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Abstract

Positron emission tomography (PET) is a functional imaging modality widely used in clinical 

diagnosis. In this work, we trained a deep convolutional neural network (CNN) to improve PET 

image quality. Perceptual loss based on features derived from a pre-trained VGG network, instead 

of the conventional mean squared error, was employed as the training loss function to preserve 

image details. As the number of real patient data set for training is limited, we propose to pre-train 

the network using simulation data and fine-tune the last few layers of the network using real data 

sets. Results from simulation, real brain and lung data sets show that the proposed method is more 

effective in removing noise than the traditional Gaussian filtering method.

Index Terms—

Positron emission tomography; image denoising; convolutional neural network; fine-tuning; 
perceptual loss

I. Introduction

Positron Emission Tomography (PET) is a functional imaging modality that is widely used 

to observe molecular-level activities inside tissues through the injection of specific 

radioactive tracers. Due to various physical degradation factors and limited number of 

detected photons, image resolution and signal-to-noise ratio (SNR) of PET images are poor. 

Improving PET image quality is needed in applications such as small lesion detection, lung 

cancer staging, and early diagnosis of neurological disease.
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Multiple advances have been made in the past decades to improve PET SNR, such as 

exploiting time of flight (TOF) information [1], using high-efficiency detectors with depth of 

interaction capability [2], extending the solid angle coverage [3], [4], and adopting more 

accurate system modeling in image reconstruction [5]. Various post processing methods, 

such as the HYPR processing [6], non-local mean denoising [7], [8], and anatomical guided 

methods [9], [10], have also been developed.

Recently, deep neural networks (DNNs) have found successful applications in various 

computer vision tasks, such as image segmentation [11], object detection [12], and image 

super resolution [13], by demonstrating better performance than the state-of-art methods 

when a large amount of training data are available. DNNs, using either convolutional neural 

network (CNN) [14]–[16] or generative adversarial network (GAN) [17], have also been 

applied to medical image denoising, and showed comparable or superior results to the 

traditional iterative reconstruction but at a faster speed. Most of the denoising studies use 

images generated from high dose or fully sampled data sets as training labels, and images 

from low dose or partially sampled data as training inputs. Mean squared error (MSE) 

between the network outputs and training labels is often employed as the training loss 

function. There exist two issues in the application of DNN to PET image denoising. One is 

the lack of sufficient number of label images for training. The other is that MSE based loss 

function often results in blurry network outputs [18]–[20].

In this work, we apply DNN to PET image denoising and propose solutions to address these 

issues. First, to generate label images for training, we sum an hour-long dynamic PET scan 

into a high-count frame and use the reconstructed image as a label. The corresponding noisy 

input is obtained by down-sampling the high-count data to a lower count level and 

reconstructing the resulting low-count data. Since the number of real patient data sets is 

limited, we propose to pre-train the neural network using computer simulated data and then 

fine-tune the network using real data sets. A similar idea was presented in [21], where an 

MRI denoising network was first trained using CT images and then fine-tuned by MRI 

images. To address the blurry problem of MSE loss function, perceptual loss, which was 

calculated based on features extracted from a pre-trained network [18], was adopted as the 

training loss function. Since the perceptual loss is feature based, it can preserve more image 

details than the MSE loss function. The idea is similar to the one used in the anatomically 

constrained network [22], where features were extracted from the hidden layer of an auto-

encoder.

II. Method

A. Convolutional neural network

The basic unit of a CNN contains a convolution layer and an activation layer. The input and 

output relationship of the ith unit can be described by

yi = fi yi − 1 = g wi ⊛ yi − 1 + bi , (1)
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where yi − 1 ∈ ℝN × N × C denotes the unit input with spatial size N ×N and C channels, 

yi ∈ ℝN × N × H is the unit output with spatial size N ×N and H channels, 

wi ∈ ℝM × M × C × H is the convolutional filter with kernel width M, b ∈ ℝ1 × H is the bias 

term, ⊛ indicates the convolution operation, and g represents the non-linear activation 

function. In this work, we use the rectified linear unit (ReLU) activation function, defined as

g(x) = max(x, 0) . (2)

To stabilize and accelerate the deep network training, batch normalization [23] is added after 

the convolution operation. After stacking L units together, the network output can be written 

as

yout = fL fL − 1 …f1 xinput . (3)

For PET image denoising, xinput is an noisy image recon-structed from a low-count data set, 

and yout is the denoised PET image with improved SNR. The ability of a neural network to 

approximate the mapping from a noisy image to the corresponding training label is 

dependent on the network depth (number of layers) and structure. Deeper networks can have 

higher capability, but at a cost of requiring more training samples and longer training time.

