
Introduction 

Biosignals are signals such as electrocardiogram (ECG), electroencephalogram (EEG), 
and photoplethysmogram (PPG) that are obtained from patients. Monitoring devices 
usually keep a check on the real-time status of patients in the intensive care unit (ICU) as 
well as those who have undergone surgery, for the entire duration of treatment; measure-
ments like ECG or electromyogram are widely used even in out-patient based practices 
as they are non-invasive, and provide valuable information. 

Information in biosignals is usually not expressed directly and diverse data are hidden 
in signal waveforms. For example, it is well known that variation in the time interval be-
tween heartbeats or heart-rate variability that can be extracted from an ECG or PPG is 
associated with mortality or diverse unfavorable clinical outcomes [1,2]. Another exam-
ple is the QT interval in an ECG that represents the time interval between the start of 
ventricular contraction to end of repolarization of the heart muscle. Some drugs prolong 
the QT interval by prohibiting the repolarization process of the heart muscle; however, 
extended prolongation could cause life-threatening arrhythmia known as torsade de 
points [3,4]. Therefore, drugs having the potential for QT prolongation were withdrawn 
from the market [5]. P-wave indices that reflect the status of the atrium are another ex-
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ample; recent study reported that additional information of 
P-wave indices along with the CHA₂DS₂-VASc score can predict 
the probability of an ischemic stroke in atrial fibrillation patients 
more accurately than on the basis of the CHA₂DS₂-VASc score 
alone [6]. 

Recent advances in artificial intelligence (AI) provide opportu-
nities to reveal hidden information in biosignals that is not appar-
ent using conventional methods of analysis. One of the current 
studies reported that an AI-enabled algorithm was able to identify 
patients with atrial fibrillation although their ECG signals were in 
sinus rhythm [7], implying that there are some indications facili-
tating the AI model to identify an alteration of the atrium from 
the ECG. Another recent study discovered that the ejection frac-
tion of the heart could be determined from an ECG and a cardiac 
contractile dysfunction could be detected by applying the AI 
model to an ECG signal [8]. From EEG signals, it was possible to 
predict sex when deep learning was applied to brain rhythms [9]. 
Another study reported that information on what subjects were 
viewing could be obtained from an EEG and an AI model could 
reconstruct images from the EEG measured while the subjects 
were viewing the images [10]. These studies showed that only a 
small part of information from biosignals is actually utilized in 
clinical practice (Fig. 1). However, it must be noted that the mor-
phology of features extracted by or used in AI models are remark-
ably different from those that are widely used. AI-enabled features 
are usually in a black box i.e., they are invisible, indescribable, and 

indefinable by human perception whereas conventional features 
are clearly visible and easily defined by simple rules. Therefore, to 
use AI-enabled features suitably in real-world practice, clinicians 
must know and understand the working of an AI model to extract 
hidden information from largely stacked data. 

To enable clinicians to understand and use AI-enabled features 
from biosignals, this study presents the following: 1) a brief intro-
duction of AI and machine learning for clinicians, 2) recent stud-
ies that demonstrate the feasibility of utilizing AI-enabled features 
from biosignals for clinical use, and 3) available databases to con-
duct AI-based biosignal research. 

Brief overview of artificial intelligence 

AI and machine learning 

AI refers to any computer software that can mimic cognitive 
functions or human intelligence. However, as the real mechanism 
of human cognitive functions has not yet been discovered, it is 
impossible to develop software that follows the mechanism of real 
intelligence; instead, scientists strategically developed software 
that appears to have cognitive functions regardless of its underly-
ing mechanism. 

