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Abstract

Most molecular evolutionary studies of natural selection maintain the decades-old assumption that synonymous sub-
stitution rate variation (SRV) across sites within genes occurs at levels that are either nonexistent or negligible. However,
numerous studies challenge this assumption from a biological perspective and show that SRV is comparable in magni-
tude to that of nonsynonymous substitution rate variation. We evaluated the impact of this assumption on methods for
inferring selection at the molecular level by incorporating SRV into an existing method (BUSTED) for detecting signatures
of episodic diversifying selection in genes. Using simulated data we found that failing to account for even moderate levels
of SRV in selection testing is likely to produce intolerably high false positive rates. To evaluate the effect of the SRV
assumption on actual inferences we compared results of tests with and without the assumption in an empirical analysis
of over 13,000 Euteleostomi (bony vertebrate) gene alignments from the Selectome database. This exercise reveals that
close to 50% of positive results (i.e., evidence for selection) in empirical analyses disappear when SRV is modeled as part
of the statistical analysis and are thus candidates for being false positives. The results from this work add to a growing
literature establishing that tests of selection are much more sensitive to certain model assumptions than previously
believed.
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Introduction
In 1976, Box (1976) famously wrote “since all models are
wrong the scientist must be alert to what is importantly
wrong”. As we continue to better understand which aspects
of sequence evolution are important to model, existing sta-
tistical approaches must be critically reviewed and, as neces-
sary, revised. When originally introduced in 1994 the codon-
substitution models (Muse and Gaut 1994; Goldman and
Yang 1994) that still form the foundation for most modern
tests of natural selection incorporated the then-reasonable
assumption that the rate at which synonymous substitutions
occur (dS) is homogeneous across alignment sites. This as-
sumption makes sense if synonymous substitutions are neu-
tral and the result of underlying constant mutation rate and
population parameters (Yang and Nielsen 2008). In contrast,
the essential role of modeling the variation in nonsynony-
mous rates (dN) across sites (Nielsen and Yang 1998) and
branches (Yang 1998) was appreciated from the outset, be-
cause averaging across sites and or branches diminishes sta-
tistical power and ignores basic biological realities. In the
intervening quarter century two lines of evidence have
emerged suggesting that the assumption of dS homogeneity
is importantly wrong. First, models that allow dS to vary across

alignment sites consistently provide highly significant
improvements in goodness-of-fit, for example, in 9/10 cases
examined by Kosakovsky Pond and Muse (2005) and in 42%
of the almost 8,000 protein groups analyzed by Dimitrieva
and Anisimova (2014). Thus, it appears that models most
often used in modern statistical analyses of selection fail to
capture important aspects of the substitution process: Either
variation in dS is directly important, or it is confounded with
other important unmodeled processes (Jones et al. 2018).
Second, dozens of papers now offer examples of natural se-
lection acting on synonymous substitutions. Proposed causes
for such selection include secondary RNA structure (Cuevas
et al. 2012), codon usage bias (Brandis and Hughes 2016;
Kubatko et al. 2016), maintenance of gene function (Eyre-
Walker 1996; Lawrie et al. 2013), and effects on a range of
mRNA properties: Stability (Chamary and Hurst 2005; Du
et al. 2014), alternative splicing (Mueller et al. 2015), and
translational efficiency (Shields et al. 1988; Zhou et al. 2010).
Many of these examples describe purifying selection on syn-
onymous substitutions, yet instances of positive selection also
exist (Resch et al. 2007; Agashe et al. 2016). Furthermore,
some synonymous substitutions have strong phenotypic
effects: mRNA stability and synthesis of the human dopamine
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receptor D2 (Duan et al. 2003), driver mutations in human
cancers (Supek et al. 2014), and disease association among
rare synonymous substitutions in mitochondrial genes
(Bhardwaj 2014). A database of deleterious synonymous
mutations lists close to 2,000 manually curated human var-
iants (Wen et al. 2016).

