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Abstract

In this paper, we present a real-time convolutional neural network (CNN) based approach for 

speech source localization (SSL) using Android-based smartphone and its two built-in 

microphones under noisy conditions. We propose a new input feature set – using real and 

imaginary parts of the short-time Fourier transform (STFT) for CNN-based SSL. We use 

simulated noisy data from popular datasets that was augmented with few hours of real recordings 

collected on smartphones to train our CNN model. We compare the proposed method to recent 

CNN-based SSL methods that are trained on our dataset and show that our CNN-based SSL 

method offers higher accuracy on identical test datasets. Another unique aspect of this work is that 

we perform real-time inferencing of our CNN model on an Android smartphone with low latency 

(14 milliseconds(ms) for single frame-based estimation, 180 ms for multi frame-based estimation 

and frame length is 20 ms for both cases) and high accuracy (i.e. 88.83% at 0dB SNR). We show 

that our CNN model is rather robust to smartphone hardware mismatch, hence we may not need to 

retrain the entire model again for use with different smartphones. The proposed application 

provides a ‘visual’ indication of the direction of a talker on the screen of Android smartphones for 

improving the hearing of people with hearing disorders.
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I. INTRODUCTION

Speech source localization (SSL) using direction of arrival (DOA) estimation is one of the 

vital areas in signal processing that improves the performance of the many speech 

processing applications such as beamforming [1–4], speech enhancement (SE) [4–5] and 

speech/speaker recognition [6–7]. Another important application area for SSL as reported in 

[8–12] are hearing assistive devices (HADs). It has been reported that hearing-impaired 

people have difficulty in identifying talker direction that leads to communication-gaps 

during group activities, especially in the noisy environment. Hence, having a fast and 
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reliable ‘visual and voice indication’ would be very helpful for hearing-impaired people. 

Furthermore, the estimated direction can be used to enhance the signal-to-noise ratio (SNR) 

of the desired talker speech [5]. Due to their widespread availability, smartphones offer the 

most accessible solution for hearing impaired people. Several speech processing applications 

such as real-time SE, audio compression, and adaptive feedback cancellation have been 

implemented and deployed on a smartphone for hearing aid users in [13–21]. Real-time 

video demos from our NIH-NIDCD supported project are available at http://

www.utdallas.edu/ssprl/hearing-aid-project/ [22].

Various methods have been investigated and developed for SSL over the years. We can 

categorize the popular conventional method into three classes: (i) methods that decompose 

the autocorrelation matrix into signal and noise subspace like multiple signal classification 

(MUSIC) [23] (ii) methods that exploit time difference of signal arrivals like TDOA 

methods [24] (iii) methods that compute steered response power for estimating DOA like 

SRP-PHAT [25]. Deep learning (DL) has seen rising popularity in different areas such as 

computer vision [26], speech recognition [27], SE [28] due to the ability to model complex 

non-linear problems. A lot of promising works related to deep neural networks (DNN) based 

DOA estimation have been done as well. Some of these approaches use the DNN as 

replacement of the DOA algorithm [29–31], while some use DNN as a pre-processing step 

to the conventional method [32–34]. In [29], multi-layer perceptron (MLP) is used as a 

network architecture and input feature for MLP is GCC-PHAT. [30] exploits the CNN 

model, which is trained using phase of the short-time Fourier transform (STFT) of 

synthesized white noise. The authors of [31] propose two different sound localization 

methods using raw waveform. The first approach uses gammatone filter for feature 

extraction and the second one is fully data-driven method in [31]. The work in [32] shows 

that the performance of estimating time-frequency (TF) mask using DNN and applying to 

GCC PHAT outperforms using direct GCC PHAT as a feature set for time difference of 

arrival estimation. Another recent work [33] proposes DNN based phase difference 

enhancement for SSL. The authors of [33] firstly enhance the phase difference of each TF 

bins then estimate the DOA through k-means clustering. The work in [34] used CNN to 

predict time-frequency regions dominated by noise and reverberation, then they design a 

mask to remove the corrupted region. SRP-PHAT is used for DOA algorithm in [34]. In [35], 

the application of CNN to the minimum variance distortionless response (MVDR) scheme is 

explained. In [36] an approach is proposed based on discriminative machine learning (ML) 

from obtaining steering vectors to learning of the location estimator. [37] uses a probabilistic 

neural network (PNN) to estimate DOA. Although these promising algorithms perform well, 

most of them use only simulated data for training and inferencing. To the best of our 

knowledge, real-time implementation of these algorithms has never been published. 

Moreover, most of the discussed methods use more than four microphones, which leads to 

large feature dimensions on the input layer contributing to additional complexity to the 

model.

In this paper, we propose a CNN based SSL method which is trained in noisy and 

reverberant environments using simulated data in addition to real data recorded on a 

smartphone. Our first contribution is to propose a new feature set for the CNN model for 

SSL as used in this paper. Instead of explicit hand-crafted features from the microphone data 
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(such as those in GCC-PHAT [30] or SRP-PHAT [34]), we use the STFT of the speech 

signal per microphone. Our second contribution is the efficient real-time implementation of 

CNN-based SSL on Android smartphone using its built-in two microphones for hearing aid 

applications. The pipeline of the proposed method is presented in Figure 1. Performance of 

the proposed CNN-based SSL algorithm along with the implementation details on Android-

based smartphones are analyzed in this work. The proposed method is noise-robust and can 

work with only two smartphones’ microphones in different kinds of unseen noisy 

environments with low latency and very little computation footprint. The real-time video 

demo of the Android application in a noisy environment is available in http://

www.utdallas.edu/ssprl/hearing-aid-project/ [22].