AI is a concept with diverse subcategories defined by various 
principles (Fig. 2), classified according to whether it learns pat-
terns from data or not. An example of AI that does not depend on 
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Fig. 1. Potentiality and usability of hidden information present in diverse types of biosignals. The characteristic of artificial intelligence that can 
extract valuable information allows the opportunity to acquire and use hidden information not perceived by humans. It provides a diagnosis that 
is more accurate, early detection of a clinical event, and new insight on disease and prescription of drugs.
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data is the rule-based system designed by domain experts to han-
dle specific problems well fitted to a hypothesis. In this case, the 
level of knowledge of the experts is important rather than the 
amount of data; however, this system is rigid and fails if there is a 
variation in the problem. The other approach called machine 
learning is to determine certain patterns from the data. This al-
lows the software to change certain parts such as weights or coef-
ficients in accordance with the inputted data. 

Machine learning can be classified into three categories: The 
first is supervised learning for which two datasets must be pre-
pared namely, input data for pattern training and information la-
bels regarding the category or value of the input data (for example, 
normal vs cancer or survival vs death). Based on the information 
labels, the supervised learning algorithm tries to determine a pat-
tern where the output is a category (classification problem) or real 
value (regression problem). By contrast, unsupervised learning is 
an algorithm that identifies inherent patterns in the data itself 
without labeled information. For example, clustering algorithms 
such as k-means or hierarchical clustering divides each data point 
into groups (usually the number of groups is predetermined by 
researcher) based on the distribution. Finally, reinforcement 
learning aims to set the best policy to solve a certain problem 
within the computationally designed space by trial and error.  

Deep learning: the AI that can extract hidden information 

Deep learning, the most advanced form of artificial neural net-
works, is an architecture that allows diverse methods to fit mod 
els to a given data by learning patterns in the data. It can be used 
for supervised learning, unsupervised learning, as well as rein-
forcement learning. 

Deep learning is a part of machine learning; however, it has dis-
tinct characteristics as compared to traditional machine learning 
algorithms. First, in traditional machine learning, it is crucial to 
extract important features from the raw data by using domain 
knowledge; however, deep learning takes raw data as the input, 
extracts the features within the data, and learns the patterns by it-
self. Deep learning requires basic preprocessing such as normal-
ization or noise removal; however, it lowers the barrier of entry 
for specialized domains of data, as it is relatively free from feature 
engineering based on domain knowledge. For example, suppose 
we need to develop a model that can distinguish between chest 
x-ray images of normal lungs and those afflicted by cancer. In ear-
lier machine learning, the researcher had to extract features such 
as the shape of the nodule or distribution of colors that could be 
observed in images, and input that to the model. However, deep 
learning can directly extract the information that is relevant for 
discriminating between the two. Second, in traditional machine 
learning, the performance is usually restricted due to the limited 
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Fig. 2. An overview of the relationship between artificial intelligence, machine learning, and deep learning. The term artificial intelligence (AI) 
includes all software that mimics the cognitive functions of humans. Among the various algorithms in AI, machine learning algorithms (deep 
learning, in particular) that learn patterns in data are considered promising owing to their distinctive performance. CNN: convolutional neural 
networks, RNN: recurrent neural networks, DQN: deep Q netowrk.
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predefined set of features and does not improve regardless of the 
amount of data used for training whereas deep learning requires a 
larger amount of data as the direct feature extraction process by 
researchers is omitted. The deep learning model can identify pat-
terns clearly, when more data is added; hence, the diversity, clear-
ance, and usefulness of the extracted features are enhanced lead-
ing to an improvement in the performance. Third, traditional ma-
chine learning provides the significance of the used features and 
information that have a major role whereas deep learning is diffi-
cult to interpret as it is similar to a black box. This may prove to 
be a barrier in adopting it for medical applications; however, it is 
now possible to understand deep learning indirectly through al-
gorithms such as Gradient-weighted Class Activation Mapping 
[11]. This has led to an increased possibility of its use in the medi-
cal field. 

