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Abstract

Identifying structural variation (SV) is essential for genome interpretation but has been historically 

difficult to resolve. Detection methods using ensemble algorithms and emerging sequencing 

technologies that mitigate short-read limitations have enabled discovery of thousands of SVs, 

uncovering information about their ubiquity, relationship to disease, and possible effects on 

biological mechanisms. Given the variability in SV type and size, along with unique detection 

biases of emerging genomic platforms, multiplatform discovery is necessary to resolve the full 

spectrum of variation. Here, we review modern approaches for investigating SVs and proffer that, 

moving forward, studies integrating biological information with detection will be necessary to 

comprehensively understand the impact of SV in the human genome.

Introduction

Widespread application of whole-genome high throughput sequencing (HTS) for the 

detection of genetic variants has shown that differences between individuals are typically 

present as single nucleotide variants (SNVs), small insertions and deletions (indels; < 50bp), 

and structural variations (SVs)1. SVs are extremely diverse in type and size, ranging 

anywhere from ~50 bp to well over megabases of sequence, affecting more of the genome 

per nucleotide changes than any other class of sequence variant2–6. They comprise a myriad 

of subclasses consisting of unbalanced copy number variants (CNVs) including deletions, 

duplications and insertions of genetic material, as well as balanced rearrangements such as 

inversions and inter and intrachromosomal translocations. Additionally, SVs include mobile 

element insertions, multi-allelic CNVs of highly variable copy number, segmental 

duplications, and complex arrangements which consist of multiple combinations of these 

described events. SVs are present in every human genome, affecting molecular and cellular 
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processes, regulatory functions, 3D structure, and transcriptional machinery5,7,8. Thus, 

increasing our knowledge of SV structure and prevalence is necessary to discern the 

genomics of physiological and pathophysiological processes.

Many of the prevalent tools and algorithms to detect SVs use short-read signatures to infer 

the presence of SVs compared to a reference genome9. While short-read approaches are 

highly effective at resolving SNVs, SV detection is unable to completely overcome the 

limited sequence and insert sizes of standard short-read HTS10. There are still considerable 

limitations on what can be achieved in SV analysis owing to technical difficulties in 

resolving exact structures of SVs given their substantial diversity and proximity to repetitive 

regions5,9,11–13. SNVs detected by short-reads can be sequence-resolved during the 

discovery stage owing to their smaller size whereas most SVs would require computational 

inference post hoc. Because of this, the degree to which contemporary genomics has studied 

SNVs compared to SVs is significantly skewed. Specifically, standardized best practices, 

robust detection platforms, high-quality reference sets, and extensive functional data from 

genome-wide association studies are available for SNV research14–20. Comparatively, 

progress in SV analysis is significantly behind, as detection is suboptimal and reference sets 

are lacking in diversity, sample size, and depth.

A considerable increase in the development and availability of novel sequencing 

technologies that leverage specialized flow cells, advanced microfluidics, and protein pores, 

among others, has led to platforms that produce reads several orders of magnitude longer 

than those generated from short-read HTS, enabling direct detection of many SVs21. In this 

Review, we discuss methods for resolving SVs in human genomes that bypass the 

limitations of individual short-read approaches through algorithmic ensembles and by 

leveraging new technologies. In particular, we discuss the findings of applying new 

technologies to genome assembly and population-scale variant mapping as they relate to 

germline SVs (for recent reviews on somatic SVs, see REFS22,23). Along with integrating 

short-read SV callers, we consider integrating data generated from multiple genomic 

platforms as a way to comprehensively detect the broad range of SVs. As each approach has 

different strengths, we highlight the individual strategies, their applications, and recent 

findings. We discuss future directions and consider incorporating multimodal biological 

information as a way to interpret the impact of SVs in their molecular contexts.

Ensemble Algorithms

Sequencing-based SV detection primarily leverages signatures that result from mapping 

discordance between a sample read and the reference genome: read-pair (RP) assesses the 

orientation and distance of paired-ends; read-depth (RD) detects deletions or duplications 

based on divergences in mapping depth; split-read (SR) approaches leverage alignments that 

map over breakpoints; and alternatively de novo or local assembly (AS) reassembles contigs 

before pairwise comparison to a reference24–26. Many early SV callers like PEMer, 

Breakdancer, and CNVnator specialized in leveraging only one of four approaches which 

inherently limits detection (reviewed in Alkan et al.)27–29. Hybrid-signature algorithms such 

as Genome STRiP, Delly, Manta, and LUMPY, among others, mitigate the limited scope of 

single-approach algorithms, improving sensitivity by integrating two or more disparate 
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signatures to call putative SVs based on combined supporting evidence30–36. However, even 

with signal integration, no individual caller has been shown to be capable of identifying the 

complete range of SV owing to the large diversity in viable detection approaches and the 

variability in SV subtype and size37–39. One strategy to attenuate this issue involves 

detecting SVs using multiple discrete algorithms on the same sequence data and integrating 

calls to generate a unified callset (FIG. 1). Combining multiple algorithms improves 

detection by leveraging the different heuristic approaches of each individual caller and has 

been shown to increase the concordance of SV calls when compared to reference datasets 

developed by large consortium projects40–42. From here, we refer to “ensemble algorithm” 

(EA) as the combination and integration of multiple independent SV detection algorithms.

Most EA methods are “in-house,” meaning the algorithm ensemble and heuristic filters are 

unique to individual projects. Thus, the combination of algorithms employed are non-

standardized but typically consist of one or several algorithms to cover each signature type, 

e.g. combining CNVnator with BreakDancer and Pindel to cover RD, RP and SR, 

respectively, though recent approaches use the hybrid-signature callers discussed above. 

Following multi-algorithm detection, the resultant calls are merged, combining potentially 

duplicate SVs while delineating SVs called uniquely by each algorithm. The methods to 

integrate, combine, and score calls varies significantly between studies and thus far have 

used breakpoint confidence interval overlap, breakpoint distances, false-discovery rate 

(FDR) cutoffs, read-signature prioritization (SR > RP > RD), caller concordance, and 

supporting signatures thresholds (BOX 2) 4,5,43–46. A fifth factor, coordinate overlap, is 

considered by all EA methods to varying degrees. Depending on the level of sensitivity a 

project aims to achieve, applications will either intersect calls or take a union, decreasing 

and increasing sensitivity while decreasing and increasing the FDR, respectively.

There are standalone tools for EAs that help standardize these integrative pipelines. 

SpeedSeq employs LUMPY and CNVnator to cover SR, PE, and RD detection before 

validating calls with a Bayesian likelihood genotyper (SVTyper), an approach implemented 

in the population-scale specific svtools47,48. HugeSeq, SVMerge, iSVP, and Parliament2 are 

all EA callers that primarily intersect by coordinate overlap whereas MetaSV takes the 

union40,41,49–51. SVMerge and MetaSV both validate their consensus calls with local 

reassembly but MetaSV prioritizes SV signatures with higher resolution (e.g. SR over RP). 

Parliament2 allows users to decide on a combination of six short-read algorithms, merges 

calls with SURVIVOR, and genotypes with SVTyper as well47,52. EA callers are beginning 

to implement meta-level heuristics to improve precision beyond using simple overlap: (1) 

Parliament2 scores each SV call with a caller concordance metric trained on HG002; (2) 

FusorSV implements a data-mining method to learn how well different SV algorithms 

perform compared to a truth set to promote the most complementary and highest performing 

ensemble; (3) CN-Learn, an algorithm for whole-exome data, extracts features from a truth 

set and uses these features to train a Random Forest classifier that differentiates CNV calls 

as true or false50,53,54.
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Population-scale SV detection.

EA approaches have been widely used in studies characterizing SVs across populations. The 

1000 Genomes Project (1KGP) initially integrated nineteen algorithms to detect SVs in 

Yoruban, Japanese, Han, and European individuals to create a sequencing-based SV 

reference map4. This early work provided one of the first frameworks for using ensemble 

approaches to detect SVs at population-scale and revealed 51 SV hotspots in the genome, 

80% of which were dominated by a single formation mechanism, non-allelic homologous 

recombination, some at loci associated with known genetic conditions. At the completion of 

phase 3, the 1KGP sequenced 2,504 individuals across 26 populations and investigated all 

major SV classes in contrast to the deletion focus of the phase 1 marker paper5. The authors 

generated one of the most comprehensive and diverse reference sets of human SVs 

estimating that typical human genomes contain between 2,100–2,500 SVs affecting ~20 

million nucleotides, finding that SVs are enriched up to 50X more for expression 

quantitative trait loci compared to SNVs. While the 1KGP was an enormous effort that set 

the stage for large-scale SV detection by sequencing, the relatively low ~6–7x coverage per 

sample limited power to detect rare variants55.

SV projects with larger and deeper datasets have emerged to improve upon the 1KGP 

reference set. Abel et al. applied svtools to ~18,000 human genomes, detecting 118,973 and 

241,426 SVs from datasets aligned to GRCh37 and GRCh38, respectively44. Abel and 

colleagues estimated a mean of 4,442 high-confidence SVs per human genome and notably 

find: (1) ~4/4,442 directly alter exons, (2) ~19/4,442 are rare non-coding deletions that, 

using predictive functional annotation, (3) were up to 800 times more likely to be strongly 

deleterious than rare SNVs and exhibited levels of purifying selection comparable to small 

loss-of-function variants. To improve rare SV detection, The Genome Aggregation Database 

(gnomAD) systematically processed data from fewer individuals (~15,000) but at increased 

mean coverage (~32X vs 20X) relative to Abel et al.43. The authors detected 498,257 SVs 

from an ensemble of four algorithms finding an average of 8,202 SVs per human genome 

nonuniformly distributed through the genome by SV subclass. Collins et al. revealed 

253/8,202 SVs in the average genome are intragenic and 8/8,202 are rare SVs that likely 

alter gene function. Strikingly, they found 57% of the human reference genome “hg19” is 

covered by at least 1 CNV. The 1KGP and subsequent population-scale SV analyses show 

the potential for SVs to impact gene expression and reveal the prodigious ubiquity of SVs 

far beyond the ~12 CNVs per human genome estimated in 200456.