To reduce computation complexity, we use the real and imaginary part of the raw speech 

STFT instead of hand-crafted features. Raw STFT features are easier to compute and the 

CNN might learn better features than hand-crafted features. Speech presence is detected 

using a real-time simple voice activity detector (VAD) developed in [13]. The details about 

VAD will be given in the following sections. Incoming data frames from two microphones 

are processed by the VAD. If VAD decides that frame is speech then inferring process is 

performed using our pre-trained CNN model to estimate the DOA. If the incoming frame is 

detected as noise, then the previously estimated DOA estimate will be used.

Rest of papers is organized as follows: Section II explains the problem statement. The 

proposed method is presented in Section III. Experiment setup and evaluation metrics are in 

Section IV. Discussion of results for the proposed method is given in Section V. Section VI 

explains real-time implementation on Android smartphone, and Section VII concludes the 

paper.

II. PROBLEM STATEMENT

We are interested in using an array of two microphones built-in and available on most 

smartphones to accurately estimate the DOA angle of speech source in different noisy 

environments under low signal to noise ratios (SNRs). The smartphone alone is used in our 

approach with no external microphone(s) and no external hardware of any kind. The two 

built-in microphones of the smartphone are at a fixed close distance to each other and could 

have non-identical characteristics. Since these two built-in microphones are linearly located, 

they are called linear microphone array. The linear microphone array is not capable 

differentiate whether the arrival of the signal from right-hand or left-hand side. This is called 

the ambiguity problem. Since we use two built-in microphones of the Android-based 

smartphones, we have considered DOA angle range is [0°, 180°] because of ambiguity 

problem.

Often, SSL using DL is reformulated as a classification problem instead of a regression 

problem. There are two reasons for this: First, it has been shown that defining SSL as a 

regression problem using DNN has worse performance than a classification problem [29]. 

Secondly, for implementation reasons, instead of predicting ‘continuous’ angles (with high 

resolution), we would like to localize talkers with reasonable resolution. This means that 

very high-resolution SSL is not our main goal. Hence, we settle for a coarser class-wise 
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resolution, i.e. of 10°, but high accuracy, i.e. 90%. These reasoning leads us to define SSL as 

a classification problem. Since the microphones on a smartphone are designed for different 

purposes (like voice pick-up and noise cancellation), they do not have identical frequency 

characteristics. Thus, an explicit equalization step is required for conventional methods. 

However, the equalization step can be implicitly learned and realized by the filters in the 

CNNs from the raw STFTs in this work.

III. PROPOSED SSL METHOD

In this section, we described the proposed method. Since the proposed method is based on a 

supervised learning method, it has two stages of training and testing/inferencing. Training is 

done offline and the pre-trained model is then implemented on the smartphone. Input feature 

representation of CNN based DOA estimation is explained in the following section.

A. INPUT FEATURE REPRESENTATION

Determining input feature-set is crucial for supervised learning. Input feature set should 

have enough DOA information to be learned by the CNN. In [30], the phase of the signal is 

considered as an input feature set. [4] states that signal energy is also used for speech source 

localization for humans. Therefore, we have decided to use real and imaginary part of short 

time Fourier transform (STFT) of input speech frames which is defined by

Xcℎ(m, k) = ∑n = − ∞
∞ x[n]w[n − m]e−jkn (1)

Xch (m, k) is complex STFT. x [n] is the input signal and w [n − m] is a window to get small 

frames of the signal. Subscript ch (i.e. 1,2) denotes the microphone index. The real and 

imaginary part of Xch (m, k) are used as the input feature set for the proposed method. 

Following matrices show input feature sets:

Feature set1 Feature set2
Imag.part of X1(m, k)
Imag.part of X2(m, k)

Real part of X1(m, k)
Real part of X2(m, k)

(2)

The dimension of each set is given by 2×(NF /2 + 1). NF is the number of FFT points. Since 

FFT of a signal is symmetric in the frequency domain, we use only the positive half of STFT 

of data. Hence, while the number of rows is fixed to two (equal to the number of 

microphones), the column number depends on the number of STFT points.

B. CNN BASED SSL

Figure 2 shows CNN topology of the proposed method. There are five main layers in the 

topology viz. input layer, convolutional layer, pooling layer, fully connected (FC) layer, 

output layer. The input layer consists of input feature sets defined in the previous section. 

We have two sets of matrices that consist of the real and imaginary part of STFT of the 

speech signal. Inputs are processed by convolutional layer. A set of kernels, i.e. filters, is 

convolved with small parts of input matrices in the convolutional layer. These kernels enable 
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us to find out local information on the spectrum for SSL. After the application of filters, 

feature maps are generated by each convolutional layer. Pooling layer helps us to reduce the 

feature map resolution for decreasing computational complexity. In this work, we have used 

max pooling which takes maximum values in the 2×2 matrix. After max pooling layer, 

feature maps are flattened and fed into fully connected (FC) layer. FC layer performs 

classification using activation function. For this study, Rectified Linear Unit (ReLU) [38] is 

used as an activation function in FC layers. Softmax activation function (gives a probability 

of each class) is utilized in the output layer. The highest probability is selected as the output 

class which can be shown as:

θ i = argmax
θc

p θc ∣ Φi (3)

The angle θ i denotes estimated DOA angle, p θc ∣ Φi  is the probability of c-th class when 

given the i -th time frame as Φi. The CNN architecture used in this work includes 3 

convolutional layers. Each convolutional layer has 64 filters with 2×2 strides. There is one 

optional max pooling layer after each convolutional layer. First FC layer has 512 nodes with 

ReLU activation function. The second one has 256 nodes with ReLU. We have 10 output 

classes with Softmax activation layer in the output layer.

