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Abstract
A large body of evidence suggests that not only direct anticoagulant effects but also major bleeding events and stroke pre-
vention depend on plasma concentrations of direct oral anticoagulants (DOACs). Concomitant drugs that cause drug–drug 
interactions (DDIs) alter DOAC exposure by increasing or decreasing DOAC bioavailability and/or clearance; hence, they 
might affect the efficacy and safety of DOAC therapy. Patients with renal impairment already receive smaller DOAC main-
tenance doses because avoidance of elevated DOAC exposure might prevent serious bleeding events. For other causes of 
increased exposure such as DDIs, management is often less well-defined. Considering that DOAC patients are often older 
and have multiple co-morbidities, polypharmacy is highly prevalent. However, the effect of multiple drugs on DOAC expo-
sure, and especially the impact of DDIs when concurring with drug–disease interactions as observed in renal impairment, 
has not been thoroughly elucidated. In order to provide effective and safe anticoagulation with DOACs, understanding the 
mechanisms and magnitude of DDIs appears relevant. Instead of avoiding drug combinations with DOACs, more DDI 
trials should be conducted and new strategies such as dose adjustments based on therapeutic drug monitoring should be 
investigated. However, dose adjustments based on concentration measurements cannot currently be recommended because 
evidence-based data are missing.

1 � Importance of Direct Oral Anticoagulant 
(DOAC) Exposure for Beneficial 
and Adverse Effects

Direct oral anticoagulants (DOACs) competitively, directly, 
selectively, and reversibly inhibit the coagulation factors 
thrombin (dabigatran) or factor Xa (FXa; apixaban, betrixa-
ban, edoxaban, and rivaroxaban) [1–5]. Therefore, DOAC 
action is concentration dependent and DOAC coagulation 
effects closely follow the plasma concentration–time pro-
file of the respective anticoagulant [6–9]. As a consequence, 
the activity of inhibited blood coagulation factors will be 
restored as soon as DOACs are eliminated or displaced 
from their target, which is already successfully used with 
antidotes such as andexanet alfa and idarucizumab [10, 11]. 
Conversely, increasing exposure by inhibiting DOAC clear-
ance will immediately enhance anticoagulation effects, simi-
lar to dose escalation. In agreement with this concept, the 

likelihood of both preventing ischemic strokes and experi-
encing meaningful clinical adverse events of DOAC therapy 
(i.e., major bleeding) depends on DOAC exposure [12–14]. 
However, DOAC exposures appear to affect relevant clinical 
endpoints less closely and clearly than they do coagulation. 
Large efficacy trials could prove that DOACs were safe and 
effective without regular coagulation monitoring and subse-
quent dose adjustment despite large inter-individual pharma-
cokinetic variability (i.e. the cited trials show this) [15–18].

In two of the pivotal trials, DOAC minimum (trough) 
concentration (Cmin) monitoring was performed and stroke 
prevention (efficacy) and bleeding events (toxicity)—
but not intracranial bleeding—increased with increasing 
DOAC concentrations in plasma [12, 13]. For example, a 
100% increase of dabigatran concentration reduced the risk 
of stroke by approximately 15% but increased the risk of 
major bleeding by 50% [12]. In this analysis, no major differ-
ences in the predictive values of Cmin and maximum (peak) 
concentrations (Cmax) were observed. Similar relationships 
with Cmin were observed in one of the pivotal edoxaban tri-
als [ENGAGE AF-TIMI 48 (Effective aNticoaGulation with 
factor xA next GEneration in Atrial Fibrillation–Thromboly-
sis In Myocardial Infarction study 48)] [13]. Only trough 
samples were collected, which was justified by another trial 
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suggesting a relevant relationship between edoxaban Cmin 
and bleeding events [19]. Despite receiving the same dose 
[and having similar areas under the concentration–time 
curve (AUCs)], the likelihood of severe bleeding was signifi-
cantly increased in patients who had higher Cmin and lower 
Cmax values because of different dosing regimens (edoxaban 
30 mg twice daily vs. edoxaban 60 mg once daily) [19]. In 
contrast, major and non-major bleeding episodes in patients 
taking rivaroxaban were more frequent in those who had a 
higher Cmax or AUC, whereas bleeding events during apixa-
ban correlated better with AUC or Cmin than with Cmax [14, 
20, 21]. Although evidence suggests that Cmin is the value 
that best predicts edoxaban toxicity, trials investigating this 
relationship are rare. It seems that not only average expo-
sure (AUC) but also the shape of the concentration–time 
curve (i.e., Cmax and Cmin) might modulate risk, but it is still 
unknown which pharmacokinetic parameters (AUC, Cmin, or 
Cmax) matter and whether this is similar for all DOACs and 
all clinical endpoints.