In contrast to global approaches, some projects focus on detecting SVs from populations 

deriving from a recent common ancestry. SVs were twice analyzed in ~750 genomes derived 

from 250 Dutch families, once for de novo SVs and another for phased SVs (note that SVs 

were defined as variants >20 bp in this project), revealing Dutch-specific SVs and SV 

hotspots undetected by the 1KGP45,57. Similar work by Nagasaki et al. used an EA to detect 

SVs in 1,070 Japanese individuals to develop a Japanese-specific reference panel58. An 

increase in similar population-specific SV detection projects will be necessary to shift the 

diversity gap in genetics research and help identify rare SVs specific to ancestral 

backgrounds59. Indeed, some groups are still extremely underrepresented: Hispanic and 
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Latin American individuals make up only 7.8% and 16% of the gnomAD-SV and Abel et al. 

datasets, respectively43,44.

Limitations.

EA studies are confounded by highly variable coverage, which has ranged from 3X to 90X 

in different projects, leading to the application of ad hoc heuristics and filtering which 

appreciably influence sensitivity and detection outcomes. Projects employ anywhere from 

three to nineteen distinct algorithms – variation in sensitivity and precision between 

algorithm choices will directly affect the consensus callset as the accuracy of ensembles are 

highly influenced by algorithm combinations38. The truth-sets used to benchmark calls and 

the filters applied for stringency are also highly variable, leading to parameterizations that 

may sacrifice precision for recall, or vice versa. Additionally, standalone EA tools are 

largely immature and mostly rely on simple overlap. Larger projects optimize EAs with truth 

sets generated from validation data, implementing FDR cutoffs and ROC tuning, but 

standalone methods do not possess such specifically generated benchmarks, making it 

difficult to implement these methods. The development of standardized variant benchmarks 

is an active area of research that may help formalize development of EAs by providing high-

quality reference datasets that are thoroughly validated computationally and 

experimentally42,60. Further, EAs focused on integrating only short-read data do not 

overcome the limitations of short-insert sizes: they poorly detect small insertions and 

continue to suffer in repetitive regions39,61,62.

Emerging genomic technologies

A plethora of emerging technologies seek to expand beyond the capabilities of short-reads. 

Connected-molecule strategies, such as 10x Genomics Linked-Reads (LR), Strand-seq, and 

Hi-C, expand upon short-reads by inferring long connections between distally mapped short-

read pairs. These strategies are similar to long-insert short-read libraries (reviewed 

elsewhere)63, which trade lowered sequence coverage for high physical coverage, improving 

and decreasing power to detect large and small variants, respectively. Alternatively, single-

molecule strategies generate contiguous reads tens to hundreds of kilobases long, thus 

enabling direct detection of many SVs and improving alignment of unique reads in repetitive 

regions. Single-molecule strategies exist in two dominant forms: (1) long-read sequencing 

by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), and (2) optical 

mapping (OM) by Bionano. Comparatively, connected-molecule strategies have high 

specificity for defined size ranges and SV subtypes, whereas single-molecule strategies have 

higher overall sensitivity. Many of the above technologies are thoroughly reviewed in 

Goodwin et al21.

Connected-molecule strategies

10x Genomics Linked-Reads.—A number of methods, such as pooled-clone 

sequencing and Illumina Synthetic Long Reads, represent “synthetic long reads” which use 

specific library preparations to infer long range information from existing short-read 

sequencers64,65. Linked-Reads (LRs) from 10x Genomics are currently the most commonly 

used synthetic long-read platform, which partitions and barcodes diluted high-molecular 
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weight DNA using a microfluidic device prior to short-read sequencing such that the origin 

of the short-read fragments can be determined from their respective barcodes and long-range 

information is reconstructed in silico66. Additionally, LRs retain their underlying short-read 

information and have greatly increased physical coverage resulting from coverage of the 

constructed molecule combined with coverage of each underlying short-fragment. The 

physical coverage makes LRs well suited for SV detection whereas the low error rate and 

long-molecule length (up to 100 kb) makes it useful for haplotype phasing67. Detection 

methods such as Long Ranger and GROC-SVs leverage read clouds which are clusters of 

short-reads implied to derive from the same underlying molecule due to identical barcodes. 

Read cloud methods look at two criteria: (1) density of overlapping barcodes where sudden 

increases or drops in barcode “coverage” determine SV breakpoints; (2) distant genomic loci 

that share more barcode overlap than would occur by chance (FIG. 2)66,68,69. GROC-SVs 

additionally performs local reassembly to detect complex SVs 10 kb −100 kb in length. A 

second approach analyzes split alignments within “molecules” which are the reconstructed 

long-reads from shared barcodes, analogous to split-reads. NAIBR, LinkedSV, and VALOR2 

are SV callers that use split molecule approaches to detect SVs while ZoomX considers 

discrepancies in molecule coverage.70–74.

LR approaches have various strengths owing to their barcoding, a key feature being the 

ability to determine if fragments mapping to distant genomic loci derive from the same 

molecule, making the visual interpretation of translocations and large SVs exceptionally 

effective66. LRs are able to detect comparable amounts of deletions compared to single-

molecule approaches but there is a discrepancy in detectable insertions68. While assembly-

based LR studies have found megabases of novel insertional sequence across different 

populations75,76, single-molecule approaches will typically detect more insertion events77. 

This may result from the fact that LRs have a coverage drawback compared to single-

molecule reads: no molecule within a read cloud has complete coverage of the DNA 

fragment such that there are substantial gaps between the read-pairs underlying each 

molecule, decreasing mappability in repetitive regions. The decrease in insertion detection 

may also result from the higher algorithmic difficulty of calling insertions through mapping 

versus assembly approaches which use simple pairwise comparisons78. Indeed, one of the 

most widely used algorithms, Long Ranger, cannot currently call insertions. However, recent 

efforts to develop algorithms that augment the mapping of LRs to repetitive regions are 

improving the ability of LRs to detect novel sequence insertions77,79.

Strand-seq.—Strand-seq independently sequences template DNA strands by incorporating 

bromodeoxyuridine into the non-template strand during replication followed by UV-induced 

photolysis at bromodeoxyuridine sites to selectively ablates the nascent strand80. As libraries 

only contain independent parental strands, Strand-seq is especially suited for haplotype 

phasing. The inherent directionality enables highly efficient detection of inversions which 

manifest as segments of opposing strand orientation (FIG. 2)39,81. Indeed, Strand-seq has 

been used to identify polymorphic inversions, showing that they are enriched for certain 

chromosomes over others, and revealing that the reference genome carries the minor allele 

or is misoriented at many inverted loci81. Deletions and duplications can be detected by 

read-depth while translocations are detected as changes in template state, as implemented in 
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BAIT82. However, Strand-seq requires many enzymatic cleanup steps that end up reducing 

sequence coverage to an average of .01-.05X per library making it inappropriate to detect 

smaller sized SVs until improvements in single-cell library preparation are made83. 

Additionally, as inversions and translocations in Strand-seq look similar to sister chromatid 

exchanges, events must be consistent across multiple libraries for identification, thus SV 

detection with Strand-seq requires preparation of many individual single-cells.

Hi-C.—Hi-C involves sequencing crosslinked chromatin to provide information about DNA 

sequences that may be far in the linear genome but proximal in 3D space84. Hi-C read pairs 

can span megabases making it useful for detecting large SVs, especially translocations. 

However, as Hi-C relies on the presence of digestion sites kilobases apart in the linear 

genome, its resolution is limited. Hi-C also relies on underlying read-pairs and suffers from 

low sequence coverage as LRs and Strand-seq. Chromosomal interactions derived from Hi-C 

are represented in a contact frequency heat map across all possible pairs of genomic loci. 

Interactions between proximal loci are shown in the diagonal and contacts off of the 

diagonal are indicative of long-range interactions. Unusually elevated contact frequencies 

between distal loci represent possible deletions, inversions, and translocations, while 

elevated contact frequencies at proximal loci are indicative of duplications (FIG. 2)85. While 

Hi-C has mostly been used to detect translocations within cancer cells, methods to detect 

other SVs, such as HiCNV which uses read coverage to detect CNVs, are starting to 

emerge85–89. Delineating potential SVs from regular fluctuations in 3D structure remains a 

significant challenge. Recent work shows that large CNVs can affect chromatin organization 

across the chromosome, further confounding the ability to differentiate between variation in 

chromatin interaction and putative rearrangements90. To address this, Hi-C Breakfinder uses 

a probabilistic model that incorporates information about expected spatial features when 

determining aberrant contact frequencies91. However, most of the intrachromosomal SVs 

detected by this method are > 2 Mb as distinction from local interactions is still difficult. 

Additionally, Hi-C currently requires cell culture of millions of cells, though there are recent 

developments that aim to decrease this limitation92. A deeper understanding of 3D 

architecture will be necessary before Hi-C can reliably call SVs independent of orthogonal 

support.

Single-molecule strategies

PacBio.—PacBio single-molecule real-time (SMRT) sequencing leverages a stationary 

polymerase attached to the bottom of a nanosized well and passages single DNA strands 

through the enzyme to produce long-reads that significantly improve unambiguous 

mappability across the genome93. Algorithms detect SVs from SMRT data by leveraging 

intra and inter-read signatures (FIG. 2). Intra-read signatures enable direct detection of SVs 

and are derived from reads spanning entire SV events, resulting in missing sequence 

(deletion) or a soft-clip (insertion) within properly aligned flanking sequences. Inter-read 

signatures involve multiple reads and detect SVs from inconsistencies in orientation, 

location, and size during mapping, analogous to SR signatures. After signature detection, 

callers typically cluster and merge similar signatures from multiple reads, delineate proximal 

but different signatures, and choose the highest quality reads that support the putative SV. 