B. Perceptual loss

In most previous works, MSE between the training label ylabel and the network output yout 

was used as the loss function. It is defined as

Lmse = ylabel − yout 2
2 . (4)

It has been observed that MSE based loss often produced blurry network outputs [18]–[20]. 

To preserve image details, we propose to use the perceptual loss as the objective function, 

which is calculated by

Lperceptual = ϕ ylabel − ϕ yout 2
2, (5)

where ϕ represents the feature extraction operator and is based on the intermediate layer 

output from a pre-trained network. By comparing feature maps instead of pixel intensities, 

the network can be more effective in removing noise while keeping image details. In this 

work we adopted the output before the first pooling layer from the VGG19 network [24] as 

the extracted features. The VGG19 network architecture contains sixteen convolutional 

layers followed by three fully connected layers. The VGG network was trained using 

ImageNet, which is a large database of natural images [25]. A total of 64 feature maps were 

extracted with the same spatial size as the input. This process is illustrated in Fig. 1. We 

hypothesize that the low-level features trained from natural images are also present in 

medical images. We have tried to use the features extracted from deeper layers, but the 

Gong et al. Page 3

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2020 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



performance is not as good as that of the first layer. The reason for this is worth further 

investigation.

C. Network structure

Our network structure is similar to the residual neural network used in [19]. A schematic 

diagram of the network architecture is shown in Fig. 2. The network consists of a cascade of 

five residual blocks [26]. Each residual block contains two repetitions of a 3 × 3 

convolutional layer, a batch normalization layer, and a ReLU layer. Skip connection is added 

between the start and the end of each block. Another skip connection is added between the 

first and last stages of the whole network. The number of features for each convolutional 

layer is 64, and the spatial size of the network input is 128 ×128. Five input channels are 

used to include the center slice as well as four neighboring axial slices for effective noise 

removal and reduction of axial artifacts.

D. Fine-tuning

Due to limited number of real data sets for training, we propose to pre-train the network 

using simulated data first and then fine-tune the network using real data. Compared with real 

data sets, simulated data sets are much easier to generate. Using realistic phantoms and an 

accurate physical model of the PET scanner, simulated data sets can have high similarity to 

real data sets, which can facilitate the fine tuning. This framework also allows continuous 

improvement of the network by incorporating new patient data. Since the front layers 

generally extracts low-level image features that are common to different types of images, we 

only fine-tune the last few layers in the red shadow region in Fig. 2. In addition, the batch 

normalization layers of the whole network were also fine-tuned as the intensity levels can be 

different between the simulation and real data sets. We separately trained two networks, one 

for brain imaging and one for lung imaging. The brain-imaging network was pre-trained 

using brain phantoms from the BrainWeb [27] and the lung-imaging network was pre-

trained using the XCAT phantom [28].

III. Experimental Setup

A. Brain phantom simulation

Nineteen 3D brain phantoms from BrainWeb [27] were employed in the simulation. 

Eighteen phantoms were used for training and one phantom was reserved for testing. The 

computer simulation modeled the geometry of a Siemens mCT scanner [29]. The system 

matrix was modelled by using the multi-ray tracing method [30]. The image array size was 

128×128×105 and the voxel size was 2×2×2 mm3. The time activity curves of blood, gray 

matter and white matter were the same as those used in [31] to mimic an FDG scan. Noise-

free sinogram data were generated by forward-projecting the ground-truth images using the 

system matrix and the attenuation map. Poisson noise was then introduced to the noise-free 

data after scaling the total counts to the level of a 1-hour FDG scan with 5 mCi injection. 

Uniform random events were simulated and accounted for 30 percent of the noise-free data. 