Deep learning was particularly useful in visual problem solving 
in the early stages of its development. In image classification prob-
lems like ImageNet datasets, the convolutional neural network 
(CNN), one of several types of deep learning, showed an accuracy 
greater than 95% [12]. The CNN extracts features from images 
through filters that derive the morphological features from a small 
part (called window size) in an image. The CNN filter uses an ele-
ment-wise product and weights, and the features from the whole 

image are analyzed by moving it (Fig. 3A). Learning through a 
CNN involves finding the appropriate filters and their weights to 
classify labels. For example, given that the shape of a nodule is a 
key feature to classify it as malignant or benign, a filter randomly 
initialized in the first stage cannot react to the specific shape; 
however, the CNN weights of the filter are updated after training 
to yield a strong response. The result extracted through the filter 
is called the feature map. It is possible to derive more abstracted 
features from the images when the CNN is applied deeply. 

The deep learning designed to analyze time series data is the re-
cursive neural network (RNN). Time series data usually have an 
autocorrelation where the previous value affects the next. To grasp 
the pattern of such time series data, it is necessary to reflect this 
autocorrelation in deep learning, for which both the past and cur-
rent data must be considered. When the RNN analyzes the result 
in the Nth time step, the result is derived from the (N−1)th time 
step as an input value. At this time, the output of the Nth time step 
is delivered to the next step i.e., (N+1)th step. The information 
transferred across the time steps is called a hidden state, which is 
expected to remember the information of the previous time steps. 
From the above explanation, it appears that different neural net-
works are needed for every time step; however, the output from 
the RNN is transferred back to the same neural network (Fig. 3B). 
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Fig. 3. Schematic illustration of the underlying principle of convolution in a convolutional neural network (CNN) and expression of a recursive 
neural network (RNN). (A) Convolution is a type of matrix multiplication; however, a CNN changes the weight values in the filter in the training 
process to maximize the valuable features that are useful to discriminate between labels. (B) RNN recursively uses the output of its network as the 
input for the next step, thus, a long expression (top) is summarized as a short one (bottom).
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This is why it is referred to as an RNN. 
A drawback in the basic RNN model is that the information of 

past data becomes blurred as the time step length of the analysis 
data increases. To address this, there are improved models such as 
long short-term memory [13] and gated recurrent neural network 
[14], which add a separate neural network to carry the informa-
tion from past data. In current studies, RNN-based models are 
also applied with an attention mechanism [15] to provide clues 
that identify relevant context [12,16,17]. 

The autoencoder is another type of artificial neural network ar-
chitecture consisting of an encoder that compresses the original 
raw data to a smaller size and decoder that restores the com-
pressed information into original data (Fig. 4). It is classified as 
unsupervised learning as only original data is needed, without la-
bel information. It is also called representation learning in terms 
of identifying the intrinsic structure of data and extracting fea-
tures from them. Identifying key information and compressing it 
into smaller dimensions is similar to the traditional methods of 
reduction of dimensions such as principal component analysis; 
however, the autoencoder has the advantage of representing more 
complex data spaces through non-linear functions. 

The autoencoder tries to learn to minimize the reconstruction 
error that represents the difference between the original data X 
and reconstructed data X ', which is the output from the decoder. 
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Fig. 4. Two different approaches for extracting hidden information from biosignals in deep learning. (A) Convolution in a convolutional neural 
network fits the convolutional matrix to extract a feature map that is a type of matrix containing valuable information for discriminating between 
labels. (B) An autoencoder extracts hidden information useful for reconstruction of raw data from the data itself. Although the features are derived 
regardless of label information, principal information included in the raw signal is obtained that can be used in other machine learning algorithms 
to predict or detect labels.
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The information compressed by the encoder is the latent variable 
(h). If the original data is restored with the latent variable of a size 
smaller than the original data, it indicates that the encoder identi-
fied the pattern or internal structure of the data and extracted the 
main features. In such a case, the latent variable extracted by the 
encoder can be used as input data for other machine learning 
models like clustering or classification (Figs. 4B and 5). 

h=  fencoder (X) 
X'= fdecoder (h) 

Reconstruction Error(Mean Squared Error)=‖X-X'‖2 

As aforedescribed, deep learning is capable of finding patterns 
in complex data that are difficult for humans to recognize, and 
abstracting them into smaller data. To solve problems with less 
complexity, the existing statistical models or traditional machine 
learning also provides satisfactory results. However, for analysis of 
complex data, where the hidden features are abstract and difficult 
to extract, deep learning which can extract and utilize more di-
verse hidden information shows more accurate . 