C. VOICE ACTIVITY DETECTOR

In real life, we are exposed to different kind of noises. The presence of background noise 

leads to performance degradation for DOA estimation. We would like to see the performance 

of the proposed method under noisy condition. Since we train the model with only speech, 

the proposed method requires classifier which labels speech segment (includes clean or 

noisy speech) and noise (or silence) segment. This classifier is called voice activity detector 

(VAD). As it is seen from Figure 1, if the incoming frame is detected as speech, the frame is 

fed to pre-trained model making a new estimation, else, the DOA angle estimate from the 

previous frame is retained:

θ i =
θ i − 1, if V AD = 0(Noise)
θ i, if V AD = 1(Speecℎ)

(4)

Where angle θ i denotes the corrected DOA estimate after VAD for ith frame. Thus, the VAD 

prevents model to estimate the DOA angle with noise-only frames. In this work, to reduce 

the real-time processing burden and to reduce CNN size, we utilize a simple single-feature 

based VAD. That is, ‘Spectral Flux (SF)’ is used as a feature for VAD [13]. The definition of 

SF is given by:

SF(k, i) = 1
N ∑k Xi(k) − Xi − 1(k) 2

(5)

for kth frequency bin and i th frame. k = 1, 2, … , N . |X | denotes the magnitude spectrum of 

X .
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A simple thresholding technique is given by:

V AD(i) = 0(Noise), if SF(k, i) < ξ
1(Speecℎ), if SF(k, i) ≥ ξ (6)

where ξ is the calibration threshold.

eWe have used SF based VAD because it is easy to implement, and it has satisfactory 

robustness under stationary conditions [13]. In order to make our app robust under 

nonstationary noise, two parameters are defined for the VAD. The first parameter is decision 

buffer, D, which makes a VAD decision when D contiguous frames are detected as speech. 

The second parameter is called threshold, T ,e which determines initially how many frames 

is assumed as noise.

Following are the steps in the proposed DOA angle estimation method for efficient real-time 

implementation:

1. Pre-filtering using SF-based VAD to label the incoming frame as noise or 

speech;

2. If the incoming frame is detected as speech, STFT of the incoming frame is fed 

to CNN;

3. Inference is done using the pre-trained CNN model.

IV. EXPERIMENTAL SETUP AND EVALUATION

We present the experimental setup and evaluation for the proposed CNN based SSL/DOA 

method in this section. The performance metrics and experimental setup for simulated and 

smartphone recorded data are also explained in this section. The proposed method is 

compared with similar methods introduced in [29, 30]. For a fair comparison, we have 

trained the model with both noisy and clean speech data from ten different talker directions.

A. PERFORMANCE METRICS

Classification accuracy (ACC) used for quantifying the performance of the SSL/DOA 

estimation method is defined as

Accuracy(ACC%) = Nc
NF

× 100 (7)

where Nc is the total number of correct DOA angle estimation and NF denotes the total 

number of frames per test case.

B. NOISY DATASET AND EXPERIMENTAL SETUP

We use simulated data and real recorded data on a smartphone to create the datasets used to 

train and evaluate our proposed method. The details about the datasets are given in the 

following subsections.
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1) SIMULATION DATA: The simulated data is prepared by adding clean speech from 

HINT [39] and TIMIT [40] databases to noise files collected outdoors on a smartphone at 

different signal to noise ratios (SNRs). The room impulse responses (RIRs), simulated via 

Image-Source Model [41], are generated according to different DOA angles, θ. The 

resolution of simulated data is 10 degree and each clean speech are a stereo channel (dual 

microphones). The distance between the two smartphones’ microphones is 13cm. The room 

size is 5m × 5m × 5m and the array of two microphones, i.e. smartphone, is located at the 

center of the room. The speaker distance from microphone array is 1 meter. Two noise types 

are considered viz. White (W), Babble (B) at three different SNRs (0dB to 20dB steps of 

10dB).

2) SMARTPHONE RECORDED DATA:  Since our goal is to implement the proposed 

method on the smartphone for people’s hearing improvement, we need real smartphone 

recorded data for training. Training the model on real recorded data makes it more robust to 

real-life noise and reverberation. Hence, real data is collected using Pixel 1 smartphone to 

get the model better trained for our applications. The data is recorded in three different 

rooms. In all rooms and around the smartphone on the table, we place five loudspeakers 

apart from each other so that the resolution is 20°. Since the DOA angle range is between 

[0°, 180°], we rotate the smartphone by 90° for this setup to capture another five 

loudspeaker signals. This way we have a total of ten loudspeakers per setup in each room 

(shown in Figure 3). We have 2 different setups for room 1. The distance between 

smartphone and loudspeakers for setup 1 and 2 in room 1 are 0.6 m and 2.4 m, respectively. 

The distance between smartphone and loudspeakers for room 2 and 3 are 1.3 and 0.92 

meters respectively. The dimensions for room 1, 2, and 3 are 7m × 4m× 2.5m, and 6.5m × 

5.5m × 3m, and 5m × 4.5m × 3m, respectively. Reverberation times vary between 300–

600ms between the Rooms 1, 2 and 3. Table I shows the configuration of data recording. 