Scatters were not included.
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For network training, each one-hour scan was summed into one frame and reconstructed as 

the label, and the noisy input was obtained by down-sampling the one-hour data to 1/5th of 

counts and reconstructing the low-count data. All images were reconstructed using ML EM 

with 120 iterations. A total of 18 (number of phantoms)×75 (number of axial slices extracted 

from each phantom) training image pairs were generated after discarding axial slices at the 

two ends with little activity. Examples of training images are shown in Fig. 3.

For testing, the last 10-min static frame was extracted from the one-hour scan and 

reconstructed as the noisy input. The 10-min static frame has similar count level as the 

training input. The CNN denoised images were compared with those obtained by traditional 

Gaussian smoothing and non-local mean (NLM) denoising. For quantitative evaluation, 

contrast recovery coefficient (CRC) vs. the standard deviation (STD) curves were calculated 

based on reconstructions of twenty independent and identically distributed (i.i.d) 

realizations. The CRC was computed between selected gray matter regions and background 

white matter regions as

CRC = 1
R ∑

r = 1

R ar
br

− 1 / atrue

btrue − 1 , (6)

where ar = 1/Ka∑k = 1
Ka ar, k is the average uptake over Ka = 12 gray matter ROIs in 

realization br = 1/Kb∑k = 1
Kb br, k is the average value of the background ROIs in realization r, 

and R is the number of realizations. The background STD was computed as

STD = 1
Kb

∑
k = 1

Kb 1
R − 1 ∑r = 1

R br, k − bk
2

bk
, (7)

where bk = 1/R∑r = 1
R br, k is the average of the kth background ROI means over realizations 

and Kb is the number of background ROIs. When choosing the gray matter ROIs, only those 

pixels inside predefined 20-mm-diameter spheres and containing 80% of gray matter were 

included. Background ROIs consist of 37 circular regions with a diameter of 12 mm drawn 

in the white matter region.

B. Real brain data sets

After pre-training the network using BrainWeb phantoms, we fine-tuned the network using 

real data from a brain PET scanner [32]. Two dynamic brain PET scans of 70 minutes with 5 

mCi FDG injection were used for the fine-tuning and another patient dataset was reserved 

for testing. In fine-tuning, images reconstructed using the whole 70 min scan were treated as 

the training labels and images from one-fifth of the counts were used as the training inputs. 

All image reconstructions were performed using the ML EM algorithm with 120 iterations. 

Correction factors for randoms, scatters were included in the forward model during 

reconstruction. Attenuation was derived from a T1-weighted MR image using the SPM 

based atlas method [33]. The reconstructed image array size was 256×256×153 and the 

voxel size was 1.25×1.25×1.25 mm3. Two 128×128 patches were randomly extracted from 

each reconstructed image slice for fine-tuning. As the patch extraction is a random process, 
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there might be overlapping between extracted patches. A total of 520 training pairs (two 

training data sets, each containing 130 axial slices and each axial slice generating 2 patches) 

were extracted. For comparison, we also trained the network using the real data directly 

without the pre-training stage. During testing, network input spatial size was set to 256 × 

256 so that each image can be processed directly without splitting. As the ground truth of the 

real data is unknown, a hot sphere of diameter 12.5 mm, mimicking a tumor, was added to 

the test sinogram data. The TAC of the hot sphere as added to the background was set to the 

TAC of the gray matter, so the final TAC of the simulated tumor region is higher than that of 

the gray matter because of the superposition. Twenty i.i.d realizations of low-count test data 

were generated and reconstructed. Images with and without the inserted tumor were 

reconstructed and the difference was taken to obtain the tumor only image. The tumor 

contrast recovery (CR) was calculated as

CR = 1
R ∑

r = 1

R
l r/ltrue, (8)

where l r is the mean tumor intensity inside the tumor ROI, ltrue is the ground truth of the 

tumor intensity, and R is the number of the realizations. For the background, 23 circular 

ROIs with a diameter of 5 mm were drawn in the white matter and the standard deviation 

was calculated according to (7).