PBHoney, pbsv, SMRT-SV, Sniffles, CORGi, and SVIM detect SVs through combinations of 
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intra-and-inter-read signatures but differ in their discovery heuristics61,94–98. Sniffles filters 

SVs by evaluating similarities between breakpoint position and size, and additionally 

clusters SVs supported by the same set of reads to detect nested SVs. SVIM evaluates how 

signature clusters overlap each other or nearby breakpoints to differentiate between 

interspersed duplications, tandem duplications, and novel sequence insertions. Some 

methods, such as SMRT-SV and CORGi, locally reassemble loci with SV signatures and call 

SVs based on consensus sequences derived from these assemblies. NextSV integrates 

Sniffles and PBHoney analogous to EA approaches discussed above99.

Single-molecule sequencing studies have so far been used to investigate fewer genomes due 

to higher operational costs, a large input DNA requirement, and lower sample throughput. 

Thus, while many short-read studies sequence across numerous genomes, long-reads have 

been mostly applied to single genome assemblies. While the base-calling error rate for 

Pacbio sequencing is higher than for short-reads, one can overcome this by increasing 

coverage or utilizing circular concensus sequencing100. It is pertitent to note that higher 

SMRT coverage results in more accurate consensus sequences but at a tradeoff for shorter 

median read lengths due to enzyme degradation – researchers must “sweet spot” coverage 

according to project aims101. Nonetheless, these single-molecule applications are 

challenging the SV detection landscape and its reliance on short-read technology. 

Sequencing of the CHM1 human hydatidiform mole genome served as proof of concept for 

using long-reads to resolve SVs, detecting > 20,000 SVs in this haploid genome compared 

to ~2,500 SVs per diploid genome in the 1KGP5,61. A recent analysis found that PacBio 

long-reads were approximately three times more sensitive than a short-read ensemble 

maximized for sensitivity, implying that a large subset of SVs, many 50 – 2000 bp in length, 

are unresolvable without long-reads39. Approximately half of the novel variants detectable 

by long-reads are insertions ~ 500 bp in length embedded within mobile elements and 

tandem repeats. SMRT assembly or SV detection in 19 other human genomes all find 

comparably large magnitudes of SVs and exhibit the corresponding insertional 

bias39,95,96,102–108. As it is impossible to tell the difference between a novel insertion or 

missing sequence in the reference, the magnitude of SVs that have been detected questions 

the completeness of the human reference genome. To investigate, Audano et al. performed 

SV discovery in 15 individuals long-read sequenced to an average ~57X and found 86,761 

SVs absent from the 1KGP and the Genomes of the Netherlands project datasets109. A 

significant amount of the SVs shared between these 15 genomes are not present in the 

GRCh38 version of the human reference sequence implying it may contain errors or minor 

alleles at many SV loci. Remarkably, ~50% of the detected SVs intersect genes or regulatory 

elements. Overall, long-read technology enables detection of previously unresolveable SVs 

and may be pivotal in deciding how the field of genomics evolves from using a single human 

reference genome.

Oxford Nanopore Technologies.—Algorithms to detect SVs from nanopore sequencing 

are still emerging but have gradually become available, primarily through studies utilizing 

ONT. ONT threads single-stranded DNA through a protein pore and discriminates sequences 

based on current110,111. As nanopore is a variation of single-molecule sequencing, the 

signatures to detect SVs are similar to those used in PacBio data (FIG. 2). Callers that detect 
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SVs from nanopore data include NanoSV, SVIM, Picky, and Sniffles; the latter three also 

detect SVs from PacBio data. Both NanoSV and Picky leverage split-reads to detect SVs and 

apply heuristics that consider coordinates, orientation, and breakpoint sites. NanoSV 

iteratively clusters all reads that support a breakpoint junction whereas Picky stitches 

together split-reads with surrounding reads and calls SVs from the best alignments. Studies 

that use ONT find similar numbers of SVs as PacBio detection but show many nanopore-

specific small deletions112,113. However, Sedlazeck et al. found the overwhelming majority 

of ~10,000 unique ONT SVs were small deletions located within repeat regions and likely 

derived from base-calling errors, compared to ~800 unique PacBio SVs of which ~40% 

overlapped repeats, and De Coster et al. found that ONT SV algorithms detect small SVs 

poorly96,114. ONT provides improved read-lengths, an exceptionally small footprint, lower 

adaption costs, high throughput, and is effective at detecting many SVs, but lower specificity 

stemming from higher error rates make ONT less suitable for smaller SVs (< 100–200 bp), 

though recent improvements in base-calling error may mitigate this issue. Overall, the 

single-molecule approaches provided by PacBio and ONT enable highly sensitive SV 

detection and are the most powerful methods to detect novel sequence insertions.

Optical mapping.—OM, an alternative to sequencing-based technologies, linearizes 

single DNA strands in nanochannels and intermittently marks them with a nicking 

endonuclease to create physical maps known as genome maps115–117. OM-based methods 

call structural variation by comparing divergences in the nicks of DNA strands against an in 
silico digested reference: missing or extra labels and the spacing between labels are used to 

determine deletions or insertions; repeated labels indicate repeats and copy number changes; 

the presence of unique nicks on non-reference loci indicate translocations; and reversed 

nicking patterns indicate inversions (FIG. 2). The generated DNA fragments are up to 1 Mb 

long making OM well suited to detect large genomic rearrangements, particularly insertions, 

and is effective at identifying SVs within repetitive regions75,118–120. OM excels at 

deconvoluting zygosity as long as there is sufficent coverage such that molecules spanning 

each haplotype can be directly observed119. Due to reliance on restriction enzyme sites, OM 

does not produce sequence and therefore lacks base-pair resolution, instead providing 

breakpoint estimations based on the most proximal nicks. As a result, OM detects 

significantly fewer SVs than long-read methods and is typically limited to sizes ~ 6 kb and 

larger, though newer applications improve resolution by utilizing more than one restriction 

enzyme21‘75107119–121. Thus, most OM applications detect large SVs through de novo 
assembly of genome maps but use short-read sequencing to detect smaller variants104105. 

New detection algorithms such as OSMV and Bionano Solve call SVs without de novo 
assembly by using alignment-based strategies121,122. It is important to note that OM suffers 

from a high error rate where errors manifest as missing or extra labels from incomplete and 

uneven stretching of individual molecules in their nanochannels. Resolution and error rate 

withholding, OM is amplification-free and significantly cheaper than HTS even at 60X 

coverage, making it an economical choice to investigate large cohorts119. Recent work by 

Levy-Sakin et al. used OM on 154 genomes from the 1KGP to find ~60 Mb of sequence not 

present in the reference genome as well as 55 loci in the genome that are both structurally 

complex and harbored by complex SVs120.
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Multiplatform Discovery

Currently, no single method or technology has been shown to be comprehensive enough to 

detect all SV within a genome. Multiplatform approaches have emerged as a result, which 

combine strengths of various genomic platforms to enhance detection of SVs across all types 

and sizes. The platforms discussed can be employed combinatorially to complement 

strengths and mitigate weaknesses102. Due to their high base-calling accuracy, bioinformatic 

maturity, and affordability, short-reads are regularly used to correct errors in long-reads 

(‘polishing’, reviewed and evaluated elsewhere)78123–125, whereas newer technologies are 

used for exhaustive variant detection and resolution of complex structures. A practical 

example includes combining short-read sequencing at higher coverage (> 30X) with lower 

coverage single-molecule sequencing (~10X) to optimize economy and sensitivity. The use 

of individual technologies will depend on logistical variables such as cost, required 

resolution, and project scope. Technical variables including sensitivity, variant size, 

repetitive nature of the target region, and haplotype information must be considered as well. 

A review of the advantages and disadvantages of each technology is provided in (TABLE 1).

Multiplatform discovery is often employed to investigate SVs in cancer. Two studies on 

leukemia and prostate cancer genomes integrated short-reads with OM and found that many 

SVs detected uniquely by OM have breakpoints within low mappability regions, whereas 

SVs detected uniquely by short-reads are typically smaller and below the resolution of 

OM126,127. Analysis combining an EA, LRs, and long-insert libraries to detect and phase 

SVs in the K562 and HepG2 cancer genomes finds thousands of calls unique to each 

platform128,129. Similarly, combining OM, short-reads, and Hi-C to detect SVs in eight 

different cancer genomes found only 20% of interchromosomal translocations were detected 

by two or more platforms, demonstrating the necessity of multiplatform discovery to detect 

all variants91. In another case, short-reads were not used to improve sensitivity across the 

detection size spectrum but were used to resolve ambiguity in unique, unaligned OM 

fragments from a liposarcoma genome. While OM was necessary to reveal large fragments, 

the short-read signatures provided the necessary resolution to reveal ~6 SV breakpoints 

within the unaligned maps, suggesting that the fragments consisted of complex SVs130.

Genome assemblies typically integrate platforms when detecting SVs to increase sensitivity 

and produce orthogonal validation. In one example, assembly of genome NA12878 merged 

PacBio contigs with OM genome maps to create highly contiguous scaffolds with an N50 of 

28.8 Mb103. As 55% of inversions called from these scaffolds were enriched for arrangement 

complexity and colocation with other SVs, they would be difficult to detect without the 

improved contiguity from integration. A similar approach was used by Ameur et al.106 In 

another example, English et al. generated short and long-read sequences in genome HS1011 

and detected SVs by combining an EA, PacBio, and hybrid local reassembly131. While the 

authors found many SVs overlapping from the three approaches, they revealed bona fide 
SVs that were unique to their respective detection method. Additionally, hybrid reassembly 

detection performed with FDR < 10% whereas popular short-read callers (CNVnator, 

BreakDancer, Delly, Pindel) exhibited FDRs between 31–80%, showing greatly improved 

detection with integration. A recent comprehensive multiplatform discovery of SVs 

integrated nine platforms across three family trios discovering ~27,622 SVs per genome39. 
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Chaisson et al. combined an EA, PacBio, OM, Strand-seq, and long-insert libraries to detect 

deletions, insertions, and inversions, with additional technologies applied for phasing, 

assembly, and orthogonal validation. While PacBio contributed the highest number of 

unique deletions and insertions, Strand-seq contributed the highest number of inversions, 

and each platform identified high-confidence unique calls. Each of these studies illustrate 

that combining platforms is necessary for comprehensive detection across the full range of 

SVs.