Figure 3 displays one setup of the data collection in Room 1. For recording, we have used 

clean speech files from HINT, TIMIT, and LibriVox [42]. The speech files from all three 

databases are mixed together randomly which would make the data more diverse and 

realistic. Female and male speakers/speeches are chosen from the speech databases almost 

equally. 35 minutes recording is done by smartphone for two setups in room 1. And, 

smartphone recorded 15 minutes for room 2 and 3. Noise files played from a loudspeaker 

and recorded separately in room 2. The loudspeaker, plays noise files, is located 3.5 meters 

away from the smartphone (not shown in Figure 3). Pixel 1 smartphone is used for 

separately recording noise files. Noise files were chosen from the DCASE 2017 challenge 

database [43] which includes real recordings. Vehicle (‘Traffic’) noise and multi-talker 

babble (‘Babble’) noises are selected from the DCASE 2017 database. In the dataset, we 

also used actual noise in a Magnetic Resonance Imaging (MRI) room with a 3-Tesla 

imaging system [44] to incorporate a machinery noise (‘Machinery’) containing strong 

periodic component. To generate noisy mixtures, clean speech and noise files are mixed at 

different SNRs levels.
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V. RESULTS AND DISCUSSION

The proposed method is evaluated using simulated and real recorded data by smartphone. 

The 2D images, which are used as input features to CNN, are formed using real and 

imaginary parts of STFT. The sampling frequency of 16 kHz and 48 kHz for simulated and 

recorded data, respectively. FFT length is 512 and 1024 for simulated data and real recorded 

data, respectively. Various noise types and SNRs are utilized.

We first present results for our experiments using simulated data. Figure 4 shows a 

comparison of the proposed method against other deep learning based DOA methods using 

simulated data. Our first DOA developed method (The Proposed CNN-Speech Phase) uses 

phase information of speech as input for CNN, whose topology is the same as ours second/

main proposed method (The Proposed CNN), see Figure 4. The method from [29] is MLP 

based method which uses GCC Phat information as an input and is denoted as GCC + MLP. 

The method from [30] utilizes synthesized white noise phase information in training. It uses 

the model for estimation on speech files and CNN – Noise Phase is used in [30]. The reason 

for including our first proposed method is to make a comparison fair with the method in [30] 

which uses white noise in the training part. These methods are compared under white and 

multi-talker babble noise at 0, 10, 20 dB SNR, where 90% of data is utilized for training and 

the rest is for testing. As it is seen from Figure 4, both of our proposed methods have 

superior performance among all other methods when the resolution is 10 degrees. For all 

SNR values, the proposed method (The Proposed CNN in Figure 4) has at least 90% 

accuracy for white noise. Another observation from the figure is that the performance of all 

methods increases with increasing SNR. Another observation is that the performance of the 

method in [30] under Babble noise has higher accuracy compared to its performance under 

white noise. The reason for this situation would be the model is trained with white noise for 

the method from [30]. Since this is two microphone DOA estimation, the method in [30] 

might require more training data for better performance. The last observation from Figure 4 

is method in [29] that performs better compared to the method in [30] even though [29] uses 

MLP with input sets of GCC-PHAT.

Another note to be made is the comparison between our proposed method and the method in 

[30] where [30] exploits CNN for DOA estimation like us. Figure 5 shows the comparison of 

the proposed method versus method in [30] for an unseen environment when there is no 

background noise with smartphone recorded data. The training data for the two methods of 

Figure 5 is generated using data from Room 1 and 2. We have two different setups for Room 

1 as it was mentioned in the previous section. Room 3 data is used for generating test data. 

There are two cases for comparison: While case 1 uses one frame information for forming 

image to feed CNN, case 2 uses ten consecutive frames. The accuracy of the proposed 

method for case 1 and 2 is 73% and 81%, respectively-a relative improvement of about 8%. 

However, the performance of the method in [30] for case 1 and 2 is about 27% and 36%, 

respectively when using smartphone recorded data. A reason for such huge difference 

between accuracies shown in Figure 5 could be that [30] trains model using synthesized 

white noise while we have used speech for training in our method and in implementing the 

method of [30] for the comparison analysis. Another reason could be that [30] uses two 

identical microphones for data generation while in our comparison analysis between the two 
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methods we have used the two built-in microphones of the smartphone which could have 

mismatch characteristics, e.g. different gains.

Figure 6 shows the accuracy performance of the proposed method under babble noise using 

real recorded data. For this figure, the results are collected under multi-talker babble, traffic, 

and fMRI, which is denoted as Machinery in Figure 6, noises at −5, 0, 5 dB. 90% and 10% 

of data is used for training and testing, respectively for figure 6. The first observation from 

Figure 6 is that the accuracy increases with an increase in SNR. According to Figure 6, the 

best results were seen under fMRI noise and the worst results are under Babble noise. This is 

expected because fMRI noise has strong periodicity (i.e. stationary property) and Babble 

noise is defined as the toughest noise type (i.e. non-stationary property) since it contains 

multiple speeches. For 5 dB SNR, the proposed method has more than 90% accuracy for all 

noise types. This performance results also prove that our proposed method works 

satisfactorily well in real-time.

VI. REAL TIME IMPLEMENTATION ON ANDROID BASED SMARTPHONE 

(PIXEL)

This section presents the real-time implementation of the proposed CNN-based DOA 

estimation algorithm on the Android-based smartphone. We use Android operating system 

(OS) that allows us to access the two built-in microphones of the phone/tablet.