In conclusion, a large body of evidence suggests that not 
only direct anticoagulant effects but also major bleeding 
events and stroke prevention depend on plasma concentra-
tions of DOACs. Even though intracranial bleeding—albeit 
occurring rarely under DOAC therapy—might not be pre-
vented by monitoring plasma concentrations [13], the exist-
ing data indicate that serious bleeding events under DOAC 

therapy might be preventable by avoiding elevated DOAC 
concentrations in plasma. As a consequence, to minimize 
potential bleeding risks, approved DOAC maintenance doses 
are smaller for patients with elevated DOAC concentrations, 
such as patients with renal impairment. For other causes of 
increased exposure such as drug–drug interactions (DDIs), 
management is often less well-defined [22–25]. Considering 
that patients with non-valvular atrial fibrillation (a common 
indication for DOACs) are often older and have multiple co-
morbidities, which require the use of drugs [26], polyphar-
macy is highly prevalent in these patients (40–77%) [27–30]. 
Many typical co-medications can interact with DOACs and 
modify their exposure. However, the effect of multiple drugs 
on DOAC exposure, and especially the impact of DDIs when 
concurring with drug–disease interactions as observed in 
renal impairment, has not been thoroughly elucidated [31]. 
In order to provide effective and safe anticoagulation with 
DOACs, understanding the magnitude and mechanisms of 
DDIs appears relevant. This review illustrates the impact of 
perpetrator drugs on DOAC exposure with a special focus 
on the combined risk of multiple drug therapies and multiple 
conditions on DOAC therapy.

2 � Basics of DOAC Pharmacokinetics

The factors that influence plasma concentrations of orally 
administered drugs [steady-state concentration (Css)] in 
adherent patients are shown in Eq. 1.

At a given dose (D) and dosing interval (τ), DOAC Css is 
determined by oral bioavailability (F) and clearance (CL). 
Both variables depend on the activity of drug transport-
ers such as P-glycoprotein (P-gp) and breast cancer resist-
ance protein (BCRP) or drug-metabolizing enzymes such 
as cytochrome P450 (CYP) isozymes or carboxylesterases 
(CES), whose activities are often modified by co-medica-
tion or patient conditions such as genetic polymorphisms. 
However, because nature and proportional contribution 
of absorption and clearance mechanisms of DOACs are 
diverse, individual DOAC victim properties are also het-
erogeneous and neither DDIs nor drug–disease interactions 
are class phenomena.

2.1 � Apixaban

Apixaban is well-soluble at different gastric conditions but 
its oral bioavailability is only 49% [32]. Probably more 
than P-gp, BCRP limits the oral bioavailability of apixaban 
[33–37]. A proportion of apixaban is cleared by CYP3A4 

(1)C
ss
=

F × D

CL × �

.

Key Points 

Direct oral anticoagulant (DOAC) plasma concentra-
tions are closely associated with the efficacy and safety 
of DOAC therapy and concomitant drugs can increase or 
decrease DOAC exposure by changing DOAC bioavail-
ability and/or clearance.

Drugs that alter DOAC exposure or increase patients’ 
bleeding risk are frequently prescribed because DOAC 
patients are often older and multimorbid and, hence, 
concomitantly administered many drugs (polyphar-
macy), or present with renal impairment and an interact-
ing drug. Current guidelines often do not include careful 
and practical management of drug–drug interactions 
(DDIs) in these complex situations because they have 
often not been studied.

Instead of avoiding drug combinations with DOAC—
which can be impossible—more DDI trials should be 
conducted and new strategies such as dose adjustments 
based on monitoring should be investigated.