We have long promoted the use of models that accom-
modate site-to-site variation of synonymous substitution
rates whenever possible, especially when identifying sites sub-
ject to positive or negative selection (Kosakovsky Pond and
Frost 2005; Murrell et al. 2012, 2013). We also showed that
assuming constant dS rates can elevate false-positive rates
(FPRs) and lead to loss of power when testing individual sites
for selection (Kosakovsky Pond and Frost 2005). Several other
groups have also developed models that remove the assump-
tion of synonymous rate homogeneity (e.g., Mayrose et al.
2007; Yang and Nielsen 2008; Zhou et al. 2010; Rubinstein
et al. 2011; Zaheri et al. 2014; Kubatko et al. 2016; Davydov
et al. 2019). However, when it comes to testing for evidence of
natural selection in entire genes, the vast majority of com-
monly used methods (e.g., those based on the pioneering
work of Yang et al. 2002) continues to assume homogeneous
synonymous rates. Even our own entry in this domain,
BUSTED (Murrell et al. 2015), allows nonsynonymous rates
to vary flexibly across branches and sites, yet sets dS¼ 1 as is
the current convention.

In this paper, we set out to address the question, “Does
the presence of synonymous rate variation (SRV) negatively
impact our ability to accurately identify the presence (or
absence) of selection acting at the molecular level?” To ad-
dress this question we conducted an extensive simulation
study examining the performance of two existing tests of
selection, each of which ignores the possibility of SRV. The
results show clearly that model misspecification is very
costly for standard versions of these methods when SRV is
present, with both tests showing unacceptably high FPRs.
We also developed a new statistical test, BUSTED[S], by
modifying BUSTED to account for the potential presence
of SRV (see Materials and Methods). Our tests are rooted in
the random-effects modeling framework, where selective
pressures vary both across sites and branches, and are well
suited for study of pervasive and episodic diversifying selec-
tion. The simulations show that this adjustment restores the
inflated FPRs to nominal levels. These results raise serious
questions about reliability not only for these two particular
tests of selection, but of selection tests in general when un-
accounted SRV is present. Coupling our simulation study
with an empirical analysis of over 13,000 gene alignments we
find evidence that roughly half of positive selection findings
from the non-SRV methods are likely false positives.

Results

A Large-Scale Empirical Screen
We compared the inferences made by using BUSTED[S] to
those made by BUSTED in analyses of 13,416 alignments of
Eusteleostomes genes extracted from version 6 of the
Selectome database (Moretti et al. 2014), which was curated

to facilitate the study of positive selection and used previously in
Murrell et al. (2015) to benchmark BUSTED. Our goals were to
evaluate how frequently SRV was found in real data sets, and to
determine how often BUSTED and BUSTED[S] made conflicting
inferences (i.e., to explore Box’s “importantly wrong” caution).

For 12,272 of the 13,416 alignments (91.4%), the
BUSTED[S] model incorporating SRV was preferred over
that of BUSTED using the small sample AICc statistic
(Hurvich and Tsai 1989), by a median margin of 112 points
(supplementary fig. S1, Supplementary Material online). This
result implies that SRV—or processes confounded with it—is
the rule rather than the exception. For alignments where
BUSTED[S] had the better AICc score, the median coefficient
of variation (CV) for synonymous rates was 0.65 with an
interquartile range (IQR) of (0.56, 0.78) (supplementary fig.
S2, Supplementary Material online). For the remainder of the
alignments, the median CV of SRV was 0.48 with IQR (0.29,
0.75). Obviously, all of the data sets that yielded zero esti-
mates for the CV of SRV yield better AICc values for the
simpler BUSTED model. For context, the median values for
the CVs of nonsynonymous rates estimated by BUSTED[S]
were 2.51 and 1.58 for these two groups. Thus, not only is SRV
widespread, it tends to be of a magnitude around a quarter of
that for nonsynonymous rates—far from negligible.

BUSTED found evidence (likelihood ratio test P< .05) of
positive selection in 20.4% of the tested data sets, whereas
BUSTED[S] did so in 14.8% (table 1). For only 9.3% of the
alignments did both methods yield significant results.
Importantly, this fact raises the very real possibility that
over one half ð11:1=20:4 ¼ 54:4%Þ of all positive results
from BUSTED were false positives (see discussion below). A
further 5.5% of alignments had positive selection detected
only by BUSTED[S]. Cohen’s interrater agreement statistic j
(Cohen 1960) was 0.43, indicating only moderate concor-
dance between the methods.