A. OFFLINE TRAINING

The model is obtained through the training process and will then be put on and implemented 

by the Android-based smartphone. For the training and data generation process only portions 

of clean speech or speech portions of noisy speech files are utilized. Each input data frame is 

20ms sampled at 48 kHz. Every input data frame is multiplied by a Hanning window. After 

performing STFT of every data frame, feature files are generated using the STFT 

coefficients and DOA labels. The trained model is generated using the data recorded by the 

smartphone. Since the data is recorded at 48 kHz, the NF selected for STFT is 1024 for 

every data frame of 20ms. As mentioned in Section III.A, NF /2 + 1 points of the real and 

imaginary part of STFT is used. Therefore, the dimension of data with added labels is equal 

to the number of frames multiplied by 2053 for two microphone case. After the data 

generation process, TensorFlow [45] is used for the training model. The reason for using 

TensorFlow is that it has C/C++API which can be used on Android platforms.

B. REAL-TIME IMPLEMENTATION

The detailed block diagram of real-time implementation of CNN based DOA estimation is 

given in Figure 1. The 20ms signal frame is captured at 48kHz sampling frequency. The 

captured signal frames by 2 mics are stored in Input Buffer which can store 20 frames. Then 

the Hanning window is applied to each frame of data and the frequency response of the 

frame is calculated using STFT. Next, the SF feature of the incoming frame is extracted 

using (5). The calibration threshold of the VAD is calculated using ‘Threshold’ which 

assumes the first few frames to be noise, as explained in Section III.C. After threshold 

calculation, VAD labels the incoming signal as speech or silent (noise) using ‘Duration’ 
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parameter. If the VAD labels frames as speech, the STFT of the frame is stored in ‘Wait 

Buffer’. Otherwise, the buffer waits for the next speech frame. When ‘Wait Buffer’ size 

reaches 10 frames of data, the data inside the buffer is reshaped as 10×2052. The structure 

should be like the following:

10 frames

Imag of Cℎ1
⋮
⋮
⋮
⋮

Imag of Cℎ2
⋮
⋮
⋮
⋮

Real of Cℎ1
⋮
⋮
⋮
⋮

Real of Cℎ2
⋮
⋮
⋮
⋮

(8)

‘Imag of Ch1’ and ‘Real of Ch1’ denote imaginary and real parts of STFT for microphone 1, 

respectively. ‘Imag of Ch2’ and ‘Real of Ch2’ are for microphone 2. The reshaped data is 

fed to the pre-trained model, which was explained in the previous section. The output of the 

CNN model is 1×10 since we have 10 output classes. These 10 numbers show probabilities 

of each class, so we decide the class or DOA angle by finding the class with maximum 

probability. After that, we update the Graphical User Interface (GUI) to display the 

estimated DOA angle on the smartphone screen for the user as shown in Figure 7.

As it is seen in Figure 7, we have four main buttons. ‘Start’ and ‘Stop’ button is used for 

starting and stopping the proposed DOA angle estimation app, respectively. ‘Setting’ button 

is for updating the VAD ‘Threshold and Duration’ parameters. Thanks to these two 

parameters, the application can run continuously in various environments. The direction 

(DOA angle) of speech source is shown numerically as well as graphically by the blue 

markers. The last main button is ‘Result Saver’. This button is used for saving estimated 

DOA angles. When we touch this button, the popup screen asks the direction of the speaker. 

We calculate the accuracy and root mean square error (RMSE) of the proposed real-time 

DOA app using the actual and estimated direction of the speaker for 100 experiments. 

Another feature provided by the proposed DOA app is ‘Voice Assist’. The speaker location 

(DOA angle) is also announced vocally through the smartphone using the ‘Voice Assist’ 

feature for every 10 angle estimations. The announcement says; ‘The speaker at θ degree’. θ 
indicates the estimated DOA angle consistent with its screen display. We have named this 

feature as ‘Voice Assist’.

We have a manual solution for ambiguity problem which is mentioned in Section II. The 

proposed app shows only one blue marker when the talker is at 0° and 180° (see Figure 7 for 

angles). Two blue markers (because of ambiguity problem) are displayed on GUI when the 

speaker is at a different angle than 0° and 180°. The solution would be rotating the 

smartphone clockwise. If rotating smartphone clockwise decreases the estimated angle, the 

talker is the right-hand side. Otherwise, the talker is left-hand side. This manual solution 
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would resolve the ambiguity problem for two microphone based DOA angle estimation 

method. The video demonstration of the proposed CNN based DOA estimation can be seen 

at http://www.utdallas.edu/ssprl/hearing-aid-project/ [22].

C. IMPLEMENTATION HIGHLIGHTS

Four parameters are critical for the real-time implementation; training size, wait buffer, 

reshaping and model size. First one is the training size for training of the model. Since we 

have a limited dataset size, when the training size is large, like 80% to 90%, the model is 

overfitted to the collected data. Hence the trained model is not able to work well with new 

unseen data in real-time operation. To resolve this issue, we have defined training data size 

as 50% for training the CNN model. For the second one, we use a ‘Wait Frame Buffer’ to 

get more accurate estimations. Thus, the DOA angle estimations are done based on ten 

frames (each frame is 20ms) for real-time implementation of our algorithm. The third one is 

reshaping part of the model. Hence, the model is fed by data whose dimension is 10×2052 

(for inference, the label isn’t required, hence the dimension is not 10×2053) for real-time 

implementation. Finally, the optimization operations are applied to the model to decrease 

model size. 32-bit floating-point representation is used to store the model weights. However, 

we quantize the weight values to 8-bits per parameter using Bazel [46] which causes very 

little loss of accuracy in the result.