C. Lung phantom simulation

To pre-train a network for lung imaging, one-hour scan of nineteen XCAT phantoms [28] 

with different organ sizes and genders were simulated. Eighteen phantoms were used for 

training and one phantom was reserved for testing. Apart from the major organs, thirty hot 

spheres of diameters ranging from 12.8 mm to 22.4 mm were inserted into the training 

phantoms as lung lesions. For the test image, five lesions with diameter 16.35 mm were 

inserted. Two-tissue-compartment model mimicking a FDG scan with analytical blood input 

function was used to generate the time activities [34]. In order to simulate population 

differences, each kinetic parameter was modeled as a Gaussian variable with coefficient of 

variation equal to 0.1. Mean of the time activities for different organs and lung lesions are 

shown in Fig. 4. The scanner geometry mimics a GE 690 scanner [35]. Uniform random and 

scatter events were simulated and accounted for 60% of the noise free prompt data to match 

those observed in real data sets. Poisson noise was added mimicking a 5-mCi FDG injection. 

Images reconstructed using counts from the last 40 minutes were treated as the training 

labels and images using one-tenth of the 40-min counts as the training inputs. All image 

reconstructions were performed using the ML EM algorithm with 100 iterations. Three 

training pairs from different phantoms are shown in Fig. 5. The image matrix size is 128 × 

128 × 49 and the voxel size is 3.27 × 3.27 × 3.27 mm3. A total of 18 (number of phantoms)

×49 (number of axial slices extracted from each phantom) training image pairs were 

generated. For testing, the last 5-min static frame was extracted from the one-hour scan and 

reconstructed as the noisy input. The 5-min static frame has similar count level as the 

training input. The lesion contrast recovery was calculated according to (8). Forty-two 

background ROIs were chosen in the liver region to calculate the STD according to (7).
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D. Real lung data sets

For fine-tuning, five patient data sets (one-hour FDG dynamic scan with 5 mCi injection) 

acquired on a GE 690 scanner were employed in the training and another patient data set 

was reserved for testing. Normalization, attenuation correction, randoms and scatters were 

generated using the manufacturer software and included in image reconstruction. Images 

reconstructed using counts from the last 40 minutes were treated as the training labels and 

images using one-tenth of the 40-min counts as the training inputs. All image 

reconstructions were performed using the ML EM algorithm with 100 iterations. A total of 5 

(number of patient data sets)×49 (number of axial slices extracted from each patient data set) 

training image pairs were generated. Spherical lesions with a diameter of 12.8mm were 

inserted in the testing sinograms for quantitative analysis. The TAC of the lesions inserted 

was similar to the TAC of the liver, so the final TAC of the simulated lesion region is higher 

than that of the liver because of the superposition. A total of 20 i.i.d realizations of test data 

were generated by randomly sampling one-tenth of the last 40-min counts and reconstructed. 

For lesion quantification, images with and without the inserted lesion were reconstructed 

and the difference was taken to obtain the lesion only image. The lesion contrast recovery 

was calculated according to (8). Forty-seven background ROIs were chosen in the liver 

region to calculate the STD according to (7).

E. Implementation details

The proposed neural network was implemented using TensorFlow 1.4, which is a deep 

learning platform with back-propagation implemented using automatic differentiation. The 

Adam algorithm, which is a popular adaptive stochastic gradient method [36], was used as 

the optimizer. The learning rate and the decay rates used the default settings in TensorFlow. 

Perceptual loss was used in all CNN training unless noted otherwise. All training and fine-

tuning used a batch size of 30 and 500 epochs. Gaussian filtering and NLM denoising were 

used as the reference methods. The full-width-half-maximum (FWHM) of the Gaussian 

filter was 1.5 voxels in all cases. For the NLM method, the patch size was 3× 3 × 3, and the 

searching window size was 5× 5 × 5. The standard deviation of the NLM Gaussian 

weighting function was set to be the standard deviation of the image. These parameters were 

chosen empirically to optimize the contrast vs. noise tradeoff. The CRC/CR-STD curves 

were generated by varying the ML EM iteration number.

IV. Results

Fig. 6 shows the denoised results of the last 10-min static frame of the simulated brain 

phantom data. We can see that compared with the result using the Gaussian filter, the CNN 

denoised images preserve more details of the brain structure and also has higher contrast 

between the gray matter and white matter. The CRC of the gray matter vs. STD of the white 

matter curves are plotted in Fig. 7 by varying the EM iteration number. We can see that the 

CNN denoising provides much better CRC vs. STD tradeoff than the Gaussian and NLM 

filters. Comparing with the CNN (same network structure) trained using MSE loss, the CNN 

trained using the perceptual loss achieves a higher CRC at any matched STD level.
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For the real brain data sets, denoised images of one low-count realization are shown in Fig. 