Integration of SV calls from differing technologies is analogous to EA approaches: most 

methods are “in-house” and consider coordinate overlap, breakpoint proximity, mapping 

orientation, read support, putative SV type, and resolution of the underlying technology. 

There are few standalone multiplatform detection tools; most combine short and long-reads, 

such as MultiBreak-SV and HySA95,132. MultiBreak-SV considers all possible short and 

long-read alignments that support a putative SV in a combined probabilistic model, whereas 

HySA clusters short-reads with PE and SR signals with the long-reads that support them 

before calling SVs from contigs assembled with the long-reads in each cluster. New 

“platform ensemble” tools are expected to develop as the cost of sequencing continues to 

drop and access to new technologies improves.

Perspectives and future directions

Tremendous improvements in variant calling have made the ubiquity, complexity, and 

pertinence of SVs in human genomes clearer than ever. Many advancements contributed to 

an explosion in detection, including the application of ensemble algorithms, which have 

been essential in characterizing SVs across populations4,5,43–45,58, and single-molecule and 

connected-molecule strategies, which enable detection of thousands of previously 

undiscoverable variants61,66,80,85,113,115. Indeed, we now estimate that each human genome 

contains >20,000 SVs, many of which are located in regions where short-reads are 

unmappable61,95,104,105,109. Each emerging platform possess unique strengths, but they also 

exhibit inherent biases. A philosophical ideal would involve sequencers that read entire 

genomes, without bias, as a contiguous whole. Until this is possible, the integration of 

multiple platforms will be necessary to resolve all SVs within a given human genome. 

Though there are no human genomes where all classes of structural variants have been 

completely resolved, multiplatform discovery approaches are dramatically closing this 

gap39,102.

In spite of these improvements, we are still unable to interpret the functional consequences 

of the vast majority of variants. Strategies to ascertain functional impact are more necessary 

than ever given the expansive increase in detectable and novel SVs. Moving forward, 

integrating SV detection across layers of biological information shows promise for 

elucidating the biological impact of variants. Studies using short-reads have shown the 

potential of integrative frameworks in interpreting SV function133–140 and now a subset of 

studies employing the emerging detection methods discussed are starting to integrate SVs 

with layered biological data such as expression, epigenetics, and 3D structure, to understand 

the effects of SVs holistically (Weischefelt, mcpherson 2012, mcpherson 2011, yorukoglu 

2012, spielmann, franke, gheldof, fudenberg, quigley). Building on seminal work by 

Ho et al. Page 11

Nat Rev Genet. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Stranger et al.141, Chiang and colleagues detected SVs with an EA before mapping SV-

expression quantitative trait loci, finding that SVs had a larger median effect and were up to 

53 times more likely to affect gene expression compared to SNVs or indels142. Indeed, other 

studies integrating emerging detection methods with expression data, long-read 

transcriptome sequencing, and transcriptome assembly have revealed the high potential for 

rearrangements to affect genes, demonstrating differential expression, alternatively spliced 

transcripts, and complex gene fusions resulting from novel SVs75,105,127,143–149. While the 

transcriptome is often integrated given its immediacy to the genome, more efforts to 

integrate the methylome are emerging and so far have revealed inconsistent methylation 

patterns around SVs, suggesting complex regulatory consequences128,129,150,151. Another 

datatype that should be considered with SVs are small variants and their effects. For 

example, ONT analysis identified a heterozygous point mutation and an exon disrupting 

deletion in a disease individual where the disease genotype involves bi-allelic point 

mutations144. Additionally, a study investigating non-reccurent SVs with arrays, short-reads, 

and long-reads found enrichment of de novo SNVs and indels near SV breakpoints, the 

majority of which are intragenic152. These studies imply and show the potential for 

multimodal integration to provide insight into the biological mechanisms affect by SVs.

Ideally, the field moves toward integration across multiple layers, which can reveal 

relationships that reconstruct molecular contexts (for a strategy that can be generalized to 

functionally interpret SVs within multiple molecular contexts, see FIG. 6 in REF8). LRs 

found that AR was co-amplified with upstream tandem duplications in cancer cells153. 

DNase hypersensitivity peaks and increased nucleosome spacing predicted an enhancer 

within the duplicated region, Hi-C data revealed the duplications and AR lie within the same 

topologically associating domain, and paired RNA-seq revealed increased expression of AR 
in samples with the upstream SV, implicating that duplication of a distal enhancer element 

results in upregulation of the oncogene (FIG. 3). In another example, Dixon et al. combined 

short-reads, OM, and Hi-C to detect large and complex SVs in cancer cells, which can 

possibly disrupt TAD structure8,91,154. RNA-seq analysis of cancer genes within disrupted-

TADs revealed that TADs containing an SV show greater allelic-bias and altered gene 

expression in cis, suggesting that the SVs create neo-TADs that rewire regulatory 

environments. In a final example, OM and short-reads detected a 3.4 kb deletion in a copy-

number amplified region, H3K27ac ChlP-seq peaks predicted that part of the removed 

sequence acted as an enhancer, Hi-C linked the deleted enhancer to upstream GNB4, and 

RNA-seq revealed decreased expression of GNB4 but increased expression of all other 

proximal genes91. These relationships, discovered by integrating multimodal data, paint a 

clearer picture of the role of this variant in perturbing biological mechanisms (FIG 3). These 

studies show immense potential and provide frameworks to interpret the effects of SVs, but 

largely rely on manual curation.

Detection is essential to characterizing individual genomes, but detection alone is not 

enough. Indeed, the technologies and methods discussed have resulted in an aggressive 

influx of detectable variants but there is little ability to assign impact. Lists of thousands of 

newly detected SVs will be more useful for the field if we are able to interpret their 

functional effects. Thus, we believe that the field should consider concurrent detection and 

integration. We anticipate that moving from manual curation to the development of 
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multivariate models generalizable to projects with layered data bears great potential to 

provide insight into the complex genomic architecture affected by SV. Ultimately, detecting 

SVs is a piece of the larger puzzle that is understanding the genome, its disparate parts, and 

all of its connections. Improvements in, and applications of, new emerging genomic 

technologies, and the integration of variants with disparate layers of biological information, 

will pave the way for a future where we understand the possible function and effects of 

every nucleotide in the human genome.
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Glossary

STRUCTURAL VARIATION
(SV) Operationally defined as sequence variants > 50 bp in size. The most recognized forms 

of structural variation include deletions, duplications, inversions, insertions, and 

translocations

COMPLEX STRUCTURAL VARIATION
A structural variant that consists of multiple combinations of structural variant types nested 

or clustered with one another

SHORT-READS
Standard sequencing libraries fragmented to ~ 600–800 bp in length. Two ends are 

sequenced ~ 100–250 bp with an unsequenced insert size of ~100–600 bp

REFERENCE SET
High-resolution SV datasets typically deriving from de novo genome assemblies, 

population-scale sequencing, or projects employing multiple orthogonal detection methods. 

Reference sets are used to benchmark detection algorithms and determine the novelty and 

rarity of SV calls

CALL
Each putative SV detected by a program is an individual ‘call’. ‘Call’ derives from computer 

science, meaning to invoke a particular task: detected SVs are the result of each performed 

‘task

CALLSET
The set of all putative SVs detected by a or a combination of SV detection programs.

READ SIGNATURES
Specific marks that result from reads that map discordantly to the reference genome.

SENSITIVITY
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The ability to detect known variants correctly. Low sensitivity implies low ability to detect 

bona fide variants.

SPECIFICITY
The ability to detect the absence of variants correctly. Low specificity implies many false 

positives.

FALSE POSITIVE
Designating a false call, often from noise or sequencing error, as true. An important metric 

when evaluating the detection abilities of calling algorithms.

FALSE-DISCOVERY RATE
The expected number of calls that should be false but are marked as true within the final 

callset.

RECEIVER OPERATING CHARACTERISTIC CURVE
(ROC) Plots the true positive rate against the false positive rate showing the relationship 

between sensitivity and specificity.

ENSEMBLE ALGORITHM
A detection method that combines the resulting callsets from multiple independent 

algorithms.

SINGLE MOLECULE STRATEGIES
Genomic methods that read the entirety of long strands of DNA.

CONNECTED MOLECULE STRATEGIES
Genomic methods that connect shorter reads of a DNA molecule together to provide long 

range information.

SEQUENCE COVERAGE
The average number of times a given locus is covered by a sequenced read.

PHYSICAL COVERAGE
The average number of times a given locus is covered by the cumulative length of the reads, 

including unsequenced inserts.

INTER-READ SIGNATURES
Discordant signatures obtained from multiple reads that do not individually overlap the 

entire SV, analogous to SR signals

INTRA-READ SIGNATURES
Discordant signatures obtained from reads that overlap the entire SV.

BASE-CALLING ERROR
Errors in determining the respective nucleotide from raw signals during sequencing.