D. PERFORMANCE EVALUATION

The performance of the proposed DOA app is tested using Pixel 1 and Pixel 3 Android 

smartphones. 100 different estimations are stored with ground truth for each degree to 

evaluate the real-time operation of the proposed application. The phones are placed in the 

center of the table and the room dimension is 6.5×5.5×3 meters. The measured reverberation 

time is 350 milliseconds. There was a fan noise in the background when collecting the 

results. The accuracy results are used for evaluating performance results. We define a 

modified accuracy ( ACCmod ) measure which accepts DOA estimations correct if it is 

within ±20 of the actual angle.

Modified accuracy results for Pixel 1 and 3 can be seen in Table II. It is worth noting that 

our CNN model is trained using collected data with Pixel 1 but inferred on Pixel 3. We only 

see a 5% absolute degradation is accuracy. This means that our CNN model is rather robust 

to smartphone hardware mismatch, hence we may not need to retrain the entire model again 

for use with different smartphones.

An illustration of the performance of the real-time CNN based DOA app is shown in Figure 

8. 100 estimations of the DOA angle estimation app on the Pixel 1 can be seen in the figure. 

The speaker is located at 140° (angles can be seen in Figure 7) with respect to the Pixel 1, 

and we stored these 100 estimations. As it is seen in Figure 8, there are only 6 errors out of 

100 estimations.

The last measurement is CPU and Memory usage of the proposed Android app is displayed 

in Figure 9. This snapshot in Figure 9 was taken on Pixel 1 when the ‘Wait Buffer’ size was 

10. As it is seen from the figure, CPU and Memory consumption increases and decreases 

parallelly. The reason for this is ‘Wait Buffer’ and VAD. When ‘Wait Buffer’ size reaches 
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ten frames, the image is formed and fed into the CNN. Then, the pre-trained model 

inferences as shown (in yellow arrows) in the figure. During this process, CPU and Memory 

usage reaches 40–44% and around 850MB, respectively. One reason for high usage is that 

the calculations are done using 10 frames. Another reason is TensorFlow API on Android 

utilizing Java which increases the CPU consumption. Although the consumptions are little 

more than expected, this situation is temporary. After the estimations were done, CPU 

consumption decreases to below 8% and memory usage reduces to less than 30 MB. The 

CNN based DOA app can run continuously on limited battery for over one hour without 

crashing of the app or any memory problems. Figure 9 clearly shows that the proposed app 

perfectly suits for real-time applications. If we want to implement the proposed method on 

hearing aid, extra CPU and battery are required. Since smartphones have a powerful CPU 

and long battery life, we can efficiently implement deep learning-based approaches for 

hearing aid applications.

VII. CONCLUSION

This paper presented a convolutional neural network (CNN) based DOA angle estimation 

method and its real-time implementation on Android-based smartphone for hearing 

improvement. The system pipeline and CNN architecture were optimized for getting high 

accuracy and decreasing the computational complexity. The model was trained using real 

data recorded by the smartphone which enabled the model to implicitly compensate for gain 

mismatch of the two built-in microphones of the smartphone in the training phase. The 

proposed method was compared with the recent deep learning based DOA methods and its 

superior performance was shown. The proposed app accuracy and error performance were 

also evaluated. CPU and memory consumption of the app running on the smartphone were 

evaluated. As per the results of our experiments, the proposed smartphone-based DOA app 

suits the real-life scenarios for hearing aid applications very well.

Acknowledgments

This work was supported by the National Institute of the Deafness and Other Communication Disorders (NIDCD) 
of the National Institutes of Health (NIH) under Award 1R01DC015430–04. The content is solely the responsibility 
of the authors and does not necessarily represent the official views of the NIH. This work was done by the authors 
while they were part of the Department of Electrical and Computer Engineering, The University of Texas at Dallas.

REFERENCES

[1]. Lindemann E, “Two microphone nonlinear frequency domain beamformer for hearing aid noise 
reduction,” Proceedings of 1995 Workshop on Applications of Signal Processing to Audio and 
Acoustics, New Paltz, NY, 1995, pp. 24–27.

[2]. Brandstein M, Wards D (eds.), Microphone Arrays—Signal Processing Techniques and 
Applications (Springer, Berlin, 2001)

[3]. Benesty J, Chen J, Huang Y, Microphone Array Signal Processing, vol. 1 (Springer Science & 
Business Media, 2008)

[4]. Tashev IJ, Sound Capture and Processing: Practical Approaches Wiley 2009.

[5]. Brandstein MS, and Griebel SM. “Nonlinear, model-based microphone array speech 
enhancement” Acoustic signal processing for telecommunication. Springer US, 2000 261–279.

[6]. McCowan IA, Pelecanos J, and Sridharan S. “Robust speaker recognition using microphone 
arrays.” 2001: A Speaker Odyssey-The Speaker Recognition Workshop 2001.

Küçük et al. Page 12

IEEE Access. Author manuscript; available in PMC 2020 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[7]. Seltzer ML, Microphone array processing for robust speech recognition. Diss. Carnegie Mellon 
University Pittsburgh, PA, 2003.