However, DOAC dose adjustments based on concentra-
tion measurements cannot be recommended because 
evidence-based data are currently missing.
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(~ 15% of an oral dose) with minor contribution of other 
isozymes (e.g., CYP1A2 and CYP2J2) (~ 6% of an oral 
dose) (Fig. 1) [38]. Apixaban’s metabolites are pharmaco-
logically inactive and some are further metabolized by sul-
fotransferase (SULT) 1A1 [39]. Apixaban is also eliminated 
unchanged; renal clearance of unchanged apixaban accounts 
for approximately 27% [32], but also biliary (< 1%) [38] and 
direct secretion into feces (based on animal studies) have 
been proposed as clearance pathways of apixaban (Fig. 1) 
[40, 41]. In general, the different apixaban clearance path-
ways are well-balanced, which prevents patients from clini-
cally significant apixaban exposure changes if only a single 
pathway is disturbed. For example, even severe renal impair-
ment (creatinine clearance of 15 mL/min) only increased the 
apixaban AUC by 44% [42]. However, DDIs with apixaban 
can modulate both apixaban bioavailability and clearance 
and more than one clearance pathway simultaneously. For 
example, the strong CYP3A4, BCRP, and P-gp inhibitor 
ketoconazole doubled the apixaban AUC, probably because 
it concurrently increased apixaban bioavailability and inhib-
ited most of its oxidative metabolism [43]. Strong induc-
ers of CYP isozymes, BCRP, and P-gp such as rifampicin 
(rifampin) will halve the apixaban AUC, probably because 
they further decrease the absorbed fraction [32]. Currently 
reported DDIs with apixaban are depicted in Fig. 2. 

2.2 � Betrixaban

Oral bioavailability of betrixaban accounts for approximately 
34%, which can be further reduced by fatty food even when 
taken hours before betrixaban [2, 44]. A higher betrixaban 
dose should therefore be taken with food. The major clear-
ance pathway of betrixaban from the body is hepatic elimi-
nation mainly by biliary secretion (~ 80%); renal elimination 
is less relevant (approximately 20%) (Fig. 1) [2]. Betrixa-
ban metabolism is largely independent from CYP isozymes 
(< 1%) but betrixaban is subject to hydrolysis (Fig. 1) [2]. 
Betrixaban as a P-gp substrate is susceptible to P-gp-related 
drug interactions [45]. Co-administration of potent P-gp 
inhibitors can influence the bioavailability and clearance 
of betrixaban. For example, the P-gp inhibitor verapamil 
increased the betrixaban Cmax 4.7-fold and its AUC 3-fold 
[2]. However, the expected effects of potent P-gp inducers 
(e.g., rifampicin) on betrixaban exposure have not been 
examined yet. Renal impairment can also substantially 
increase betrixaban exposure [46]. Currently known DDIs 
with betrixaban are depicted in Fig. 3.

2.3 � Dabigatran

The thrombin inhibitor dabigatran is administered as a 
prodrug (dabigatran etexilate) because active dabigatran 
is a poorly available hydrophilic zwitterion [3]. Other than 

dabigatran, its prodrug is a P-gp substrate [33] and rather 
insoluble at pH values of 3–7.5 [47], resulting in an oral bio-
availability of only 7.5% [48]. Polymorphic hepatic CES 1, 
intestinal CES 2, and also unspecific hydrolysis convert 
dabigatran etexilate into dabigatran [49, 50]. Unchanged 
renal elimination is the predominant elimination pathway of 
dabigatran (~ 77%) (Fig. 1) [48]. Dabigatran has negligible 
metabolism overall with < 10% of dabigatran being oxidized 
or conjugated with glucuronic acid by UDP-glucuronosyl-
transferase (UGT) 1A9, 2B7, and especially 2B15 (Fig. 1) 
[48, 51] to active acylglucuronides [51]. Therefore, DDIs 
predominantly affect bioavailability and P-gp inhibitors such 
as verapamil can reduce the intestinal first-pass elimination 
and thus increase absorption [52]. With the addition of tar-
taric acid to the formulation, drugs such as proton pump 
inhibitors that alter gastric pH values no longer cause rel-
evant changes in dabigatran bioavailability [53]. Apart from 
DDIs, which can double dabigatran bioavailability and thus 
its exposure, renal impairment can even more profoundly 
increase dabigatran exposure, resulting in an exposure 
increase of 50% (mild renal impairment) to 500% (severe 
renal impairment) [54]. The currently known DDIs with 
dabigatran are depicted in Fig. 4.