Recent cases of application of AI to biosignals 
in medicine 

Recent advances in computational power and the concurrent 
rapid increment of data generated in healthcare systems have en-
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couraged researchers to apply AI for assisting various practices in 
hospitals and other healthcare institutions. As reviewed in the pre-
vious section, AI can detect meaningful information in a dataset 
and recent studies have shown the superiority of AI over human 
ability in detecting diseases, predicting results, and deciding treat-
ment policies. Some of the AI applications are outlined below: 

Introduction of AI in medicine enables the analysis of high-den-
sity data such as biosignals; in particular, the conventional 12-elec-
trode ECG is at the forefront of this research. One example is a 
study that screens for hyperkalemia (serum potassium levels >  5.5 
mEq/L) among patients with chronic kidney disease based on a 
12-electrode ECG [18]. In the study, researchers used data from 
1,576,581 ECGs collected from a single hospital in the United 
States from 449,380 patients with potassium test records taken 
within 12 hours of recording their ECG. The deep CNN using the 
data from ECG leads I and II among 12 leads showed an area un-
der the curve (AUC) of 0.88 for hyperkalemia. An external valida-
tion conducted with datasets from other hospitals in the United 
States also showed good results with an AUC greater than 0.85. 
Hyperkalemia was previously known to change certain patterns in 
ECGs such as a tented P wave and sine wave; however, there was a 
controversy regarding its significance in real practice [19]. The 
study showed that AI can determine hyperkalemia in a non-inva-
sive way without a blood test and can contribute to the monitoring 

of abnormalities of electrolytes in patients with chronic kidney dis-
ease. In addition, studies on the application of AI to detect and 
classify arrhythmias such as detecting atrial fibrillation [20] or 
classifying myocardial infarction [21] using 12-electrode ECG da-
tabases are regularly carried out and the results demonstrate an ef-
ficacy as high as or higher than that of a human cardiologist. 

Recent studies are not limited to the detection of arrhythmias at 
the time of measurement of ECGs. The introduction of deep 
learning such as CNN in ECG research has enabled computers to 
detect even the smallest changes that traditional ECG analysis was 
unable to interpret. As a result, it is possible to predict arrhyth-
mias not only during the measurement of an ECG but also the 
possibility of its occurrence in future or anticipate the results of 
more invasive or expensive tests. For example, a deep learning 
model recently trained by using the 12-electrode ECG could pre-
dict whether atrial fibrillation would occur within a month for 
patients with a normal sinus rhythm in their ECG obtained by the 
conventional method [7]. From the 180,922 patients in the period 
1993–2017 in the United States, 649,931 ECGs which showed a 
normal sinus rhythm were used for analysis. The model was 
trained to detect ECG patterns that could be observed before the 
first occurrence of atrial fibrillation and predicted whether atrial 
fibrillation would occur or not. The prediction was reliable with 
an AUC of 0.87, sensitivity of 0.79, specificity of 0.80, F1 score of 
0.39, and overall accuracy of 0.79. This study suggests that deep 
learning can detect minor changes that are not visually confirmed 
before the onset of arrhythmia. 

Another study by the same research group developed a deep 
learning model that could predict cardiac contractile dysfunction 
(ejection fraction less than 35%) using the ECGs of 44,959 pa-
tients measured in a period of two weeks before and after their 
echocardiography [8]. The results of the prediction showed an 
AUC of 0.93, sensitivity of 0.86, specificity of 0.86, and accuracy 
of 0.86. The risk ratio for cardiac contractile dysfunction of pa-
tients, who were classified as low ejection fraction patients by AI 
but did not have cardiac contractile dysfunction in the ultrasound 
at the time of prediction, was estimated to be four times higher as 
compared to those patients who were classified as normal when 
the Cox regression analysis was performed. 