[8]. Ding I, and Shi J. “Kinect microphone array-based speech and speaker recognition for the 
exhibition control of humanoid robots.” Computers & Electrical Engineering (2016).

[9]. Bhat GS, Shankar N, Reddy CKA and Panahi IMS, “A Real-Time Convolutional Neural Network 
Based Speech Enhancement for Hearing Impaired Listeners Using Smartphone,” in IEEE 
Access, vol. 7, pp. 78421–78433, 2019. [PubMed: 32661495] 

[10]. Widrow B, and Luo F. “Microphone arrays for hearing aids: An overview.” Speech 
Communication 39.1 (2003): 139–146.

[11]. Byrne D, and Noble W. “Optimizing sound localization with hearing aids.” Trends in 
Amplification 3.2 (1998): 51–73. [PubMed: 25425879] 

[12]. Noble W, Byrne D, Lepage B, “Effects on sound localization of configuration and type of hearing 
impairment.”,Journal of Acoust Soc Am. 1994 2; 95(2):992–1005 [PubMed: 8132913] 

[13]. Ganguly A, Küçük A and Panahi I, “ Real-time Smartphone implementation of noise-robust 
Speech source localization algorithm for hearing aid users,” Proc. Mtgs. Acoust. 30, 055001 
(2017).

[14]. Ganguly A, Küçük A and Panahi I, “Real-time Smartphone application for improving spatial 
awareness of Hearing Assistive Devices,” 2018 40th Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 2018, pp. 
433–436.

[15]. Shankar N, Küçük A, Reddy CKA, Bhat GS and Panahi IMS, “Influence of MVDR beamformer 
on a Speech Enhancement based Smartphone application for Hearing Aids,” 2018 40th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 
Honolulu, HI, USA, 2018, pp. 417–420.

[16]. Bhat GS, Reddy CKA, Shankar Nikhil and Panahi IMS, “Smartphone based real-time super 
Gaussian single microphone Speech Enhancement to improve intelligibility for hearing aid users 
using formant information,” 2018 40th Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 2018, pp. 5503–5506.

[17]. Karadagur Ananda Reddy C, Shankar N, Shreedhar Bhat G, Charan R and Panahi I, “An 
Individualized Super-Gaussian Single Microphone Speech Enhancement for Hearing Aid Users 
With Smartphone as an Assistive Device,” in IEEE Signal Processing Letters, vol. 24, no. 11, pp. 
1601–1605, 11 2017. [PubMed: 29353988] 

[18]. Hao Y, Charan MCR, Bhat GS and Panahi IMS, “Robust real-time sound pressure level stabilizer 
for multi-channel hearing aids compression for dynamically changing acoustic environment,” 
2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 2017, 
pp. 1952–1955.

[19]. Zou Z, Hao Y and Panahi I, “Design of Compensated Multi-Channel Dynamic-Range 
Compressor for Hearing Aid Devices using Polyphase Implementation,” 2018 40th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 
Honolulu, HI, USA, 2018, pp. 429–432.

[20]. Mishra P, Tokgöz S and Panahi IMS, “Efficient Modeling of Acoustic Feedback Path in Hearing 
Aids by Voice Activity Detector-Supervised Multiple Noise Injections,” 2018 40th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 
Honolulu, HI, USA, 2018, pp. 3549–3552.

[21]. Mishra P, Ganguly A, Küçük A and Panahi IMS, “Unsupervised noise-aware adaptive feedback 
cancellation for hearing aid devices under noisy speech framework,” 2017 IEEE Signal 
Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, 2017, pp. 1–5.

[22]. ‘Smartphone-Based Open Research Platform for Hearing Improvement Studies’, http://
www.utdallas.edu/ssprl/hearing-aid-project/

[23]. Schmidt R, “Multiple emitter location and signal parameter estimation,” in IEEE Transactions on 
Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 3 1986.

[24]. Knapp C and Carter G, “The generalized correlation method for estimation of time delay,” in 
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 24, no. 4, pp. 320–327, 8 
1976.

Küçük et al. Page 13

IEEE Access. Author manuscript; available in PMC 2020 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.utdallas.edu/ssprl/hearing-aid-project/
http://www.utdallas.edu/ssprl/hearing-aid-project/


[25]. Brandstein MS and Silverman HF, “A robust method for speech signal time-delay estimation in 
reverberant rooms,” 1997 IEEE International Conference on Acoustics, Speech, and Signal 
Processing, Munich, 1997, pp. 375–378 vol.1.

[26]. Krizhevsky A, Sutskever I, and Hinton GE, “ImageNet Classification with Deep Convolutional 
Neural Networks” in Advances in Neural Information Processing System 25: 26th Annual 
Conference on Neural Information Processing Systems, 2012, pp. 1106–1114.

[27]. Hinton G et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition: The 
Shared Views of Four Research Groups,” in IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 
82–97, 11 2012.

[28]. Kounovsky T and Malek J, “Single channel speech enhancement using convolutional neural 
network,” 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and 
their Application to Mechatronics (ECMSM), Donostia-San Sebastian, 2017, pp. 1–5.

[29]. Xiao X, Zhao S, Zhong X, Jones DL, Chng ES and Li H, “A learning-based approach to direction 
of arrival estimation in noisy and reverberant environments,” 2015 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, QLD, 2015, pp. 
2814–2818.

[30]. Chakrabarty S and Habets EAP, “Broadband doa estimation using convolutional neural networks 
trained with noise signals,” 2017 IEEE Workshop on Applications of Signal Processing to Audio 
and Acoustics (WASPAA), New Paltz, NY, 2017, pp. 136–140.