2.4 � Edoxaban

Only approximately 62% of an oral edoxaban dose is bioa-
vailable [55], partly because of P-gp (and probably BCRP)-
mediated efflux [33, 56]. Edoxaban is primarily eliminated 
unchanged by the kidneys (50%) but CES 1 and CYP3A4/5 
contribute to its phase I metabolism (< 10%) (Fig. 1) [57], 
resulting in active but scarce metabolites [8] (< 10% of 
edoxaban AUC) [57] and therefore without clinical sig-
nificance. Edoxaban absorption and clearance depend on 
P-gp efflux. In the kidneys, edoxaban is filtrated as well as 
actively secreted by P-gp (and possibly further transporters) 
[56]. Direct excretion of unchanged edoxaban into bile and 
intestine has been observed in rats and, thus, been proposed 
as an additional potential clearance pathway also in humans 
[56]. Therefore, P-gp inhibition by co-medication risks 
elevated edoxaban exposure because it increases edoxaban 
bioavailability and decreases edoxaban clearance. This has 
been demonstrated in a DDI trial investigating the effect 
of the P-gp inhibitor quinidine on intravenously and orally 
administered edoxaban [58], which reported increased bio-
availability and decreased clearance with a similar contribu-
tion to an edoxaban AUC increase [58]. Conversely, P-gp 
inducers such as rifampicin decreased edoxaban exposure 
by 34% without affecting the Cmax, which suggests that P-gp 
inducers more likely decrease clearance than affect edoxa-
ban bioavailability [59]. Further DDIs with edoxaban are 
depicted in Fig. 5.
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Fig. 1   Primary direct oral anticoagulant (DOAC) clearance/elimi-
nation pathways. Data were extracted from per oral (po; apixa-
ban, edoxaban, and rivaroxaban) and intravenous (iv; betrixaban 
and dabigatran) mass balance studies [2, 38, 48, 57]. The rivaroxa-

ban pie chart is a modification from Mueck and co-workers [63]. 
BCRP breast cancer resistance protein, CES carboxylesterase, CYP 
cytochrome P450, P-gp P-glycoprotein
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Fig. 2   Area under the concentration–time curve ratios (AUCR) and 
maximum (peak) concentration ratios (CmaxR) of apixaban with and 
without concomitantly taken drugs. Results of drug–drug interaction 
trials that have been conducted and published up to January 2020 are 
depicted [22, 32, 36, 40, 43, 85, 98–101]. A ratio equals 1 if the co-

administered drug statistically insignificantly influenced direct oral 
anticoagulant (DOAC) pharmacokinetics. Green bars: AUCR and 
CmaxR > 0.5 and < 2. Yellow bars: AUCR and CmaxR ≤ 0.5 and ≥ 2. 
1Ketoconazole 400  mg investigated. 2DOAC microdoses adminis-
tered. 3Rifampicin was given repeatedly
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2.5 � Rivaroxaban

Rivaroxaban is the DOAC with the highest oral bioavail-
ability (≥ 80%) [60]. Rivaroxaban is also a P-gp and BCRP 
substrate and, in contrast to other DOACs, absorption of 
rivaroxaban doses exceeding 10 mg requires food intake [33, 
61] to avoid reductions of oral bioavailability to 66% [60, 
62]. Similar to apixaban, relevant fractions of rivaroxaban 

are also metabolized by CYP3A4/5 (~ 18%), CYP2J2 
(~ 14%), and non-enzymatic hydrolysis (~ 14%) (Fig. 1) 
[63]. The remaining 36% are eliminated unchanged by the 
kidney, with active secretion by P-gp and BCRP being the 
principal mechanism (only 6% of rivaroxaban is filtrated 
by glomeruli) (Fig. 1) [63, 64]. Thus, DDIs more likely 
alter rivaroxaban clearance than bioavailability. The larg-
est effect that has been observed so far has been caused by 
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Digoxin
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Ketoconazole2
Verapamil1
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Betrixaban