Further investigation reveals that the probability of an
alignment yielding a significant selection result is strongly
impacted by the magnitude of SRV in that data set, and
that this effect is more pronounced in BUSTED (fig. 1). For
data sets with a synonymous rate CV near zero the rejection
rates for the two methods are virtually identical, as one would
expect (and as shown below, this behavior is also supported
by simulation). As the amount of SRV increases, though, the
discrepancy between the rejection rates of BUSTED and
BUSTED[S] grows, offering evidence that BUSTED may be
“interpreting” variation in synonymous rates as a (potentially
false) signal for positive selection. As levels of SRV continue to

Table 1. Selectome Screen for Positive Selection.a

BUSTED[S]

BUSTED – 1 Total

– 74% (9,904) 5.5% (742) 79.5% (10,646)
1 11.1% (1,485) 9.3% (1,250) 20.4% (2,735)
Total 85.1% (11,389) 14.8% (1,992) —

aPercentage (number) of alignments categorized by inferred presence of episodic
diversifying positive selection (P � 0:05) using BUSTED (rows) and BUSTED[S]
(columns). þ denotes selection inferred, – indicates no selection found.
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increase, both methods seemingly lose power, possibly due to
a saturation effect, and show patterns similar to each other
for increasing codon and sequence lengths (supplementary
fig. S4, Supplementary Material online). We found no evi-
dence that the synonymous rate CV is a simple correlate of
another data feature (e.g., sequence length, tree length, in-
tensity of selection, etc., see supplementary fig. S5,
Supplementary Material online).

These analyses reveal that the magnitude of SRV is a major
factor influencing both the relative detection rates (i.e.,
power) of these two methods and the level of agreement

between them (fig. 2). For data sets with minimal SRV, (i.e.,
estimated CVðSRVÞ < 0:1), BUSTED and BUSTED[S] have
essentially identical detection rates, and the value of Cohen’s
j near 0.9 indicates near perfect agreement. Good agreement
(j � 0:8) is maintained up to CVðSRVÞ � 0:4, but agree-
ment quickly plummets. By the time CVðSRVÞ ¼ 0:5 agree-
ment has reached j � 0:45 and BUSTED begins to detect
selection in 25–30% more data sets than BUSTED[S]. As
CV(SRV) passes 1.0 BUSTED rejects 50% more often, and
this detection ratio climbs quickly as SRV increases in mag-
nitude, topping out at over 300% when CV(SRV) nears 2.0. As
we show using simulations in the next section, CVðSRVÞ �
0:5 appears to be the critical threshold at which BUSTED
develops very high levels of false positives.

This pattern of method behavior is consistent with the
following interpretation. For data sets where there is no or
little synonymous rate variation, nearly identical results are
obtained regardless of whether or not SRV is modeled (this
also implies that BUSTED[S] does not lose much power rel-
ative to BUSTED). However, for data sets where CV(SRV) is
sufficiently high, failing to model SRV drives BUSTED’s rate of
detection far above that of BUSTED[S]—as much as 2–3-fold
higher. Based on evidence from the simulations described
below, we argue that this excess is likely the result of
BUSTED false positives that could be avoided by incorporat-
ing SRV into the statistical testing procedure.

Analysis of Reference Data Sets
We performed an in-depth analysis of 11 additional data sets
that have been previously featured in studies of SRV and
positive selection screening:

• Nine of the ten data sets used in the original SRV work of
Kosakovsky Pond and Muse (2005) (we replaced the
Influenza A virus alignment from this reference with
one from Chen and Sun 2011, see below)

0.1

0.2

0.3

0.0 0.5 1.0 1.5
SRV

Fr
ac

tio
n 

un
de

r s
el

ec
tio

n

0.0

0.2

0.4

0.6

0.8

0 20 40 60
ω3
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FIG. 2. Comparison of method results on Selectome data as a function
of the level of SRV. The two plots show relationships between the level
of SRV (x-axis) and either the relative selection detection rates of
BUSTED and BUSTED[S] (left y-axis, black plot) or Cohen’s measure
of method concordance (right y-axis, gray plot). The plots are sliding
window analyses using a window size of 0.2 and a step size of 0.1.
Windows with <10 points are not plotted to reduce noise.
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• The Rhodopsin gene alignment from Yokoyama et al.
(2008)—a source of a vigorous debate in the context of
positive selection screening (Nozawa et al. 2009; Yang
et al. 2009)

• The Influenza A virus HA alignment from Chen and Sun
(2011); this particular alignment was analyzed by the
original authors to showcase the sensitivity of methods
for detecting pervasive positive selection to sampling and
variation in selective pressure.