8. We can see that after applying the CNN method, cortical boundary becomes clearer and 

the image noise is reduced. Also the result using CNN with fine-tuning is sharper and less 

noisy than the results without fine-tuning, which indicates the effectiveness of pre-training 

plus fine-tuning. Fig. 9 shows the CR-STD curves, which confirm that the CNN with fine-

tuning has the best CR-STD trade-offs.

Fig. 10 shows the denoised results of the last 5-min static frame of the simulated XCAT 

phantom data. We can see that the neural network denoising methods result in lower noise 

than the Gaussian and NLM denoising methods do. Compared with the CNN trained using 

MSE loss, the CNN trained with perceptual loss generates images with higher contrast in the 

lesion and myocardium region. The curves of the CR of the inserted lung lesion vs. STD in 

the liver region are plotted in Fig. 11, which further confirms our observation.

Fig. 12 shows the reconstructed images of a lung testing data set. Here we also included the 

denoising results using the CNN trained by phantom data only. We can see that the CNN 

methods result in clearer details in the spinal regions and also lower noise compared with the 

Gaussian filter and NLM denoising methods. Also the contrast of the inserted lesion is 

higher in the CNN result with fine-tuning than those from CNN trained with either real data 

or phantom data only. Fig. 13 compares the CR-STD curves. It shows that the CNN method 

with fine-tuning has the best performance – it provides a nearly two-fold STD reduction as 

compared with the Gaussian denoising method. By comparing between different CNN 

denoising results, we can clearly see the benefits of fine-tuning.

V. Discussion

Deep neural network can learn a complex relationship between the input and output 

provided that a large amount of training data is available. However, training a deep network 

from scratch with a limited amount of data can lead to inferior performance due to 

overfitting, as demonstrated by the real data studies in this work. Pre-training followed by 

fine-tuning is an effective technique to address this issue, because features extracted at the 

early stages can be shared. The benefit of fine-tuning is clearly demonstrated by comparing 

the CNN denoising results with and without fine tuning. Our results also show that CNN 

trained by phantom data can be applied to real data when the simulation models the real 

imaging condition, but the performance is worse than the CNN fine-tuned with real data. In 

the simulation, we used a pre-computed forward projector to generate data. The forward 

projector modeled the solid angle effect and crystal penetration, but not inter-crystal 

scattering. If simulation data were generated by a more accurate Monte Carlo simulation, 

such as GATE [37], the results of the phantom-only CNN might be improved.

In this study, we used the images reconstructed from 60-min or 40-min long data sets as the 

training label and the images reconstructed from down-sampled data sets as the training 

input. While the long scans may have different contrast from standard static scans, our 

simulation results have shown that the learned neural network can be applied to short static 

scans with a matched noise level. More quantitative evaluations using clinical data sets are 

needed for further evaluation. During the experiments, we found that the best performance 
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of the neural network was achieved when the noise level of the testing data was similar to 

the training data. If there was a mismatch between the training and testing data noise levels, 

the network performance would be degraded. One explanation is that if the noise level is 

different, then there is a large chance that the testing data do not lie in the training data 

space. Hence to have the best improvement using neural network methods, a new training 

session is recommended if the noise level of the test data is outside of the training noise 

level.

When we designed the experiments, we wanted to test the effect of pre-training using 

phantoms in two cases: (1) simulation settings are different from the real datasets; (2) 

simulation settings are almost the same as the real datasets. In the lung simulation, we made 

the simulation to be similar to the real data as much as we can. For the brain study, the 

simulation and real data settings (in terms of image pixel size and scanner geometry, etc) 

were chosen to be different to test whether fine-tuning is still useful when the phantom study 

and the later patient study do not match. In both cases, we found that the image output of 

CNN with fine-tuning is better than those of CNNs trained using either simulation or real 

data alone. This result is encouraging as it indicates that we may be able to combine real 

data from different scanners to increase the number of training images in practice.

One limitation of our network is that 2D convolution was used. To exploit information along 

the axial dimension, five input channels were utilized to include neighboring axial slices. 

Alternatively, 3D convolution can be used and may be able to extract more axial information 

than using multiple input channels because axial information is preserved at all layers. 