Fig. 3   Area under the concentration–time curve ratios (AUCR) and 
maximum (peak) concentration ratios (CmaxR) of betrixaban with and 
without concomitantly taken drugs. Results of drug–drug interaction 
trials that have been conducted and published up to January 2020 are 
depicted [2]. A ratio equals 1 if the co-administered drug statistically 

insignificantly influenced direct oral anticoagulant pharmacokinetics. 
Green bars: AUCR and CmaxR > 0.5 and < 2. Yellow bars: AUCR and 
CmaxR ≤ 0.5 and ≥ 2. 1Verapamil provided in an extended-release for-
mulation. 2Ketoconazole 200  mg investigated. 3The antacid mixture 
was composed of aluminium hydroxide and magnesium hydroxide
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Fig. 4   Area under the concentration–time curve (AUC) ratios 
(AUCR) and maximum (peak) concentration (Cmax) ratios (CmaxR) 
of dabigatran with and without concomitantly taken drugs. Results 
of drug–drug interaction (DDI) trials that have been conducted and 
published up to January 2020 are depicted [23, 52, 70, 71, 102–113]. 
A ratio equals 1 if the co-administered drug statistically insignifi-
cantly influenced direct oral anticoagulant (DOAC) pharmacokinet-
ics. Green bars: AUCR and CmaxR > 0.5 and < 2. Yellow bars: AUCR 
and CmaxR ≤ 0.5 and ≥ 2. Red bars: AUCR and CmaxR ≥ 5. 1DOAC 
microdoses administered. 2Ketoconazole 200  mg investigated. 3A 
single dose of rifampicin was provided. 4The figure depicts the great-
est effect of clarithromycin on dabigatran pharmacokinetics that has 
been reported. Results from DDI trials are ambiguous. Although 
the same dose of clarithromycin was administered, one trial did not 

observe any change in dabigatran exposure and the other reported a 
smaller AUCR than depicted (AUCR 1.49) [103, 105]. 5Verapamil 
was provided in an extended-release formulation. Immediate-release 
verapamil given 1  h before dabigatran etexilate had greater impact 
on dabigatran exposure. Immediate-release verapamil given 2 h after 
dabigatran etexilate did not alter dabigatran exposure to a relevant 
extent. 6Only loading doses of clopidogrel (300–600  mg) affected 
dabigatran exposure. 7Loading doses of ticagrelor (180  mg) admin-
istered 2 h after dabigatran etexilate 110 mg or maintenance doses of 
ticagrelor (90  mg) administered concomitantly increased dabigatran 
exposure as depicted. Lower doses of dabigatran etexilate (75  mg) 
were affected to a greater extent by ticagrelor (AUC 1.73-fold, Cmax 
1.95-fold). 8Rifampicin was given repeatedly
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ketoconazole (rivaroxaban AUC increased more than 2.5-
fold), which likely resulted from a combined inhibition of 
hepatic CYP isozymes and renal efflux transporters [63]. 
Accordingly, the rivaroxaban AUC can increase with even 
mild renal impairment, as observed in healthy elderly who 
have a 41% higher rivaroxaban AUC [65, 66]. The impact of 
DDIs on rivaroxaban pharmacokinetics is depicted in Fig. 6.

3 � Drug–Drug Interactions Affecting DOAC 
Therapy

As different uptake and clearance mechanisms of DOACs 
are quite heterogeneous (victim properties), individual 
perpetrator drugs will have grossly differing effects on the 
pharmacokinetics of individual DOACs. Because clearances 
are additive, the net observed change of an interacting co-
medication or condition depends on the extent of clearance 
impairment and on the overall contribution of this pathway 
to bioavailability and total clearance [14, 65, 67, 68]. Com-
monly, DDI trials are designed to investigate worst-case sce-
narios and typically do not address the impact of co-morbid-
ity. Thus, combinations of renal impairment with inhibition 
of CYP or P-gp, or inhibition of multiple pathways by drug 
combinations can significantly affect DOAC exposure. As 
an example, combined inhibition of CYP3A4 and P-gp will 
increase rivaroxaban exposures to a larger extent in patients 
with renal failure. The moderate CYP3A4 and P-gp inhibi-
tor erythromycin increased rivaroxaban exposure in healthy 

individuals by 39% but resulted in a 76% increase in patients 
with mild renal impairment [69]. Although plasma exposure 
rose substantially, clear dosing instructions for this complex 
interaction are lacking. This contrasts with the instructions 
on the product label for patients on erythromycin alone, who 
do not require dose reductions, and patients with moderate 
renal impairment in whom rivaroxaban exposure increases 
52% [25, 65] and require a dose reduction. Obviously, dose 
selection cannot exclusively be based on DOAC pharma-
cokinetics because both benefits and harms as a result of 
anticoagulation can be modulated by co-morbidities and 
must be well-balanced. As an example, studies evaluating 
the actions of betrixaban in renal impairment revealed that 
betrixaban exposure roughly doubled in patients with creati-
nine clearance < 30 mL/min and the bleeding risk substan-
tially increased compared with the comparator enoxaparin 
[2]. If doses were adjusted to match betrixaban exposure of 
patients without renal impairment, bleeding risk was still 
elevated but efficacy was reduced, suggesting that thera-
peutic alternatives should be favored in patients with severe 
renal impairment.