In these 11 data sets, AICc scores universally favor
BUSTED[S] by sizable margins (median AICc difference of
160.49 points, see table 2), and the synonymous rate CVs
are all at least 0.5, once again supporting the claim of wide-
spread SRV. Seven of eleven data sets were found to be under
episodic diversifying selection by both methods (P � 0:05),
and neither method detected selection in the remaining four.
However, the inclusion of SRV in the statistical analysis can
significantly impact parameter estimates. For example, the
estimate of x3, the intensity of positive selection for the
positively selected class of branches/sites, is lowered by a
factor of three in the rhodopsin data set and by a factor of
two in the b-globin data set. Similarly, the fraction (p3) of sites
subject to selection is halved in the Camelid VHH data set. For
HIV-1 vif, BUSTED[S] characterizes selection as being very
strong (an effectively infinite x3 estimate) but present only
at a very small proportion of branches/sites, whereas BUSTED
suggests a much more subdued estimate of x3 at a fraction of
branches/sites several orders of magnitude greater. The in-
ferred distributions of synonymous substitution rates ran the
gamut of distributional composition. In COXI, 95% of the sites
appear to evolve at the mean rate, 2% at a very low rate, and
3% at a very high rate (more than 100� higher than the low
rate). In Camelid VHH, the sites are binned into low, medium,
and high rates (10� higher that the low rate) with roughly
equal proportions.

Although BUSTED[S] is not optimized for site-wise selec-
tion analysis (we instead recommend the MEME procedure
of Murrell et al. 2012), site-level evidence ratios (ER) or factor
loadings provide a quantitative indication of which sites may
be contributing to the signal for positive selection, and what
types of sites have discordant rate preferences between
BUSTED and BUSTED[S] analyses. As detailed in Murrell
et al. (2015), ER are simply likelihood ratios of two models
evaluated on the data from a specific site: The unconstrained
model (the selection intensity x3 is estimated) and the con-
strained model (x3 ¼ 1). A high ER at a site implies that the
data at that site have a higher relative likelihood when pos-
itive selection is permitted. Table 2 highlights the subsets of
sites where ER classification agreed or disagreed between
methods. For instance, for the Camelid VHH data set, 26 sites
were classified as preferring the positive selection regime
(ER> 5) for both methods, 11 sites had ER � 5 for
BUSTED but ER � 1 for BUSTED[S], and one site had ER �
5 for BUSTED[S] but ER � 1 for BUSTED.

Figure 3 shows four sites from the rhodopsin alignment
that provide insight into how selection status and substitu-
tion rates are classified by BUSTED and BUSTED[S]. Codon 11T
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FIG. 3. Sample sites illustrating tendencies of BUSTED and BUSTED[S]. Phylogenetic tree for the Rhodopsin gene alignment with the evolutionary
histories of four codons representing informative cases of agreement and disagreement between BUSTED[S] and BUSTED. See text for details.
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has four synonymous and seven nonsynonymous substitu-
tions inferred via joint likelihood reconstruction as imple-
mented in SLAC (Kosakovsky Pond and Frost 2005) and a
posterior estimate of mean site-specific synonymous rate
(denoted by a), â ¼ 1:16. This site is classified by both meth-
ods as having low support for positive selection. Codon 14
(â ¼ 5:1) is flagged by both methods as showing evidence for
episodic selection (it reveals a cluster of substitutions). Codon
213 shows very strong evidence for positive selection when
using BUSTED, but BUSTED[S] provides virtually no such
evidence; the very high estimate of â ¼ 6:25 suggests that
the codon may be hypervariable. Lastly, codon 159 with 4
synonymous and 12 nonsynonymous inferred substitutions
has stronger evidence for selection under BUSTED[S] than
BUSTED; its estimated â ¼ 0:75 is somewhat less than the
alignment average, thereby boosting the dN/dS ratio.

To summarize, even when BUSTED and BUSTED[S] agree
on the “big picture” question—is the gene under selection?—
key parameter estimates and downstream inferences about
sites contributing to the signal of selection can differ rather
markedly between the two methods. Consequently, any sec-
ondary analyses that depend on parameter estimates or site-
level inferences will likely be impacted by the decision to
model or ignore SRV.