[31]. Vecchiotti P, Ma N, Squartini S and Brown GJ, “End-to-end Binaural Sound Localisation from 
the Raw Waveform,” ICASSP 2019 – 2019 IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP), Brighton, United Kingdom, 2019, pp. 451–455.

[32]. Pertilä P and Parviainen M, “Time Difference of Arrival Estimation of Speech Signals Using 
Deep Neural Networks with Integrated Time-frequency Masking,” ICASSP 2019 – 2019 IEEE 
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, 
United Kingdom, 2019, pp. 436–440.

[33]. Pak J and Shin JW, “Sound Localization Based on Phase Difference Enhancement Using Deep 
Neural Networks,” in IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 
27, no. 8, pp. 1335–1345, 8 2019.

[34]. Pertilä P and Cakir E, “Robust direction estimation with convolutional neural networks based 
steered response power,” 2017 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), New Orleans, LA, 2017, pp. 6125–6129.

[35]. Salvati D, Drioli C and Foresti GL, “Exploiting CNNs for Improving Acoustic Source 
Localization in Noisy and Reverberant Conditions,” in IEEE Transactions on Emerging Topics in 
Computational Intelligence, vol. 2, no. 2, pp. 103–116, 4 2018.

[36]. Takeda R and Komatani K, “Sound source localization based on deep neural networks with 
directional activate function exploiting phase information,” 2016 IEEE International Conference 
on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016, pp. 405–409.

[37]. Sun Y, Chen J, Yuen C and Rahardja S, “Indoor Sound Source Localization With Probabilistic 
Neural Network,” in IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6403–6413, 
8 2018.

[38]. Nair V and Hinton GE, “Rectified linear units improve restricted boltzmann machines,” in 
Proceedings of the 27th international conference on machine learning (ICML-10), 2010, pp. 807–
814.

[39]. Nilsson M, Soli SD, and Sullivan JA. “Development of the Hearing in Noise Test for the 
measurement of speech reception thresholds in quiet and in noise.” The Journal of the Acoustical 
Society of America 95.2 (1994): 1085–1099. [PubMed: 8132902] 

[40]. Garofolo JS, et al. TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1 Web 
Download. Philadelphia: Linguistic Data Consortium, 1993.

[41]. Lehmann EA, and Johansson AM. “Diffuse reverberation model for efficient image-source 
simulation of room impulse responses.” IEEE Transactions on Audio, Speech, and Language 
Processing 18.6 (2010): 1429–1439.

[42]. ‘Acoustical liberation of books in the public domain’, https://librivox.org/

Küçük et al. Page 14

IEEE Access. Author manuscript; available in PMC 2020 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://librivox.org/


[43]. Mesaros A, Heittola T, and Virtanen T (1 1,2017). TUT Acoustic Scenes 2017, Development 
Dataset. Online Available: https://zenodo.org/record/400515

[44]. Milani AA, Kannan G, Panahi IMS and Briggs R, “A multichannel speech enhancement method 
for functional MRI systems using a distributed microphone array,” 2009 Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, 2009, 
pp. 6946–6949.

[45]. Google.(2019), TensorFlow. [Online]. Available: https://www.tensorflow.org/

[46]. Online Available: https://bazel.build/

Küçük et al. Page 15

IEEE Access. Author manuscript; available in PMC 2020 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/400515
https://www.tensorflow.org/
https://bazel.build/


Fig. 1. 
Block diagram of smartphone-based real-time processing modules in the proposed CNN-

based SSL/DOA estimation application.
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Fig. 2. 
Block Diagram of CNN based SSL/DOA angle estimation architecture. The CNN consists 3 

components. Input image is first convolved with kernels. The final convolutional layer 

obtained by stride of 2 is flattened and fed into fully connected layer. Finally, output is fed to 

the softmax layer.
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Fig. 3. 
One of the setup of data collection used to train the proposed CNN-based SSL/DOA 

estimation method
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Fig. 4. 
Accuracy result for DOA angle estimation using simulated data under (top) white noise and 

(bottom) babble noise
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Fig. 5. 
Accuracy Results using real recorded data for unseen environment (no background noise)
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Fig. 6. 
Accuracy Results using real-recorded data under different noises for the proposed DOA 

angle estimation
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Fig. 7. 
GUI display of the developed Android app for DOA angle estimate on Pixel 1.
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Fig. 8. 
An illustration of the real-time CNN based DOA app performance on Pixel 1. Talker is fixed 

at 140◦.
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Fig. 9. 
Screenshot of CPU and Memory consumption of Proposed Method on Pixel 1
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TABLE I

DATA COLLECTION SUMMARY

Room Size

Room 1 (7 × 4 × 2.5) m,

Room 2 (6.5 × 5.5 × 3 ) m,

Room 3 (5 × 4.5 × 3) m

Array positions in room 2 different location in Room 1

Source-array distance

0.6 and 2.4 m for Room 1,

1.3 m for Room 2, and

0.92 m for Room 3

RT60 400, 350, 300ms for Room 1, 2, and 3, respectively

SNR −5,0, 5 dB

Sampling Frequency 48 kHz
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TABLE II

ACCURACY (ERROR < 20°) FOR REAL-TIME USING CNN MODEL TRAINED FOR GOOGLE PIXEL 

1, BUT INFERENCED ON PIXEL 3

Google Pixel 1 89%

Google Pixel 3 83%
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