HYBRID ASSEMBLIES
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Genome assemblies that leverage sequencing data from multiple platforms to reconstruct the 

original sequence, using the orthogonal data to extend the contig lengths or to branch contigs 

to one another.
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Box 1 |

From microarrays to short-read sequencing and beyond

The prevalence of SVs in human genomes has historically been determined by the 

resolution of available technologies. Molecular cytogenetics techniques, particularly 

chromosome-banding and fluorescence in situ hybridization, powered seminal work 

involving the detection of microscopic chromosomal aberrations but were unable to 

identify submicroscopic variants (for brief historical perspectives on cytogenetic-based 

SV detection, see REFS22,155). Microarrays then became the primary technology to 

identify CNVs in the 2000s due to improved resolution over karyotype-based analysis. 

Array-comparative genomic hybridization enabled the first reports of global structural 

variation, identifying ~300 copy-number variable loci and informing the wide presence of 

SVs in phenotypically normal human genomes56,156. One of the first sequence mapping 

approaches performed with a single fosmid library reported a similar number of SVs, 

~300 variants11. These numbers were highly preliminary as SNP arrays would soon 

detect 1,447 and 1,320 CNVs across 270 individuals157,158. At this time, sequencing-

based approaches were dropping in cost; their proof-of-principle studies exhibited similar 

sensitivity compared to arrays but with significantly fewer samples: Korbel et al. 

employed paired-end 454 pyrosequencing in two human genomes while Kidd et al. used 

a fosmid-clone based mapping approach in nine human genomes to detect ~1,700 and 

~1,300 SVs, respectively24,159. Large, population-scale detection efforts then started to 

emerge. In 2010, high-density microarrays employing millions of probes ascertained 

11,700 CNVs across 450 individuals2. A sequencing based-approach proved to be more 

comprehensive when in 2011 Mills et al. applied an ensemble approach (reviewed below) 

to ~4X short-read HTS of 185 individuals to detect a three-fold increase of SVs in 

comparison4. Throughout these studies, two main advantages made short-read HTS 

superior for exhaustive SV detection: (1) detection of balanced variants and sequences 

not in the reference (novel insertions), which are missed by arrays; (3) higher overall 

resolution. Thus, short-read HTS has been the major driver of progress in SV detection 

over the last decade given its improved sensitivity over array platforms, though arrays are 

still regularly utilized for their low cost and high throughput160. Improvements in short-

read technology have enabled detection of millions of variants, improving the number of 

detectable SVs from ~2,100 to ~8,000 SVs per human genome5,43. The emerging 

sequencing technologies discussed in this Review push these estimates further, to 

>25,000 SVs per individual. Below are selected studies that either estimate the extent of 

SV content or provide estimates of detectable SVs according to technology within 

phenotypically healthy human genomes, showing the relationship between detectable 

SVs and available technologies.

For a more comprehensive overview of the methods and algorithms used to detect SVs 

before adoption of the technologies discussed in this Review, we suggest the following 

references: molecular cytogenetics techniques, REF162; the application of molecular 

cytogenetics to understand clinical disorders, REF163; array and clone-based approaches 

to detect SVs, REF155; a comprehensive survey of the first SV detection studies, REF161; 

short-read discovery and genotyping, REFS9,164,165; detecting complex SVs, REF166; 
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clinically relevant CNVs and SV detection from whole-exome sequencing, REFS167–169. 

(additional citations for the figure in this 

box)2,4,5,11,24,39,43–45,61,95,103–106,109,131,142,156,158,159,170,171
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Box 2 |

Factors in integrating structural variant calls

As detection methods vary significantly in their resolution and approach, a large variety 

of heuristics have been applied to merge calls derived from different algorithms. (1) 

Almost all integration methods consider the immediate intuitive option, overlap, with a 

common requirement of 50% reciprocity. Overlap analysis can require a minimum or 

maximum length difference between the called SVs to improve stringency. Alternative to 

coordinate overlap, one can use sequence similarity as employed by the Genome in a 

Bottle consortium102. (2) Computing the distance between breakpoints as opposed to 

overlap is useful for higher-resolution methods like split-read analysis. (3) Algorithms 

may require that calls to be merged have consistent genotypes for additional accuracy. (4) 

Read signatures are often prioritized such that if two calls overlap, the call supported with 

a higher-resolution read signature is chosen. (5) Calls may be required to have support 

from a minimum number of reads containing a given signature before merging. (6) 

Intersection, or caller concordance, requires that calls are detected by a minimum number 

of multiple algorithms, most often two. This opposes taking the union of calls which 

requires no caller overlap. (7) Breakpoint confidence intervals were estimated by local 

reassembly in the 1KGP phase 1 and by comparisons to high-quality long-read SVs in 

Chaisson et al.4,39. In both studies calls were merged if their breakpoint confidence 

intervals overlapped. (8) Parameters of individual callers can be adjusted to better fit a 

receiver operating characteristic curve by benchmarking against a truth set of choice, 

though high-confidence calls within a given callset have also been used as a 

benchmark43. (9) Projects with orthogonal data can adjust caller parameters to keep FDR 

at a certain threshold (typically < 10%) before merging calls5. These factors and 

teschniques have been primarily considered for short-read integration but they carry over 

to multiplatform approaches as well.
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Box 3 |

Structural variation reference sets

Reference datasets are essential for the development of SV discovery methods. Many 

algorithms validate detection ability by benchmarking against or training with datasets 

released by population-scale sequencing, de novo genome assemblies, or projects that 

perform comprehensive discovery with multiple orthogonal 

platforms5,39,43–45,58,61,75,95,102,104–106,108,109,120,142,172. The type of chosen reference 

sets should be appropriate for each application, e.g. highly curated discovery sets are 

appropriate for benchmarking detection methods whereas population-scale sets are useful 

for determining callset novelty or rarity. These datasets differ in sample size, ancestry, 

depth, platform, merging methodology, sensitivity, and specificity, all of which should be 

considered before deciding which set is right to utilize, as biases influenced by these 

choices are inherently passed to the applications that employ them. Reference sets also 

vary widely when it comes to orthogonal validation where some reference sets employ 

multiple orthogonal platforms while others perform none, opting to maximize quality 

metrics instead. Given this large variation, projects often use more than one reference set 

to maximize inclusivity and avoid overfitting. Reference sets undergo an iterative process 

where newer datasets are typically more sensitive and exhaustive due to technological 

improvements, thus, developing algorithms should focus their benchmarks on more 

recent resources to avoid confounding issues stemming from technological limitations in 

legacy data. Indeed, a recent study finds numerous batch effects within the 1KGP release 

set173. Selected sequencing-driven reference datasets representing phenotypically 

“normal” individuals are listed below. We choose datasets that include called SVs, focus 

on collections with available raw data, and list orthogonal data from multiple sources for 

some reference sets. Additional resources can be found at dbVar174.
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Box 4 |

Detecting structural variation in disease

SVs are associated with diverse diseases and are a notable hallmark of cancer 

genomes181. Long-reads, linked-reads, Hi-C, and optical mapping resolve structures that 

short-reads struggle to detect in the majority of cancers such as inter-and-intra 

chromosomal translocations, complex rearrangements, chromoplexy, chromothripsis, 

chained fusions, and extremely large (> 30 kb) SVs69,74,87,130,128,129,145,182–186. PacBio 

reads were used to analyze the breast cancer cell line SKBR3, detecting > 17,000 SVs 

including SVs that overlap COSMIC genes148. The single-molecule approach detected 

76% more SVs than an ensemble of 3 short-read callers (with 2 caller concordance), most 

of which derive from repetitive regions. The long-reads enabled identification of 

clustered, complex translocations and inverted duplications that amplified the oncogene 

ERBB2 to > 32 copies, later confirmed in a separate long-read analysis by Sedlazeck et 

al., providing insight into a possible breast-cancer specific mechanism96,148. LRs have 

been used to detect and phase translocations and gene fusions in cancer genomes finding 

loci where heterozygous SVs impact allele-specific expression128,129. Another LR study 

resolved an extremely complex haplotype-specific SV in a lung cancer cell line where 

one haplotype harbors an EML4-ALK gene fusion and the other an ALK-PTPN3 
fusion66. Viswanathan et al. also used LRs to study the genomic architecture of the AR 

oncogene in castration-resistant prostate cancer and found that SVs were likely to 

inactivate tumor-suppressor genes in complex patterns where each haplotype could 

harbor a different type of inactivating SV153. Each of these findings are examples of 

complex genomic architectures now resolvable through the improved resolution of 

emerging technologies.

CNVs and de novo mutations play pertinent roles in the etiology of several 

neuropsychiatric diseases such as intellectual disability, schizophrenia and particularly 

Autism Spectrum Disorder (ASD)187–189. Application of EAs in ASD family genomes 

has revealed CNVs that disrupt known neurodevelopmental genes, clustering of de novo 
SNVs proximal to de novo CNV regions, an abundance of complex duplication-

associated SVs, and elevated numbers of de novo CNVs compared to unaffected 

individuals190–193. However, it is pertinent to note the challenges and disagreement in 

extrapolating association between rare noncoding variants and ASD risk: risk: a dearth of 

both rigorous analytical approaches and replicated associations between studies 

significantly encumbers the interpretation of noncoding SVs in these diseases46,194,195.