Simulation Study
Since it is logically impossible to unambiguously evaluate the
rates of false positive and false negative results using empirical
data alone, we carried out an extensive simulation study to
evaluate the statistical properties of BUSTED and BUSTED[S]
for varying levels of SRV. (For technical simulation details see
supplementary materials, Supplementary Material online and
supplementary figs. S9 and S10, Supplementary Material on-
line.) We chose sequence lengths ranging from 100 codons
(typical protein-coding gene) to 5,000 codons (eliminate the
effects of sampling). We report results from a model tree with
31 sequences, and very similar results arising from a 16-se-
quence model tree are found in supplementary figure S7,
Supplementary Material online. These trees were chosen
based on the typical sizes of the Selectome alignments used
in our empirical study. To help us understand the effects of
SRV on the methods’ power we simulated data using empir-
ically derived ranges for the level of SRV and the intensity of
selection (x3).

Type I Error Rates
When data were simulated with no positive selection and no
SRV, both BUSTED and BUSTED[S] showed Type I errors at or
beneath the nominal levels: supplementary figure S6,
Supplementary Material online reveals frequencies consistent
with the uniform distribution of P-values predicted by theory.
However, we need to understand the Type I error rates when
SRV is present. Panels A and B of figure 4 describe results from
data simulated without selection (x3 ¼ 1). For these data
BUSTED[S] maintained the proper nominal Type I error rate
(0.05) regardless of the extent of SRV or the length of the
sequence. In stark contrast, once the CV of SRV exceeded 0.5

FPRs for BUSTED quickly rose to around 50% and approached
100% when the CV exceeded 1. Recall that well over half of
the Selectome data sets had CV(SRV)>0.5, and that this was
the point where BUSTED and BUSTED[S] began to substan-
tially deviate in their inferences on those data sets (fig. 2). This
catastrophic loss of Type I error control for levels of SRV
common in real data is clearly undesirable.

There are many distributional, substitution rate, tree
shape, and base frequency parameters that could influence
the statistical behavior of the methods. Rate distributions
might be symmetric or skewed; discrete rate distributions
with the same CV might have different allocations of rates
to classes (e.g., a small frequency for an extreme rate value, or
larger frequencies for rates closer to the mean); trees might or
might not be balanced, etc. Designing a simulation experi-
ment to explore the full range of possible combinations
would be a massive undertaking. However, in an effort to
provide some understanding of how Type I error rates re-
spond to perturbations of these factors, we took a large col-
lection of empirical alignments that represent a subset of the
potential parameter space and simulated data sets using val-
ues estimated from each of those alignments. More specifi-
cally, we chose a collection of avian protein-coding gene
alignments previously analyzed for evidence of selection by
Shultz and Sackton (2019), estimated maximum likelihood
trees for each alignment using RAxML-NG (Kozlov et al. 2019)
with default settings, and inferred rate parameters using
BUSTED[S] (since it allows estimation of SRV). These esti-
mated values were then used to parametrically simulate
long (5,000 codons) sequence alignments under strict neu-
trality, and BUSTED and BUSTED[S] were applied to each
simulated data set. We used equal base frequencies and set
j¼ 2 in the HKY85 nucleotide model component (see
Materials and Methods) to isolate differences between simu-
lation replicates to the tree topology and the rate distribution.
The simulations included 3,278 data sets that cover a wide
range of distributional representations of a (supplementary
fig. S3, Supplementary Material online), whereas our initial
simulations examined only a single rate distribution for a
given value of CV. A similar pattern of statistical behavior
emerges from this set of simulations (fig. 5A): BUSTED has
a rate of false positives that grows rapidly as a function of
CVðaÞ and reaches 100% for CVðaÞ > 0:5, whereas
BUSTED[S] maintains roughly nominal error rates for the
entire range of CVðaÞ. FPR behavior is not notably influenced
by the higher moments of the CVðaÞ distribution, or by the
fraction or extent of “extreme” rates (fig. 5B).

As a further confirmation of the generality of this behav-
ior—this time with a “sites model” rather than a “branch-site
model”—we also analyzed our simulated data using the M1a-
M2a procedure of Wong et al. (2004) described in Materials
and Methods. While nominal FPRs are observed when no SRV
is present, the Type I error rate pathology is even more ex-
treme for M1a-M2a than it was for BUSTED: 100% FPRs are
reached with even lower levels of SRV (supplementary fig. S8,
Supplementary Material online). A recently published work
(Davydov et al. 2019) showed high FPRs for several positive
selection tests in the presence of SRV (including one method
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that was essentially a different parameterization of BUSTED),
further supporting this conclusion. More generally, Davydov
et al. (2019) showed that a variety of modeling decisions can
have substantial effects on FPRs for selection tests. These
methods do not seem to have the robustness that has
been widely suspected.