Multi-medication can also significantly affect DOAC 
exposure as has been demonstrated with drug combinations 
approved for antiviral therapies. Glecaprevir plus pibren-
tasvir or sofosbuvir plus velpatasvir plus voxilaprevir (tri-
ple combination) increased dabigatran exposure more than 
twofold because P-gp inhibitors of different potencies are 
used simultaneously. As a consequence, the current advice 
is to interrupt dabigatran therapy [70, 71]. However, apart 
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Fig. 5   Area under the concentration–time curve ratios (AUCR) and 
maximum (peak) concentration ratios (CmaxR) of edoxaban with and 
without concomitantly taken drugs. Results of drug–drug interaction 
trials that have been conducted and published up to January 2020 are 
depicted [59, 76, 84, 98, 114–117]. A ratio equals 1 if the co-adminis-
tered drug statistically insignificantly influenced direct oral anticoag-

ulant (DOAC) pharmacokinetics. Green bars: AUCR and CmaxR > 0.5 
and < 2. Yellow bars: AUCR and CmaxR ≤ 0.5 and ≥ 2. Red bars: 
AUCR and CmaxR ≥ 5. 1DOAC microdoses administered. 2Ketocona-
zole 400 mg investigated. 3Verapamil provided in an extended-release 
formulation. 4Acetylsalicylic acid (ASA) 325  mg/day administered. 
5ASA 100 mg/day administered. 6Rifampicin was given repeatedly
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from antiviral therapies, P-gp inhibitor combinations might 
also be present in typical DOAC patients with long-term 
polypharmacy and DDI trials are needed that investigate the 
effect of drug combinations on DOAC exposure and efficacy.

A combination of increased absorption and reduced 
elimination can also lead to increased DOAC exposure that 
has previously not been investigated. A physiologically 
based pharmacokinetic model calculated that dabigatran 
Cmin will significantly increase in patients with moderate 
renal impairment who concomitantly take the P-gp inhibitor 
verapamil [72]. Despite the statement in the product label 
that only recommends a dose reduction to 110 mg twice 
daily, the authors suggested that the significantly increased 
Cmin values might be preventable by reducing dabigatran 
doses further to 75 mg twice daily [72]. However, as long 
as clinical trials investigating pharmacokinetics and clinical 
effects of this complex clinical situation are missing, it will 
be unclear whether patients treated with 110 mg twice daily 
are at an increased risk of bleeding and what dabigatran 
efficacy will be if doses are further reduced. Interestingly, 
thorough analyses of the concentration measurements of the 
pivotal dabigatran trial RE-LY (Randomized Evaluation of 
Long-Term Anticoagulation Therapy) revealed that higher 
Cmin values only slightly improved the benefit prediction 

(ischemic stroke, systemic embolic events) and contributed 
more to the risk prediction (major bleeding events) [12].

Knowledge on the potential effect of inducers of CYP 
isozymes or drug transporters is also limited. Such drugs 
can limit DOAC absorption and foster elimination, thus 
reducing exposure. The product information provides vague 
information on these DDIs and advises to avoid a concomi-
tant intake of a DOAC with inducing agents such as carba-
mazepine, dexamethasone, phenobarbital (and its prodrug 
primidone), rifampicin, or St. John’s wort [2, 22–25]. Nev-
ertheless, patients with epilepsy who are well-controlled 
with carbamazepine or patients with tuberculosis, who 
often require rifampicin therapy, cannot be easily switched 
to alternative drugs in order to avoid the combination of a 
DOAC with strong CYP3A4 or P-gp inducers. Thus, avoid-
ing the inducer in order to initiate DOAC therapy is often 
not feasible and DOAC patients are switched to vitamin K 
antagonists because physicians believe that in this situa-
tion the established therapeutic concentration ranges pro-
vide a safer and more effective anticoagulation than current 
DOAC therapies [73]. However, vitamin K antagonists have 
a higher risk of fatal intracranial bleeding and DOAC expo-
sure decreases might also be well-managed by increasing 
the DOAC dose and monitoring its immediate effects on 
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anticoagulation. Still, the impact on DOAC exposure can 
vary substantially between the inducing agents, making 
dose adjustment complicated. For example, St. John’s wort 
reduced rivaroxaban exposure by 26% and thus had only a 
minimal impact on rivaroxaban exposure compared with 
rifampicin (50%) [74].