Emerging methods have additionally been applied to mendelian disorders, clinical 

phenotypes, and structural haplotypes to identify SVs that are traditionally difficult to 

characterize. For example, OM is effective at detecting the D4Z4 repeats in 

facioscapulohumeral muscular dystrophy which are challenging to resolve with classical 

techniques due to their size150,183. In individuals where short-reads were uninformative 

PacBio sequencing was able to detect disease-causal SVs, such as a de novo ~2.1 kb SV 

overlapping PRKAR1A in Carney complex and a 4.6 kb repeat expansion and 12.4 kb 

deletion in benign adult familial myoclonic epilepsy located in GA and GC-rich regions, 

respectively143,196,197. Similarly, in a glycogen storage disease type 1a patient where 
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whole-exome and Sanger sequencing failed to determine a genetic cause, nanopore 

sequencing detected a compound heterozygous structure containing a point mutation and 

a 7.1 kb deletion in G6PC on separate alleles144. New detection methods have also 

identified complex SVs that are insufficiently resolved with short reads in patients with 

congenital abnormalities and severe quality-of-life disorders: they contain numerous 

breakpoints, cluster closely with other SVs, affect considerable nucleotides, and are 

flanked by repetitive sequences113,146,193,198–200. In a final example, OM was used to 

construct and determine the frequency of segmental duplication haplotypes LCR22A and 

LCR22D, which are involved in 22q11 deletion syndrome and escape short-read 

resolution. The large fragment sizes of OM enabled the authors to find extensive copy 

number variation differing up to 1.75 Mb between individuals and reveal that the 

reference genome does not represent the major allele at this locus201.
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Box 5 |

Confounding Complexity

The detection studies discussed have revealed SVs consisting of complex arrangements 

are more prevalent than previously perceived in both phenotypically “normal” and 

disease individuals5,43,45,61,103,120,128,129,132,146,148,152,153. Additionally, new 

technologies reveal significant amounts of SVs in areas that are difficult to resolve with 

short-reads: these loci are either extremely low in complexity such as tandem repeats, 

telomeres, and mobile element insertions, or high in complexity such as segmental 

duplications, centromeres, the major histocompatability complex, and other areas of high 

polymorphism5,39,61,95,104–106,109,115,118–120,120,126,201. Indeed, mechanisms behind SV 

formation such as non-allelic homologous recombination and replication-based 

mechanisms are dependent on local repeat structures which leads to breakpoints within 

repetitive regions (reviewed in Carvalho and Lupski)202. “Complexity” confounds 

detection in two senses: (1) in terms of complex SV events and (2) in terms of the 

variable complexity at genomic loci. It is essential to consider specialized methods that 

can leverage new technologies to detect SVs in complex regions, detect SVs of complex 

arrangements, and methods that reassemble complex regions to decrease unambiguous 

mapping. Indeed, specific tools such as SDA which resolves segmental duplications, 

CORGI which resolves complex events, and rMETL which detects mobile element 

insertions, and other tools taking a specificity-first approach will help in resolving 

difficult-to-detect SVs that cannot be ascertained from generalized whole-genome 

approaches due complicated genomic loci or irregular compounded 

structure69,96,98,132,203–211. Eventually, generalized SV detection methods should either 

implement the strategies used from specialized callers or be utilized concurrently for a 

more comprehensive assessment of genome-wide SV.
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Figure 1 |. Overview of ensemble algorithms.
This flowchart outlines the major steps in an ensemble algorithm. Step 1, discordantly 

mapped reads result in signatures that are used to infer SVs. Step 2, multiple independent 

algorithms detect SVs in parallel. Step 3, filters and heuristics based on the project aims are 

applied to remove false-positives and merge calls (see BOX 2 for details). Step 4, final 

decisions are made to designate and preserve high-confidence calls and they are output as a 

consolidated list of putative variants.
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Figure 2 |. Structural variation signatures in single-molecule and connected-molecule strategies.
Emerging technologies vary in how they detect SVs. 10x Genomics linked-reads detect SVs 

based on barcode overlap between genomic loci. Split-molecule approaches infer SVs from 

splitting of linked-reads, examples of which are displayed below each barcode matrix (each 

color represents a shared barcode and linked-molecules are separated by haplotype; only 

homozygous variants are shown for simplicity). Strand-seq determines SVs based on read-

depth or sudden changes in mapping orientation. For deletions and duplications, only two of 

four possible daughter cell configurations are shown for simplicity (Watson-Watson and 
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Watson-Crick, Crick-Crick not shown). For inversions, only a homozygous inversion in 

Watson-Watson and Crick-Crick daughter cells are shown as Watson-Crick daughter cells 

mask homozygous inversions (homozygous for simplicity; for more detail on inversion 

detection see REF81. Hi-C detects SVs by looking for unusually high-frequency contacts 

between genomic loci. Underneath each interaction matrix is a schematic of the expected 

chromosomal contacts resulting from each SV. Single-molecule sequencing methods infer 

SVs based on discordant mapping signatures that can involve one (intra) or many (inter) 

reads. SVs derive from intra-read signatures, which result from reads that span an entire SV, 

or inter-read signatures, which require multiple reads to cover the event. Insertions differ 

from deletions by an increase in the expected distance between the two split pairs marked by 

the white soft-clip between the reads and inversions involve reads that map best to the 

complimentary strand. Optical maps detect SVs based on increased presence, absence or 

change in the orientation of restriction enzyme sites compared to a reference (blue: sample; 

green: reference). Resolution is dependent on the distribution of restriction enzyme sites.
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Figure 3 |. Resolving the molecular context behind structural variants by integrating multimodal 
information.
a | Layers of biological data that can be integrated with SV calls to interpret a possible 

mechanistic chain of events. Each layer possesses quantifiable readouts that can be tested for 

association with genomic variants. Studies have focused less on the integration with more 

distal layers, such as the proteome, metabolome and microbiome (later two not shown), but 

future efforts focused here should have just as much potential to be informative. b | Linked-

reads detect tandem duplications upstream of AR153. Previous studies showed that this 

region contains an enhancer (green boxes) for AR which are consistent with DNase 

hypersensitivity peaks. Hi-C analysis shows that both the enhancer and gene body are 

located within the same topologically associating domain, further suggesting their 

interaction. Paired expression data from multiple samples shows that duplication of the 

enhancer leads to increased AR expression when compared to cases without the duplication. 

Integration of layered data suggests that tandem duplications cause gain of an enhancer 

element that drives AR expression in castration-resistant prostate cancer. c | A 3.4 kb 
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deletion was detected by OM and read-depth from short-read HTS91. The authors use 

H3K27ac ChIP-seq data to determine that the deletion overlapped an enhancer element 

(green) and Hi-C data to determine that the enhancer interacts with an upstream promoter 

(yellow oval) to regulate GNB4. Comparisons of expression data against HMEC reveals that 

nearby genes show increased expression but GNB4 expression is notably decreased. This 

information taken together illustrates that decreased expression of GNB4 may result from 

deletion of a downstream enhancer in spite of amplification of the gene body.
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Table 1 |

Algorithms to detect genome-wide SVs from ensemble, single-molecule, and connected-molecule approaches

Platform Strengths Limitations Selected 
methods

Approach Detection URL Refs

Ensemble 
Algorithms

Affordability; 
accessible, as 
infrastructure is 
widely available; 
high base-calling 
accuracy; 
detection of well 
characterized 
SVs; low cost 
makes read-depth 
methods more 
effective; deletion 
detection; high 
throughput

Amplification 
bias; insert 
sizes are 
inherently 
limiting; 
ambiguous 
mapping to 
repetitive 
regions; low 
phasing power; 
lack of 
standardized 
merging and 
ensemble 
choice; poor 
insertion 
detection

SVMerge PE, SR, and RD 
signals with 
integration of two 
specialized 
insertion callers. 
Calls are merged 
on overlap with 
coordinate 
thresholds and 
validated by local 
reassembly

DEL, INS, 
INV, CNG, 
CPX

http://
svmerge.sourceforge.net

40

Huge-Seq PE, SR, and RD 
signals, along 
with breakpoint 
junction 
mapping. Calls 
are merged by 
50% reciprocal 
coordinate 
overlap

DEL, DUP, 
INS, INV

https://github.com/
StanfordBioinformatics/
HugeSeq

41

iSVP PE, SR, and RD 
signals. 
Additional calls 
are made with 
GATK 
HaplotypeCaller, 
which uses local 
reassembly. Calls 
are merged by 
overlap

DEL http://
nagasakilab.csml.org/en
/isvp

51

MetaSV PE, SR, and RD 
signals, along 
with breakpoint 
junction 
mapping, Calls 
are merged by 
overlap that 
prioritizes read 
signatures by 
their respective 
resolution and are 
refined with local 
reassembly

DEL, DUP, 
INS, INV, 
TRX

https://github.com/
bioinform/metasv

49

SpeedSeq PE and SR 
signals, along 
with a Bayesian 
likelihood 
genotyper. Uses a 
RD caller to 
annotate copy 
number at each 
variant locus

DEL, DUP, 
INS, INV, 
TRX, CNG

https://github.com/hall-
lab/speedseq

47

Parliament2 User choice of six 
individual callers. 
Calls are merged 
based on 
coordinate 
overlap and 
scored with a 
precision metric 
based trained on 
HG002

DEL, DUP, 
INS, INV, 
TRX

https://github.com/
dnanexus/parliament2

50
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Platform Strengths Limitations Selected 
methods

Approach Detection URL Refs

FusorSV Fits a model that 
determines which 
combinations of 
eight individual 
callers performs 
best according to 
a user-input truth 
set

Dependent 
on input 
truth set

https://github.com/
timothyjamesbecker/
FusorSV

152

PacBio Short insertions 
and deletions 500 
bp – 2000 bp; 
high sensitivity 
over a wide range 
of SVs; resolving 
SVs in repetitive 
regions; detecting 
complex SVs and 
mobile element 
insertions; 
amplification free

High base-
calling error 
rate 
(stochastic); 
high input 
DNA 
requirement; 
high operating 
costs; poor 
detection of 
long inversions; 
low throughput

PBHoney Unmapped split-
read tails 
(PBHoney-Tails) 
and intra-read 
discordance 
(PBHoney-Spots)

DEL, INS, 
INV, TRX

https://sourceforge.net/
projects/pb-jelly/

94

pbsv Split-read and 
intra-read 
signatures

DEL, DUP, 
INS, INV, 
TRX

https://github.com/
PacificBiosciences/pbsv

n/a

SMRT-SV Local assembly at 
loci with intra-or-
inter read 
signatures; SVs 
subsequently 
called from 
consensus 
sequences derived 
from each 
assembly