Power
Figure 4C–F allows us to study the impacts of SRV on the
statistical power of the two methods. For data simulated
under strong selection (x3 ¼ 6), both methods have power
near 100%. At a more moderate level of selection
(x3 ¼ 2:077) shorter sequences result in lower power across
all levels of SRV. Although BUSTED has considerable power in
this setting (panel C), comparison of its behavior to that in
panel A (x3 ¼ 1) reveals that much of the apparent power is
likely an artifact arising from the presence of SRV. In other
words, if we “subtract out” BUSTED’s false positives from
panel A, the power curves in panel C would look very
much like those of BUSTED[S] in panel D. BUSTED[S] does
lose power when high levels of SRV are present as seen in
panel D, echoing the behavior seen in the Selectome analysis.
However, BUSTED[S] does not suffer from power loss com-
pared with BUSTED for low to moderate levels of SRV, where
Type I errors of the methods are comparable.

The impact of this behavior is not merely theoretical, it has
already been demonstrated to alter inferences from published
analyses. Examples for site-level rate inference were
highlighted in (Kosakovsky Pond and Muse 2005), and we

showed above an example of a “hypervariable” site in the
Rhodopsin gene alignment at codon 213 (fig. 3).
Discordantly classified sites are also relatively frequent in
other example data sets (table 2). Intuitively, a site where
both synonymous and nonsynonymous rates are high, but
with x � 1, may be placed in the high x category by meth-
ods such as BUSTED or M1a-M2a that cannot accommodate
variable synonymous rates. Recent elegant work by Jones et al.
(2018) on what they call phenomenological load on model
parameters revealed the tendency for available model param-
eters to absorb unmodeled sources of variation when the
model is misspecified. In the current case, these tests of se-
lection seemingly absorb some of the synonymous rate var-
iation into elevated values of x parameters.

Jones et al. (2018) further examined whether or not SRV
itself could be attributed to phenomenological load, that is, is
detection of SRV merely an artifact of another process that
the model ignores? Encouragingly, these authors found that,
according to their framework, SRV appeared to be a genuine
effect in biological data sets examined. Our work supports
their finding, showing that the estimated magnitude of SRV is
not obviously explained by simple biological factors.

Discussion
That synonymous substitutions are not fully neutral is no
longer a matter of debate. The combination of empirical
and simulation results above demonstrates that the necessity
of modeling synonymous rate variation in computational
screens for natural selection should also be a settled issue.

FIG. 4. Method performance with simulated data of 31 sequences as a function of the amount of synonymous rate variation (CVðaÞ) and the
strength of selection (x3). For each combination of CVðaÞ and x3, we simulated 100 alignments and applied BUSTED and BUSTED[S]. x3 ¼ 1—
neutral evolution (null) (A, B), x3 ¼ 2:077—moderate selection (C, D), and x3 ¼ 6—strong selection (E, F). Data were simulated with 3% of
branch-site combinations under selection. Plotted points are the frequencies of simulated data sets where selection was inferred (i.e., False Positive
Rate [FPR] when x3 ¼ 1, Power when x3 > 1). Line colors indicate sequence length. Note that the horizontal axis is not linear in scale.
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We developed a new method (BUSTED[S]) by adding the
ability to account for SRV to an existing method for detecting
gene-level episodic selection (BUSTED), and used it to screen
a large collection of vertebrate gene alignments for evidence
of selection. This screen revealed that over 50% of positive
results found by the SRV-agnostic BUSTED disappear when
SRV is explicitly modeled. There are two obvious explanations
for this discrepancy: Either BUSTED suffers from a high rate of
false positive in the presence of SRV, or BUSTED[S] suffers
from low power. Extensive simulation studies of these meth-
ods showed that the presence of sufficient levels of SRV
quickly caused BUSTED to have FPRs near 100%, a result
that invokes the memory of maximum parsimony’s
“positively misleading” behavior when the molecular clock
assumption is violated (Felsenstein 1978). While BUSTED[S]
did show somewhat reduced power compared with BUSTED,
the reduction was relatively small unless exceptionally high
levels of SRV were present. A large majority of the Selectome
data sets had CV(SRV) values <1.5, well below the point

where BUSTED[S] begins to lose power. In contrast, the ma-
jority of Selectome data sets also had levels of SRV above 0.5,
the point at which BUSTED’s FPRs sharply increase.