Another example is the use of ECG rhythms recorded by auto-
mated external defibrillators during chest compressions in 1151 
cases of cardiac arrest [22]. In the study, the AI model could pre-
dict a functionally intact survival rate after acute cardiac arrest. 
The performance was not highly satisfactory as the AUC was 0.75; 
however, it showed the possibility of a novel use of ECG and sug-
gested the establishment of a precise cardiopulmonary resuscita-
tion guide based on this. 
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Fig. 5. Schematic of the entire process of an artificial intelligence (AI) 
research or project. As machine learning algorithms depend on the 
amount and quality of data, collecting proper datasets is a critical 
step to begin AI-related projects. Extracting valuable information 
from a huge dataset is cumbersome; hence, this step is conducted in 
the process of training either in a convolutional neural network or 
independently (Autoencoder).
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Other types of biosignals were also used in studies related to AI. 
For example, in the analysis of frontal EEG measurements of 174 
patients in ICU, a deep learning model could predict the level of 
consciousness (AUC of 0.70) and delirium with (AUC of 0.80). An 
EEG signal can be used for epileptic focus localization [23], emo-
tion classification [24], and detection of psychotic disorders such 
as unipolar depression [25] with high reliability, if AI is adopted. 

These developments can also be applied to patients outside a 
hospital, particularly the newly generated data observed on wear-
able devices that are supported by industry and are of consider-
able medical value. In a recent study, the deep learning model 
used 91,232 single lead ECGs of 53,549 patients to successfully 
categorize the raw input ECG signal into 12 different rhythms 
without any preprocessing [26]. The averaged AUC of 0.98 was 
superior to the average reading by board-certified practicing phy-
sicians. 

Studies using non-medical devices such as smart watches or 
other commercial wearable devices are also actively underway. A 
study was conducted recently in the United States on 419,297 
members with no history of atrial fibrillation who agreed to being 
monitored by a smartphone (Apple iPhone) app [27]. The study 
showed that 84% of the notifications from the irregular pulse no-
tification algorithm were concordant with atrial fibrillation. 

In addition to ECG, wearable devices are also useful to moni-
tor the level of activity of people. A study that analyzed data from 
2354 prospective cohorts in the United States confirmed the rela-
tionship between activity and brain volume, indicating that mild 
exercise is associated with larger brain volume [28]. An addition-
al one hour of mild exercise in a day can reduce the age of the 
brain by 1.1 years. Another study tracked the activity of 95 pa-
tients with multiple sclerosis with a commercial wearable device 
for one year [29] wherein the less active group showed a worsen-
ing of clinical prognosis. 

The increase in the number of commercially available wearable 
devices is expected to contribute to the collection of large amounts 
of biosignals from the general population rather than patients 
alone. It will become a valuable source of data for developing an 
AI model for cost-effective screening in the pre-hospital stage. 
Further, it may increase patient compliance by allowing them to 
participate in their treatment. 

Areas of applicability of AI 

Clinical decision support systems (CDSSs) and early 
warning system (EWS) 

CDSSs are computer systems designed to support the decision 

of a clinician regarding individual patients. The primary purpose 
is to reduce errors by clinicians, such as prescribing drugs that 
may react adversely with those being ingested by patients or fail-
ing to conduct crucial tests. These traditional functions follow 
rule-based algorithms designed by medical experts. However, if 
AI is adopted in a CDSS, it can provide additional valuable infor-
mation to increase the efficiency and quality of regular practice by 
predicting diverse clinical events such as mortality with reliable 
accuracy. Moreover, it can prove to be a novel digital biomarker 
that is valuable to make next-step decisions that the clinician 
might have missed. 