DEL, DUP, 
INS, INV

https://github.com/
EichlerLab/smrtsv2

61,95

Sniffles
a Split-read and 

intra-read 
signatures

DEL, DUP, 
INS, INV, 
CPX, TRX

https://github.com/
fritzsedlazeck/Sniffles

96

NextSV Combines calls 
from PBHoney 
and Sniffles by 
union (sensitive 
callset) or 
intersect 
(stringent callset)

DEL, DUP, 
INS, INV, 
CPX, TRX

https://github.com/
Nextomics/nextsv

99

CORGi Chooses the 
highest scoring 
putative SV from 
a collection of 
possible SVs 
generated by 
realigning loci 
with split-read 
and intra-read 
signatures 
multiple times

DEL, DUP 
(tandem and 
dispersed), 
INS, INV, 
CPX, CNG

https://github.com/
zstephens/CORGi

98

SVIM
a Split-read and 

intra-read 
signatures

DEL, DUP 
(tandem and 
dispersed), 
INS, INV

https://github.com/
eldariont/svim

97

Oxford 
Nanopore

High sensitivity 
over a wide range 
of SVs; small 
footprint, 
extremely useful 
for field work; 
fast turnaround 
and high 
throughput; 
detection of SVs 
> 200 bp; 
amplification 

High base-
calling error 
rate; high input 
DNA 
requirement; 
deletion 
artifacts impede 
detection of 
small SVs; 
poor detection 
of long 
inversions

NanoSV Split-read 
signatures and 
evidence from 
reads that map to 
putative 
breakpoint 
junctions

DEL, DUP, 
INS, INV, 
TRX

https://github.com/
mroosmalen/nanosv

113

Picky
b Spit-read 

signatures from 
long-read 
alignments that 
are linked 

DEL, DUP, 
INS, INV, 
TRX

https://github.com/
TheJacksonLaboratory/
Picky

112
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Platform Strengths Limitations Selected 
methods

Approach Detection URL Refs

free; low 
operating cost

together to 
improve coverage

Optical 
Mapping

Large SVs > 5 
kb; insertions are 
easily visualized; 
long single-
molecule strands 
suitable for 
haplotype 
phasing; 
detecting SVs in 
repetitive regions; 
amplification 
free; cheaper than 
HTS platforms

High labeling 
error rate; low 
resolution; 
dependent on 
restriction 
enzyme sites; 
detects 
significantly 
fewer SVs 
overall

OMSV Discordance in 
the number of 
and distances 
between 
restriction label 
sites

DEL, DUP, 
INS, INV, 
TRX

http://
yiplab.cse.cuhk.edu.hk/
omsv/

121

Bionano 
Solve

Discordance in 
the number of 
and distances 
between 
restriction label 
sites

DEL, DUP, 
INS, INV, 
TRX

https://
bionanogenomics.com/
support/
softwaredownloads/

n/a

10x 
Genomics 
Linked-Reads

Haplotype 
phasing due to 
long length of 
reconstructed 
molecules 
(~100kb); large 
SVs > 30 kb; 
translocations and 
gene fusions are 
easily visualized 
and quantified 
with barcodes; 
high base-calling 
accuracy; low 
adoptability cost 
and footprint; 
high physical 
coverage; low 
input DNA 
requirement

Low sequence 
coverage of 
each molecule 
fragment; poor 
detection of 
insertions; low 
sequence 
coverage; poor 
detection of 
small variants

Long 
Ranger

Read pair barcode 
overlap between 
distant loci and 
changes in 
barcode density

DEL, DUP, 
INV, TRX

https://
support.10xgenomics.co
m/genomeexome/
software/pipelines/
latest/what-is-
longranger

66

GROC-SVs Read pair barcode 
overlap between 
distant loci and 
changes in 
barcode density. 
SVs are 
reconstructed 
with local 
reassembly

Reports 
reconstructed 
breakends 
that can 
derive from 
any SV type

https://github.com/
grocsvs/grocsvs

69

LinkedSV Molecule barcode 
overlap between 
distant loci and 
barcodes from 
two distance loci 
mapped to 
adjacent positions

DEL, DUP, 
INV, TRX

https://github.com/
WGLab/LinkedSV

99

VALOR2 Split-read 
signatures from 
linked molecules, 
read-pair 
signatures, and 
molecule depth 
for filtering

DEL, DUP, 
INV, TLC, 
INV-DUP, 
INV-TRX

https://github.com/
BilkentCompGen/valor

71,72

Novel-X Assembly of 
unmapped read 
with other reads 
of associated 
barcodes to 
obtain anchors in 
unique sequence 
followed by 
mapping of these 
long, reassembled 
insertions

INS https://github.com/
1dayac/novel_insertions

77

NAIBR Combines split-
read signatures 
from linked 
molecules with 
the PE signatures 
from the 
underlying short-
reads into a 
probabilistic 
model

DEL, DUP, 
INS, INV, 
TRX

https://github.com/
raphael-group/NAIBR

70
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Platform Strengths Limitations Selected 
methods

Approach Detection URL Refs

ZoomX Changes in linked 
molecule 
coverage

DEL, DUP, 
INV, TRX

https://bitbucket.org/
charade/zoomx

74

Strand-Seq Highly accurate 
large inversion 
detection; 
haplotype 
phasing due to 
innate 
directionality of 
libraries; low 
input DNA 
requirement; high 
physical coverage

Low sequence 
coverage; poor 
detection of 
small variants; 
poor detection 
of 
translocations 
and 
homozygous 
inversions; 
requires 
multiple 
libraries to 
differentiate 
SVs from sister 
chromatid 
exchanges

BAIT Changes in the 
ratio of reads 
mapped in 
opposing 
directionality and 
sudden changes 
in template state 
that are consistent 
across loci

DEL, DUP, 
INV, TRX

https://
sourceforge.net/p/bait/
wiki/Home/

82

Invert.R Changes in the 
ratio of reads 
mapped to 
opposing 
directionalities

INV https://sourceforge.net/
projects/strandseq-
invertr/

81

Hi-C Translocations 
are easily 
visualized as high 
frequency 
interchromosomal 
contacts; very 
large SVs (> 2 
Mb); high 
physical coverage

Low sequence 
coverage; 
dependent on 
sparse short-
read pairs; poor 
detection of 
insertions; poor 
detection of 
small variants; 
difficult to 
delineate 
between 
chromosome 
interactions due 
to 3D structure 
vs. 
rearrangements; 
large input 
requirement

HiCNV + 
HiCtrans

Read depth of 
restriction 
enzyme 
fragments and 
high frequency 
interchromosomal 
contacts

DEL, DUP, 
TLC

https://github.com/ay-
lab/HiCnv
https://github.com/ay-
lab/HiCtrans

89

Hi-C 
Breakfinder

Clusters of 
interaction 
frequencies that 
deviate from 
expected

DEL, DUP, 
INV, TRX

https://github.com/
dixonlab/
hic_breakfinder

91

Multiplatform Comprehensive, 
allowing 
detection across 
the entire SV 
spectrum; 
provides 
orthogonal 
validation; 
highest sensitivity

Costly; batch 
effects must be 
controlled for; 
methods to 
integrate 
interplatform 
calls are ad hoc

MultiBreak-
SV

Clusters all 
possible short-
and-long read 
alignments that 
support a putative 
SV into a 
combined 
probabilistic 
model

DEL, INV, 
TRX

https://github.com/
raphael-group/
multibreak-sv

212

HySA Clusters short-
reads with PE and 
SR signals with 
long-reads. SVs 
are called from 
contigs 
assembled by the 
reads in each 
cluster

DEL, INS, 
CPX

https://bitbucket.org/
xianfan/
hybridassemblysv

132

a
also able to detect SVs from ONT data

b
also able to detect SVs from PacBio data

DEL, deletions; DUP, duplications; INS, insertions; INV, inversions; TLC, translocations; CNG, copy-number gain; CPX, complex rearrangement.
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Table box 3 |

Structural variation reference sets

Selected 
reference 
datasets

Reference 
type, 
platform, 
coverage

Raw 
data 
publicly 
available

Sample 
number

SVs 
detected

Description; 
orthogonal 
validation if 
applicable

URLs and accessions Ref

1000 
Genomes 
Project phase 
3

Population-
scale Illumina 
short-read, 7.4

Y 2,504 68,818 Individuals 
across 26 
populations; 
PCR, orthogonal 
short-read 
platforms, 
genome.org/data 
PacBio, and 
microarrays

http://www.international 5

1000 
Genomes 
Project – High 
coverage

Population-
scale Illumina 
short-read, 
~30

N/A 2,504 n/a High coverage 
sequencing of 
the individuals 
from phase 3 of 
the 1KGP

https://www.ebi.ac.uk/ena/data/
view/PRJEB3l736

N/A

Genome of 
the 
Netherlands 
release 6.1

Population-
scale Illumina 
short-read, 12

N 769 59,358* 769 individuals 
from 250 Dutch 
families; PCR 
amplification of 
breakpoint 
junctions 
followed by 
Sanger or short-
read sequencing

http://www.nlgenome.nl 45

Tohoku 
Medical 
Megabank 
Organization, 
1KJPN

Population-
scale Illumina 
short-read, 
32.4

N 1,070 56,697*
(> 100 
bp)

Individuals of 
Japanese 
ancestry; digital 
droplet PCR

https://ijgvd.megabank.tohoku.ac.jp/
download_lkjpn/

58

GTEx Population-
scale Illumina 
short-read, 
49.9

N 147 23,602 SVs detected 
across 13 
different human 
tissues; 
microarray data

https://gtexportal.org/home/datasets 142

Abel et al. Population-
scale Illumina 
short-read, >= 
20

N 17,795 118,973 / 
GRCh37 
241,426 / 
GRCh38

African 
American, 
Latino, Finnish 
European, non-
Finnish 
European, East 
Asian, Pacific 
Islander, and 
South Asian 
ancestry

https://www.biorxiv.org/content/
10.1101/508515v1.supplementary-
material

44

Sherman et al. Population-
scale Illumina 
short-read, 
30–40

Y 910 125,715 Novel insertion 
detection in 
individuals of 
African ancestry

https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?
study_id=phs001123.v1.p1