This combination of empirical and simulation results
strongly suggests that a large fraction of significant BUSTED
tests in the Selectome analyses are, in fact, false positives. The
finding that M1a-M2a also shows potentially catastrophic
Type I error rate problems, coupled with the prevalence of
SRV in real data, raises the more general concern that many
reported instances of positive selection in the literature might
actually be false positives. Consequently there is no compel-
ling reason not to model SRV when conducting selection
analyses: If there is not too much SRV in the data, we obtain
results that are nearly identical to traditional models, and if
there is enough (a reasonable a priori assumption based on
empirical studies), then the cost of ignoring SRV is an unac-
ceptably high rate of false positives. Because the addition of
SRV to standard codon models is not unduly computation-
ally taxing (�3� 5� longer run times in BUSTED[S], for

FIG. 5. Method performance on null simulations with varied distributions of rates. (A) FPRs of BUSTED and BUSTED[S] as a function of simulated
CVðaÞ on neutrally evolving data; the distributions of rates used for simulations were varied and derived from a large empirical data set of avian
genes analyzed by Shultz and Sackton (2019). The solid curve is the rate for nominal P¼ 0.05, and the shaded areas delimit the corresponding
values for P¼ 0.01 (lower bound) and P¼ 0.1 (upper bound). The number of simulations used to estimate rates for each bin of CVðaÞ is reflected in
the size of the circle. Note the nonlinear scale on the y-axis. (B) The rate at which BUSTED makes false positive errors (at nominal P¼ 0.05), as a
function of the a values used in the simulations. The plot is restricted to data sets where CVðaÞ > 0:4, which is the value where the catastrophic
loss of false positive rate control begins. Because the distributions were drawn from empirical alignments, they reflect what is encountered in
biological data but do not fill the parameter space completely; because the a distribution must have unit mean, some combination of rates and
frequencies are not feasible (e.g., the maximum frequency of a3 > 1 cannot exceed 1=a3).
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example), we strongly encourage anyone interested in studies
of gene-wide selection to switch to SRV-enabled models.

The empirical and simulation work in this paper adds to a
growing body of literature strongly suggesting that the mod-
els underlying these methods—not only BUSTED, but almost
certainly any positive selection method that assumes the ab-
sence of SRV—are importantly wrong and need to be revised.

Materials and Methods

Statistical Methodology
We adapted the existing BUSTED test of positive selection
(Murrell et al. 2015) to account for the presence of SRV and
call the new method BUSTED[S]. To explore the generality of
our findings about FPRs in the presence of SRV we also in-
vestigated a second existing test of selection, the M1a versus
M2a comparison from Wong et al. (2004), modified slightly to
employ MG94 substitution models.

BUSTED[S] is a straightforward extension of BUSTED
(Murrell et al. 2015). The nucleotide substitution process is
modeled using the standard finite state continuous time
Markov process approach of Muse and Gaut (1994), with
entries of the instantaneous rate matrix Q corresponding to
substitutions between sense codons i and j denoted as

qij ¼ f
ashijp

p
j 1� step synonymous change;

asxbshijp
p
j 1� step nonsynonymous change;

0 otherwise:

The hij (with hij ¼ hji) are parameters governing nucleotide
substitution biases. For example, hACT;AGT ¼ hCG and be-
cause we incorporate the standard nucleotide GTR model
there are five identifiable hij parameters:
hAC; hAT; hCG; hCT, and hGT, with hAG � 1. The position-
specific equilibrium frequency of the target nucleotide of a
substitution is pp

j ; for example, it is p2
G for the second-position

change associated with qACT;AGT. The pp
j and the stationary

frequencies of codons under this model are estimated using
the CF3� 4 procedure (Kosakovsky Pond et al. 2010), adding
nine parameters to the model. The ratio of nonsynonymous
to synonymous substitution rates for site s along branch b is
xbs, and this ratio is modeled using a 3-bin general discrete
distribution (GDD) with five estimated hyperparameters:
0 � x1 � x2 � 1 � x3; p1 ¼ Pðxbs ¼ x1Þ, and
p2 ¼ Pðxbs ¼ x2Þ. The procedure for efficient computation
of the phylogenetic likelihood function for these models was
described in Kosakovsky Pond et al. (2011). The quantity as is
a site-specific synonymous substitution rate (no branch-to-
branch variation is modeled) drawn from a separate 3-bin
GDD. The mean of this distribution is constrained equal to
one to maintain statistical identifiability, resulting in four
estimated hyperparameters: 0 � ca1 < a2 ¼ c � ca3;
f1 ¼ Pðas ¼ a1Þ, and f2 ¼ Pðas ¼ a2Þ, with c chosen to en-
sure that Efasg ¼ 1. Typical implementations, including
ours, allow the number of a and x rate categories to be
separately adjusted by the user, for example, to minimize
AICc or to optimize some other measure of model fit. The
default setting of three categories generally provides a good
balance between fit and performance when using this GDD

approach for modeling. Our HyPhy implementation of
BUSTED[S] will warn the user if there is evidence of model
overfitting, such as the appearance of rate categories with
very similar estimated rate values or very low frequencies.