4 � Therapeutic Drug Monitoring

Current management mostly relies on classical interaction 
trials that investigated the effect of an interacting drug on 
DOAC pharmacokinetics and rarely relies on trials that 
investigated the effect of DDIs on clinical endpoints. Thus, 
DOAC manufacturers and regulatory authorities have indi-
vidually determined the percentage of DOAC exposure 
alteration that is critical for each DOAC and often provide 
vague clinical management for DDIs. However, subanaly-
ses of data from the ENGAGE-AF TIMI 48 trial revealed 
that edoxaban patients taking the P-gp inhibitor amiodarone 
had fewer ischemic events and no increased bleeding risk if 
they took edoxaban 30 mg instead of 60 mg once daily [75]. 
The dose reduction was based on the DDI data where ami-
odarone increased edoxaban exposure by 40% [76]. Thus, 
adjusting DOAC doses according to plasma concentrations 
(therapeutic concentration monitoring) might be an option to 
treat DOAC patients optimally. However, a pre-requisite will 
be an established concentration effect relationship for both 
benefit (i.e., protection against systemic embolic events) and 
risk (bleeding).

This might further be of help for complex clinical situ-
ations such as polypharmacy, particularly if more than one 
major elimination pathway is impaired. Clear dosing guide-
lines in these situations are needed because in the absence 
of evidence, and mindful of bleeding events, physicians tend 
to reduce DOAC doses [77], which can preclude optimum 
treatment responses. As demonstrated in patients taking 
apixaban, underdosed DOAC patients have an increased 
risk of thromboembolic events (fivefold increased risk of 
stroke) [78]. Establishing therapeutic ranges could help 
detect patients who are exposed to supratherapeutic or sub-
therapeutic DOAC exposure and might help physicians to 
select the correct DOAC dose.

However, one therapeutic concentration range for each 
DOAC might not effectively protect every DOAC patient 
from the adverse effects of DOAC therapy. Depending on 
the indication, DOACs are used at different doses and dos-
age regimens. Therefore, patients taking rivaroxaban 2.5 mg 
twice daily for the prevention of atherothrombotic events 
after an acute coronary syndrome will have lower AUC and 
Cmax but higher Cmin values than patients with non-valvular 
atrial fibrillation taking rivaroxaban 20 mg once daily for the 
prevention of stroke and systemic embolic events [79]. Thus, 

each DOAC indication probably requires its own therapeutic 
concentration range.

The width of the therapeutic concentration range defines 
the probability of bleeding and thrombotic events and pos-
sibly varies between different patient populations; some 
patient populations might tolerate larger concentration 
ranges than others. Patients co-administering drugs that 
impair thrombus formation are very likely to have a nar-
rower therapeutic range than patients who are not because a 
concomitant drug reducing platelet aggregation in addition 
to the fibrin formation inhibition by a DOAC increases a 
patient’s risk of bleeding. This mechanism forms undesir-
able, but clinically common, types of pharmacodynamic 
DDIs. Platelet aggregation inhibitors triggering such DDIs 
are cyclo-oxygenase inhibitors (e.g., acetylsalicylic acid 
or naproxen) or antagonists of the platelet receptor P2Y12 
(e.g., clopidogrel or ticagrelor). Results from DDI trials in 
healthy volunteers have indicated that concomitant intake 
of a DOAC and an antiplatelet agent (acetylsalicylic acid 
or clopidogrel) or a non-steroidal anti-inflammatory drug 
(naproxen) will increase the risk of bleeding because the 
bleeding time (a surrogate marker for bleeding events) sub-
stantially increased in these trials [80–85]. Data from pivotal 
DOAC trials and post-marketing studies verified that these 
combinations can relevantly increase bleeding events in anti-
coagulated patients, irrespective of the anticoagulant taken 
[86–90]. Subgroup analyses of and meta-analyses with data 
from pivotal DOAC trials in patients with non-valvular atrial 
fibrillation estimated that an additional intake of a single 
antiplatelet agent such as acetylsalicylic acid increases the 
risk of major bleeding 1.3-fold [86, 87]. The risk doubles 
in DOAC patients taking dual antiplatelet therapy [86, 91] 
and increases dose dependently, as shown in a prospective 
placebo-controlled trial evaluating the effect of increasing 
doses of apixaban [92]. Furthermore, DOAC labels highlight 
that selective serotonin reuptake inhibitors can also increase 
the risk of bleeding because patients in both investigational 
groups (warfarin and dabigatran) of the RE-LY trial had 
an increased risk of bleeding [22–25], an effect that is only 
incompletely understood [93].