175

gnomAD-SV Population-
scale Illumina 
short-read, 32

N/A 14,216 498,257 Individuals of 
African, East 
Asian, 
European, 
Latino, and 
admixed 
ancestry

https://gnomad.broadinstitute.org/
downloads

43
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Selected 
reference 
datasets

Reference 
type, 
platform, 
coverage

Raw 
data 
publicly 
available

Sample 
number

SVs 
detected

Description; 
orthogonal 
validation if 
applicable

URLs and accessions Ref

Venter/HuRef Highly curated
Sanger reads, 
7.5
10× Genomics 
LR, 42
Illumina short-
read, 92, 36
Illumina 2 kb 
mate-pair, 7
Illumina 5 kb 
mate-pair, 6
IIlumina 12 kb 
mate-pair, 3

Y 1 808,346* De novo 
assembly of a 
European-
American adult 
male; Sanger 
sequencing-
based assembly, 
a wide suite of 
microarray data, 
and BAC and 
fosmid libraries

NCBI:SRR7G97858,
SRR7097859,
SRR6951312,
SRR6951313,
SRR6951310,
SRR6951311
GenBank:
AADDGGGGGGGG,
ABBAG1GGGGGG
GEO:GSE20290

170,176,177

CHM1 Highly curated
PacBio, ~40
PacBio, 62.4

Y 1 20,602 De novo 
assembly of a 
haploid human 
hydatidiform 
mole; short-
reads and 
Sanger 
capillary-based 
sequencing; 
target 
sequencing of 
BAC clones, de 
novo PacBio 
assemblies, 
Sanger 
sequencing, and 
targeted PCR

https://eichlerlab.gs.washington.edu/
publications/chml-structural-
variation/
https://www.ncbi.nlm.nih.gov/dbvar/
studies/nstd137/
NCBI:PRJNA246220

61,95

CHM13 Highly curated
PacBio, 66.3
ONT, 32
10X 
Genomics LR, 
50
Bionano OM, 
430
Hi-C, 40
Illumina short-
read, ~30

Y 1 20,470 Haploid human 
hydatidiform 
mole; target 
sequencing of 
BAC clones, de 
novo PacBio 
assemblies, 
Sanger 
sequencing, and 
targeted PCR

https://www.ncbi.nlm.nih.gov/dbvar/
studies/nstd137/
NCBI: PRJNA269593
https://github.com/nanopore-wgs-
consortium/CHMl3

95,178

HX1 Highly curated
PacBio, 103
Bionano OM, 
101
Illumina short-
read, 143

Y 1 20,175 De novo 
assembly of a 
Chinese adult 
male

http://hx1.wglab.org
NCBI:PRJNA301527

104

AK1 Highly curated
PacBio, 101
Bionano OM, 
97 & 108
10x Genomics 
LR, 30
Illumina short-
read, 72

Y 1 18,210 De novo 
assembly of a 
Korean adult 
male; BAC 
clone assembly

NCBI:PRJNA298944 105
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Selected 
reference 
datasets

Reference 
type, 
platform, 
coverage

Raw 
data 
publicly 
available

Sample 
number

SVs 
detected

Description; 
orthogonal 
validation if 
applicable

URLs and accessions Ref

Audano et al. Population-
scale
PacBio, ~57

Y 15 99,604 African, Asian, 
European, 
American, and 
South Asian 
ancestry; BAC 
and fosmid 
libraries

https://www.ncbi.nlm.nih.gov/dbvar/
studies/nstd162/
HG00514,
NCBI:PRJNA300843;
HG00733,
NCBI:PRJNA300840
;NA19240,
NCBI:PRJNA288807;
HG02818,
NCBI:PRJNA339722;
NA19434,
NCBI:PRJNA385272;
HG01352,
NCBI:PRJNA339719;
HG02059,
NCBI:PRJNA339726;
NA12878,
NCBI:PRJNA323611;
HG04217,
NCBI:PRJNA481794;
HG02106,
NCBI:PRJNA480858;
HG00268,
NCBI:PRJNA480712

109

Swe1 & Swe2 Highly-
curated
PacBio, 78.8 
(Swe1)
PacBio, 77.8 
(Swe2)
Bionano OM, 
>100

N 2 17,936 /
Swe1
17,687 /
Swe2

One male and 
one female 
Swedish 
individual

https://www.mdpi.com/
2073-4425/9/10/486/s1

106

Levy-Sakin et 
al.

Population-
scale
Bionano OM, 
79
10x Genomics 
LR, 60

Y 156 15,601 156 samples 
from the 1KGP; 
concordance 
with 10x-
Genomics LRs

https://www.ncbi.nlm.nih.gov/dbvar/
studies/nstd168/
NCBI:PRJNA418343

120

Pendleton et 
al. & Jain et 
al., NA12878

Highly curated
PacBio, 22 
and 24
Bionano OM, 
80

ONT, 26*

Y 1 34,237 Two separate de 
novo assemblies 
of a Caucasian 
adult female; 
PCR

https://github.com/nanopore-wgs-
consortium/NA12878/blob/master/
nanopore-human-genome/
NA12878.hq.sv.vcf
NCBI:PRJNA253696;
ENA:PRJEB23027

103,172

Genome in a 
Bottle, 
NA12878

Highly curated
PacBio, ~44

Y 1 10,594 One Caucasian 
adult female

ftp://ftp-trace.ncbi.nlm.nih.gov/
giab/ftp/data/NA12878/N
A12878_PacBio_MtSinai

N/A

Wong et al. Population-
scale
10x Genomics 
LR, 60

Y 17 1,842 De novo 
assembly and 
non-reference 
insertion 
detection in 
individuals of 
African, 
American, East 
Asian, 
European, and 
South Asian 
ancestry; 
insertions > 2kb 
were validated 
with OM

NCBI:MH533022-MH534863,
PRJNA418343,
PRJNA435626

75

Genome in a 
Bottle, 
HG005, 
HG003, 

Highly-
curated
Illumina short-
read, 300 

Y 3 59,973 A preliminary 
callset 
containing 
deletions and 

ftp://ftp-trace.ncbi.nlm.nih.gov/
giab/ftp/data/ChineseTrio/analysis/

179,180
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Selected 
reference 
datasets

Reference 
type, 
platform, 
coverage

Raw 
data 
publicly 
available

Sample 
number

SVs 
detected

Description; 
orthogonal 
validation if 
applicable

URLs and accessions Ref

HG004 (son/
father/mother)

(son), 100 
(parent)
Complete 
Genomics, 98
Ion Proton, 
1036
Bionano OM, 
57
PacBio, 60 
(son), 30 
(parents)

insertions from 
a Han Chinese 
family trio

Genome in a 
Bottle, 
HG002, 
HG003, 
HG004 (son/
father/mother)

Highly curated
Illumina short-
read, ~300, 
~14.5, ~25, 
~208.5, ~101, 
~100
10x Genomics 
LR, 47 
(mother), 36
(father), 86 
(son)
Complete 
Genomics, 
~101, 100 Ion 
Proton, 1020 
Bionano OM, 
92 (mother), 
87 (father), 
112 (son)
PacBio, ~31 
(parent), 69 
(son) ONT, 
0.017 (son)

Y 3 12,745 Contains high-
confidence 
deletions and 
insertions from 
an Ashkenazi 
family trio; 
concordance 
across multiple 
trios

ftp://ftp-trace.ncbi.nlm.nih.gov/
giab/ftp/data/AshkenazimTrio/
analysis/
NIST_SVs_Integration_v0.6
NCBI: PRJNA200694

102

Human 
Genome 
Structural 
Variation 
Consortium

Highly curated
PacBio. ~40X
ONT, 18.9X
Illumina short-
read, 74.5
Illumina 3 kb 
mate-pair, 3
Illumina 7 kb 
mate-pair, 1.1
10x Genomics 
LR, 82.4
Bionano, N/A
Tru-Seq SLR, 
3.47
Strand-seq, 
N/A
Hi-C, 19.49

Y 3 (data 
available 
fo 9)

103,985 Three family 
trios of Han 
Chinese, Puerto 
Rican, and 
Yoruban 
Nigerian 
ancestry; 
concordance 
across multiple 
genomic 
platforms

https://www.ncbi.nlm.nih.gov/dbvar/
studies/nstd152/
http://
www.internationalgenome.org/data-
portal/data-collection/structural-
variation

39

*
non-standard definition of SVs
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Box 5 Table |

Callers specialized in resolving complexity

Method Detection URL Ref

Sniffles Complex SVs https://github.com/fritzsedlazeck/Sniffles 96

CORGi Complex SVs https://github.com/zstephens/CORGi 98

HySA Complex SVs https://bitbucket.org/xianfan/hybridassemblysv 132

GROC-SVs Complex SVs https://github.com/grocsvs/grocsvs 69

TSD Complex SVs https://github.com/menggf/tsd 152

local-rearrangements Complex SVs https://github.com/mcfrith/local-rearrangements 209

gemtools Complex SVs, SV phasing https://github.com/sgreer77/gemtools 182

SDA Segmental duplications https://github.com/mvollger/SDA 203

rMETL Mobile element insertions https://github.com/hitbc/rMETL 210

adVNTR Variable number tandem repeats https://github.com/mehrdadbakhtiari/adVNTR 205

PacmonsTR Tandem repeats https://github.com/alibashir/pacmonstr 206

RepeatHMM Microsatellites https://github.com/WGLab/RepeatHMM 207

nplvn NAHR-mediated inversions https://github.com/haojingshao/npInv 204

VALOR2 Segmental duplications https://github.com/BilkentCompGen/valor 72

PALMER Mobile element insertions https://github.com/mills-lab/PALMER n/a
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