The EWS is a similar system to aid the decision of the physi-
cian, though the focus is on the prompt notification of impending 
risk to ensure timely management to reduce the consequences of 
an adverse event. The algorithm used in current EWSs is based on 
simple rules; therefore, the accuracy is low and applicable area is 
limited. However, the ability of AI to extract valuable information 
not easily known to humans provides timely notification with 
greater accuracy and wider range of applicable areas. 

These systems for supporting clinicians provide an opportunity 
to ensure high quality practice at low cost in advanced hospital 
care. However, they are based on existing medical records that are 
limited in detailed information compared to biosignal data. Apply-
ing AI to these systems based on biosignals can solve these prob-
lems as the number of hospitals that have systems for automatically 
recording continuous biosignals is increasing. The real-time bio-
signal recording systems will enable to fill the gap in information 
in regular medical records required for CDSSs or EWSs. 

Software as a medical device (SaMD) 

SaMD is software that can be used for medical purposes inde-
pendent of a hardware medical device. Traditionally, software is a 
part of hardware; however, owing to advanced AI technology it is 
now a type of medical device supporting the clinician. AI models, 
such as diagnostic software for detecting diseases through radio-
logic images or ECGs, that can detect malignant nodules or car-
diovascular disease are considered to be SaMDs. The US Food 
and Drug Administration (FDA) and Korea FDA have prepared 
the management and regulation of this software as a medical de-
vice [30,31]. 

Available biosignal databases for AI studies 

AI application processes in the medical field based on biosignal 
data begin with the collection of large amounts of raw data (Fig. 5). 
Several previous studies have developed biosignal data collection 
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systems in hospitals and some of these have made significant con-
tributions to the field of biosignal data research as given below: 

Medical Information Mart for Intensive Care (MIMIC) 

MIMIC-III is a database collected from more than 40,000 pa-
tients in the ICU at Beth Israel Deaconess Medical Center in the 
United States from 2001 to 2012 [32]. It consists of demographics, 
biosignal measurements (including waveform data for  some sub-
sets), laboratory test results, procedures, drugs, caregiver notes, 
imaging reports, and mortality (in and out of the hospital). This 
large database is freely available worldwide and is the most popu-
lar database in biosignal research.

eICU database 

eICU database is one that includes data from 200,859 patients 
in 335 units of 208 hospitals in the United States from 2014 to 
2015 [33]. It consists of biosignal measurements (vital signs but 
not waveforms), laboratory test results, drugs, acute physiology 
and chronic health evaluation (APACHE) components, care plan 
information, diagnostics, patient history, and treatment. It is pub-
licly available and managed by the same research group as the 
MIMIC-III database. 

Ajou University Hospital Biosignal database 

The Ajou University Hospital Biosignal database contains data 
of patients who were in the ICUs or emergency rooms of the Ajou 
University Hospital in Korea since August 2016 [34]. Until No-
vember 2019, this large database consisted of more than 19,000 
patients with all the biosignal waveform data and vital signs 
during the period of the patients' admission to discharge from the 
hospital. All the biosignal data were linked with the electronic 
medical record data. An automated system collected data from 
approximately 140 bedside patient monitors continuously. The 
database is not publicly available yet; however, data access is pos-
sible by conducting collaborative work with the research team. 

VitalDB database 

VitalDB database is a biosignal database consisting of data from 
6388 patients who underwent surgery in 10 operating rooms at 
Seoul National University Hospital from 2016 to 2019 [35]. It in-
cludes biosignal waveform data, vital signs during surgery, various 
clinical parameters related to surgery, and laboratory test results. 

Conclusions 

The rapid advancement in AI technology presents an opportu-
nity to increase the usefulness of biosignals. It can be used not 
only to increase the accuracy in detecting critically important 
events but also to predict events or suggest further treatment by 
extracting valuable hidden information in biosignals. AI based on 
biosignals is a powerful platform to support daily clinical practice 
in hospitals and healthcare in daily life. 
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