume-based: Number of pixels (for 2D images) or voxels (for 3D 

images) and their respective area or volume.

d. Morphology-based: Various measures of the region of interest such as 

Elongation, Perimeter, Roundness, Eccentricity, Ellipse Diameter in 2D 

and 3D, Equivalent Spherical Radius.

2. Second Order Features:

a. Texture Features: Grey Level Co-occurrence Matrix, Grey Level Run-

Length Matrix, Grey Level Size-Zone Matrix, Neighborhood Grey-

Tone Difference Matrix are part of this section [17].

12dev.azure.com/CBICA/CaPTk.
13en.wikipedia.org/wiki/Code_review.
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b. Advanced Features: Includes but is not limited to Local Binary Patterns, 

frequency domain features, e.g., Gabor and power spectrum [41].

All features are in conformance with the Image Biomarker Standardisation Initiative (IBSI) 

[17], unless otherwise indicated within the documentation of CaPTk. Most implementations 

are taken from ITK [34] or MITK [2] with additions made to ensure conformance when the 

physical coordinate space rather than the image space, which is one of the major sources of 

variation in between CaPTk and comparative packages, such as PyRadiomics [43]. Other 

sources of variation include the type of binning/quantization used and the extent on which it 

is applied. The user also has the option of performing batch processing with multiple 

subjects14.

4.2 ML Training Module

We have based our machine learning module on OpenCV’s ML back-end15 and exposed the 

utility of Support Vector Machines (SVM) using Linear and Radial Basis Function kernels to 

the user, offering a grid search optimization for c and g. Additional kernels and algorithms 

will also be offered later. In addition, there is the capability to perform k-fold cross 

validation and to split the training and testing sets by percentages (Fig. 5).

5 Future Directions

We developed CaPTk to address a gap at the time in the existing available tools and to make 

our preexisting advanced computational studies available to clinicians and imaging 

researchers in a tool that did not require a computational expert. The growing number of 

users of CaPTk and the reach of specialized applications within the suite validates our initial 

decision to produce a software package with interface features designed to make the 

specialized algorithms accessible in a way that we could not have accomplished with toolkits 

available when CaPTk was initiated. However, feedback from this wider set of researchers 

and clinicians has exposed some limitations in the current version of CaPTk that we intend 

to address in its next major revision, i.e., CaPTk v.2.0.

Importantly, the variability and inconsistency among imaging headers has turned out to be a 

serious challenge in medical imaging. CaPTk is currently able to handle NIfTI file format 

and has limited support for handling DICOM files (which is currently based on DCMTK16 

and GDCM17) and does not support network retrieval from DICOM-compliant Picture 

Archiving and Communication Systems (PACS18). Over the course of its evaluation by 

clinicians, it has become evident that seamless integration with PACS is a necessary element 

for CaPTk’s future.

Furthermore, a graphical interface for cohort selection and a batch processing interface, 

combined with the use of CWL to provide data provenence for each step in a pipeline, would 

also be essential to the construction of replicable research studies. In order to achieve this 

14cbica.github.io/CaPTk/tr_FeatureExtraction.html.
15docs.opencv.org/master/dd/ded/group__ml.html.
16www.dcmtk.org.
17gdcm.sourceforge.net.
18en.wikipedia.org/wiki/Picture_archiving_and_communication_system.
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goal, integration with a data management, archival, and distribution system such as XNAT 

[10] is essential.

Finally, integration with state-of-the-art tools that rely on server-side communication such as 

the Deep Learning based NVIDIA-Clara annotation engine19, cannot be easily 

accomplished with CaPTk in its current state.

We have recently surveyed the state of other image processing applications and toolkits and 

conducted extensive outreach to prospective collaborators as we begin to design the 

architecture for the next generation of the Cancer imaging Phenomics Toolkit. While we 

continue to support and develop the current implementation of CaPTk, plans for the 2.0 

branch include support (via CWL) for web- and cloud-based services and leveraging the 

current and updated functionality of MITK [2] and/or Slicer Core in the future.

6 Conclusions

We developed the CaPTk to provide a library for advanced computational analytics based on 

existing published multi-disciplinary studies, to meet the need at the time in the field of 

medical image processing applications for a suite that could be easy extended with 

components using any programming language. We consider medical image analysis to be 

much more than just a collection of algorithms; to ensure success of a tool, having the 

capability to visualize and interact with the original and processed image datasets is equally 

important. Building upon the powerful segmentation and registration framework provided by 

ITK and the rendering and interaction capabilities (particularly for 3D datasets) provided by 

VTK, we have built a light-weight application, CaPTk, that can visualize and interact with 

different datasets and also provide a solid annotation pipeline, thereby making it a powerful 

tool for use by clinical researchers. By enabling easy integration of computation algorithms 

regardless of their programming language, we have further ensured that computational 

researchers have a quick path for potential translation to the clinic.
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Fig. 1. 
Data flow diagram for tool development planning. Addition of a GUI tremendously 

increases the usability of the algorithm. Feedback from clinical usage is used to refine the 

algorithm and rendering further.
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Fig. 2. 
Diagram showcasing the three-level functionality of CaPTk.
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Fig. 3. 
Detailed diagram of CaPTk’s architecture showing the various interdependencies between 

the components.
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Fig. 4. 
The principle of CaPTk’s CWL CLI parser.

Pati et al. Page 16

Brainlesion. Author manuscript; available in PMC 2020 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The principle of CaPTk’s machine learning module.
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