Extension to 3D convolutional network will be investigated in our future work.

VI. Conclusion

In this work, we have applied a deep neural network to PET image denoising based on 

perceptual loss. The proposed pre-training plus fine-tuning strategy can help to train a deep 

neural network with limited amount of real data. Both simulation and real data experiments 

show that the proposed framework can produce images with better quality than post-

smoothing using a Gaussian or NLM filter. Further work will focus on exploring 3D 

networks as well as more real data evaluations.
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Fig. 1: 
The schematic diagram of the feature map generation process based on the VGG network. 

Top rows are the input images and bottom rows are the feature maps extracted from the 

VGG network. Left column is the image reconstructed from low-count data and right 

column is the image reconstructed from high-count data.
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Fig. 2: 
The schematic diagram of the neural network architecture. The red shadow region indicates 

the layers that are fine tuned by real data.
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Fig. 3: 
Three pairs of the training images from the simulated brain phantom data. Top row contains 

the training labels and bottom row contains the corresponding noisy inputs.
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Fig. 4: 
The TAC curves of different organs and lesions used in the XCAT simulation.
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Fig. 5: 
Three pairs of the training images from the XCAT phantom simulation. Top row contains the 

training labels and bottom row contains the corresponding noisy inputs.
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Fig. 6: 
Three orthogonal slices of the reconstructed last-10-min static frame of the test phantom. 

First column: ground truth; second column: EM images smoothed by Gaussian filtering; 

third column: EM images smoothed by NLM denoising; fourth column: EM images with 

CNN using MSE loss; fifth column: EM images with CNN using perceptual loss. The 

images were selected by matching the background noise level (see Fig. 7).
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Fig. 7: 
CRC-STD curves of the denoised images for the last-10-min static frame of the test 

BrainWeb phantom. Markers are plotted every 24 iterations with the lowest point 

corresponding to the 24th iteration. The images shown in Fig. 6 are labelled by ⋆ markers.
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Fig. 8: 
Three orthogonal views of the reconstructed real brain test data set using different methods. 

Two Cortex regions from the sagittal and coronal views are zoomed in for easier visual 

comparison. First column: EM image smoothed by Gaussian denoising; second column: EM 

images smoothed by NLM denoising; third column: EM image denoised by CNN trained 

from simulated phantom; fourth column: EM image denoised by CNN from real data only; 

fifth column: EM image denoised by CNN with fine-tuning. The images were selected by 

matching the background noise level (see Fig. 9).

Gong et al. Page 19

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2020 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9: 
CR-STD curves for the real brain test data set denoised using different methods. Markers are 

plotted every 24 iterations with the lowest point corresponding to the 24th iteration. The 

images shown in Fig. 8 are labelled by ⋆ markers.

Gong et al. Page 20

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2020 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10: 
Three orthogonal slices of the reconstructed last-5-min static frame of the test XCAT 

phantom. The locations of these images in CR-STD plots are marked by ⋆ in Fig. 11. First 

column: ground truth; second column: EM images smoothed by Gaussian filtering; third 

column: EM images smoothed by NLM denoising; fourth column: EM images with CNN 

using MSE loss; fifth column: EM images with CNN using perceptual loss.
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Fig. 11: 
CR-STD curves of the denoised images for the last-5-min static frame of the test XCAT 

phantom. Markers are plotted every 20 iterations with the lowest point corresponding to the 

20th iteration. The images shown in Fig. 10 are labelled by ⋆ markers.
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Fig. 12: 
Three orthogonal views of the reconstructed real lung test data set using different methods. 

Spine regions in the sagittal view are zoomed in for easier visual comparison. The locations 

of these images in CR-STD plots are shown as ⋆ markers in Fig. 13. First column: EM 

image smoothed by Gaussian denoising; second column: EM images smoothed by NLM 

denoising; third column: EM image denoised by CNN trained from simulated phantom; 

fourth column: EM image denoised by CNN from real data only; fifth column: EM image 

denoised by CNN with fine-tuning.
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Fig. 13: 
CR-STD curves for the real lung test data set denoised using different methods. Markers are 

plotted every 20 iterations with the lowest point corresponding to the 20th iteration. The 

images shown in Fig. 12 are labelled by ⋆ markers.
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