The BUSTED[S] procedure for identifying positive selection
is the likelihood ratio test comparing the full model described
above to the constrained model formed when x3 is set equal
to 1 (i.e., no positively selected sites). Critical values of the test
are derived from a 50 : 50 mixture distribution of v2

0 and v2
2.

Note that this asymptotic statistic differs from the 3-compo-
nent mixture used by Murrell et al. (2015); the simulation
studies performed in the current study suggest that this less
conservative mixture is sufficient to maintain nominal Type I
errors. Both BUSTED[S] and BUSTED analyses in the current
work use the same 50 : 50 mixture test statistic. BUSTED[S]
reduces to BUSTED by setting as ¼ 1, that is, by placing all
the mass of the synonymous rate heterogeneity distribution
at a¼ 1. The method is implemented as a part of HyPhy
(version 2.5.1 or later). BUSTED[S] is available for free public
use on the Datamonkey webserver (Weaver et al. 2018) at
https://www.datamonkey.org/BUSTED (last accessed
February 24, 2020).

Selectome Data and Alignments
Data and alignments for the empirical analyses come directly
from version 6 of the Selectome database (Moretti et al.
2014). NEXUS-format files used for analysis here can be down-
loaded from data.hyphy.org/web/busteds/ (last accessed
February 24, 2020).

Simulation Data
Simulated data sets can be downloaded from data.hyphy.org/
web/busteds/ (last accessed February 24, 2020). See supple-
mentary figures S9 and S10, Supplementary Material online
for model tree information. Additional information is present
in the README.md file, including details of how to generate
alignments under the BUSTED[S] models.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Supek F, Mi~nana B, Valcárcel J, Gabaldón T, Lehner B. 2014. Synonymous
mutations frequently act as driver mutations in human cancers. Cell
156(6):1324–1335.

Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL.
2018. Datamonkey 2.0: a modern web application for characterizing
selective and other evolutionary processes. Mol Biol Evol.
35(3):773–777.

Wen P, Xiao P, Xia J. 2016. dbDSM: a manually curated database for
deleterious synonymous mutations. Bioinformatics
32(12):1914–1916.

Wong WSW, Yang Z, Goldman N, Nielsen R. 2004. Accuracy and power
of statistical methods for detecting adaptive evolution in protein
coding sequences and for identifying positively selected sites.
Genetics 168(2):1041–1051.

Yang Z. 1998. Likelihood ratio tests for detecting positive selection and
application to primate lysozyme evolution. Mol Biol Evol.
15(5):568–573.

Yang Z, Nielsen R. 2008. Mutation-selection models of codon substitu-
tion and their use to estimate selective strengths on codon usage.
Mol Biol Evol. 25(3):568–579.

Yang Z, Nielsen R, Goldman N. 2009. In defense of statistical methods for
detecting positive selection. Proc Natl Acad Sci USA. 106(36):E95.

Yang Z, Nielsen R, Goldman N, Pedersen A-MK. 2002.
Codon-substitution models for heterogeneous selection pressure
at amino acid sites. Mol Biol Evol. 19(1):49–57.

Yokoyama S, Tada T, Zhang H, Britt L. 2008. Elucidation of phenotypic
adaptations: molecular analyses of dim-light vision proteins in verte-
brates. Proc Natl Acad Sci USA. 105(36):13480–13485.

Zaheri M, Dib L, Salamin N. 2014. A generalized mechanistic codon
model. Mol Biol Evol. 31(9):2528–2541.

Zhou T, Gu W, Wilke CO. 2010. Detecting positive and purifying selec-
tion at synonymous sites in yeast and worm. Mol Biol Evol.
27(8):1912–1922.

Synonymous Rate Variation Increases False Positives . doi:10.1093/molbev/msaa037 MBE

2439


	msaa037-TF1
	msaa037-TF2