A retrospective evaluation of Taiwanese health insur-
ance data indicates that therapeutic concentration ranges 
will differ between patient populations [94]. In contrast to 
the presumed bleeding risk expressed in trials assessing 
DOAC DDIs of erythromycin and clarithromycin (moder-
ate to strong CYP3A and P-gp inhibitors), these epidemio-
logic data revealed no increased risk of (major) bleeding 
[94]. Similarly, and unexpectedly, patients co-administering 
a DOAC and the CYP3A4 and P-gp inducer phenytoin pre-
sented with an increased risk of bleeding [94]. However, 
this retrospective evaluation did not evaluate important data 
such as renal function, DOAC doses, and adherence [94]. 
Renal impairment is an independent risk factor for bleeding 
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and thrombosis [95, 96] and missing data on DOAC doses 
and adherence can erroneously suggest that a co-medication 
that usually increases DOAC plasma concentrations did not 
affect a patient’s risk of bleeding.

In summary, while it may appear intuitive to measure 
DOAC concentrations and adjust DOAC doses accordingly, 
such an approach should not uncritically be applied until 
we know which pharmacokinetic parameter to monitor and 
whether it is predictive for both potential benefits and risks 
of DOACs. Moreover, given the diverging observations 
reported for individual DOACs [12, 13, 19–21], there might 
even be differences to be observed for individual DOACs. 
The RE-ALIGN (Randomized, Phase II Study to Evaluate 
the Safety and Pharmacokinetics of Oral Dabigatran Etex-
ilate in Patients after Heart Valve Replacement) trial was 
terminated prematurely because the concentration-based 
dose adjustment of dabigatran excessively increased bleed-
ing and thrombotic events in patients [97]. This trial demon-
strated that adjusting dabigatran doses to Cmin measurements 
was not beneficial. However, monitoring Cmin and adjust-
ing doses if they fell below an exploratory limit of 50 ng/
mL might not represent the optimal therapeutic range for 
the investigated high-risk patient population (patients with 
mechanical heart valves). Without clarity about the pharma-
cokinetic parameters that need to be monitored for optimal 
DOAC therapy and without evidence on the risk–benefit 
balance of concentration-based DOAC dose adjustments, 
DOAC doses should not be adjusted according to DOAC 
concentration measurements.

5 � Conclusion and Outlook

DOAC concentrations in plasma seem to be important for 
DOAC therapy. Patients mainly risk bleeding events if 
plasma concentrations increase substantially and they can 
experience diminished protection from thromboembolic 
events if plasma concentrations are too low. DDIs might 
reduce the benefits of DOAC therapy because they can alter 
DOAC plasma concentrations significantly. DOACs appear 
to have less DDI potential than vitamin K antagonists, but 
complex DDIs fostered by polypharmacy or DDIs in patients 
with relevant co-morbidities have not been investigated thor-
oughly. Complex DDIs are present in typical DOAC patients 
because they are often renally impaired or take multiple 
drugs that might influence drug-metabolizing enzymes or 
drug transporters in a clinically significant manner. Without 
knowing the major potential DDIs and without good clinical 
management of these complex DDIs, DOAC patients might 
risk bleeding or ineffective anticoagulation. Establishing 
therapeutic concentration ranges for DOACs might improve 
current therapy because it would provide safety margins and 
might provide optimal therapy for polypharmacy patients. 

However, currently, DOAC dose adjustments based on con-
centration measurements cannot be recommended because 
evidence-based data are missing. Patients’ co-medications 
should be checked regularly in order to support the risk 
assessment for excessive bleeding or thrombotic events due 
to DDIs.
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