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Linking metabolic phenotypes to pathogenic traits among
“Candidatus Liberibacter asiaticus” and its hosts
Cristal Zuñiga 1, Beth Peacock2,10, Bo Liang1,3,10, Greg McCollum4, Sonia C. Irigoyen5, Diego Tec-Campos1,6, Clarisse Marotz1,
Nien-Chen Weng1, Alejandro Zepeda6, Georgios Vidalakis2, Kranthi K. Mandadi 5,7, James Borneman2✉ and Karsten Zengler1,8,9✉

Candidatus Liberibacter asiaticus (CLas) has been associated with Huanglongbing, a lethal vector-borne disease affecting citrus
crops worldwide. While comparative genomics has provided preliminary insights into the metabolic capabilities of this uncultured
microorganism, a comprehensive functional characterization is currently lacking. Here, we reconstructed and manually curated
genome-scale metabolic models for the six CLas strains A4, FL17, gxpsy, Ishi-1, psy62, and YCPsy, in addition to a model of the
closest related culturable microorganism, L. crescens BT-1. Predictions about nutrient requirements and changes in growth
phenotypes of CLas were confirmed using in vitro hairy root-based assays, while the L. crescens BT-1 model was validated using
cultivation assays. Host-dependent metabolic phenotypes were revealed using expression data obtained from CLas-infected citrus
trees and from the CLas-harboring psyllid Diaphorina citri Kuwayama. These results identified conserved and unique metabolic
traits, as well as strain-specific interactions between CLas and its hosts, laying the foundation for the development of model-driven
Huanglongbing management strategies.
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INTRODUCTION
Candidatus Liberibacter asiaticus (CLas) has been associated with
Huanglongbing (HLB), or citrus greening, a devastating vector-
borne disease causing millions of dollars of agricultural damages
every year1. CLas species infect the phloem of some plants in the
family Rutaceae (e.g., citrus, Murraya paniculata) and Solanaceae
(e.g., potato)2. HLB causes poor vegetative growth, fruit drop,
diminished fruit quality, and tree decline3–7.
CLas infections have been documented across most citrus-

producing areas in Asia, the Americas and Africa5,8, and are
projected to spread further9,10. CLas is naturally spread in citrus
through a psyllid host, Diaphorina citri Kuwayama10. The basic HLB
management scheme is based on the use of HLB-free nursery
stock, inoculum reduction by removal of HLB-affected trees and
insecticide treatments for control of psyllid populations11. In
addition, various combinations of citrus rootstocks and inter-
stocks11, cocktails of antibiotics12 and small molecule bacterial
inhibitors13, or brassinosteroids14, as well as thermotherapy and
nanoemulsion technology15 have been deployed. However, none
of these options has been proven to be very successful,
economically viable, or environmentally sustainable, making HLB
a major threat to the citrus industry worldwide.
Mathematical models have been critical in developing treat-

ment options for infectious diseases16 and to understand complex
metabolic capabilities17. These models could provide useful
information for best practices to treat or prevent HLB. However,
few detailed models of HLB currently exist18. To identify novel
alternatives for combatting HLB, detailed knowledge about the
metabolic dependencies and capabilities of the pathogen (CLas) is

required. While CLas was identified as the likely infectious agent
responsible for HLB in 1994 using molecular methods19, CLas has
never been consistently cultivated axenically in vitro, limiting our
ability to functionally characterize this pathogen. On the other
hand, Liberibacter crescens, the closest culturable relative to CLas,
was isolated and cultured in vitro from the phloem sap of
defoliating mountain papaya in Puerto Rico20,21. Advances in
metagenomic sequencing have enabled the assembly of genomes
from several CLas strains obtained from HLB-infected citrus22.
Genome sequences are the primary input used to reconstruct
genome-scale metabolic models. These models have been
successfully validated as a systems biology framework and
deployed for a variety of uses. For example, models have been
utilized for elucidating fundamental metabolic processes23–26,
optimizing culture media and growth conditions27,28, and have
been essential for metabolic engineering efforts29. These meta-
bolic models are genome-scale knowledge databases, which
contain manually curated annotation related to gene-protein-
reaction associations for all possible metabolic reactions inside a
cell. Reconstructed models have been used to understand and
channel the metabolism of different pathogenic and non-
pathogenic microorganisms16,30, as well as to contextualize
metabolic states based on omics data24. Here, we reconstructed
genome-scale models for seven Liberibacter strains and evaluated
their physiology and metabolic response. Furthermore, we used
in vivo expression data to determine strain-specific interactions of
CLas while hosted by the psyllid Diaphorina citri Kuwayama or
Citrus spp.
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RESULTS
Genome characteristics and model properties
Metabolic models were reconstructed based on complete
genomes of the CLas strains gxpsy, Ishi-1, psy62, and almost
complete genomes obtained by shotgun sequencing of strains A4,
FL17, and YCPsy. Strains A4, FL17, Ishi-1, psy62, and YCPsy were
obtained from citrus, while sequences for gxpsy were obtained
from the psyllid. Additionally, we reconstructed a comparative
metabolic model using the complete genome sequence of the
microorganism L. crescens BT-1 (BT-1), the closest culturable
microorganism to CLas (Supplementary Fig. 1a). All genome
sequences were obtained from the PATRIC database31. In total,
seven genome-scale metabolic models were reconstructed and
the genomic and metabolic content of each strain was compared.
Figure 1 details the main characteristics of the genomes and
resulting models. The average number of annotated proteins was
1,185 across all CLas genomes and 1422 for BT-1. We calculated
the percent protein sequence identity among the seven
Liberibacter strains. The CLas genomes had around 75% identity
to L. crescens BT-1 (Fig. 1a) and over 98% identity to each other
(Fig. 1b).
A comprehensive organization of all available data and

information on Liberibacter strains is crucial for overcoming the
devastating impact of HLB. To this end, we created metabolic
models that are also referred to as computational knowledge
databases, which compile manually curated annotations for each
CLas strain and L. crescens BT-1. After extensive curation of all

models, a total of 1751 protein sequences (417 unique), previously
annotated as hypothetical, were associated with a metabolic
reaction or transport reaction in these models. A list of these
reactions and their gene-protein-reaction associations is provided
in Supplementary Table 1. Manual curation was followed by gap
filling (Fig. 1c) and conversion of the reconstructions into
mathematical models using the COBRA Toolbox32. The final
model properties are shown in Table 1. The number of
metabolites and reactions shared by all CLas models, defined as
“Pan-capabilities”, were 447 and 601, respectively (Fig. 1d).
Supplementary Fig. 2 shows a comparison of metabolites and
reactions across the reconstructed models. The metabolic model
of L. crescens BT-1 contained ~15% more metabolic reactions and
metabolites than the CLas strains, hinting at a broader metabolic
capability of L. crescens. Around 30% of reactions present only in
BT-1 were associated with amino acid metabolism (e.g., methio-
nine, lysine, glycine, serine and threonine metabolism). Another
~30% of those reactions were associated with the cell envelope
(e.g., transporters and fatty acids). The rest of the reactions were
divided among carbohydrate, glycan, and nucleotide metabolism
(see Supplementary Table 2). We found that auxotrophies are CLas
strain-specific, especially auxotrophies for L-proline, L-serine, and L-
arginine (Supplementary Fig. 2). All models predicted auxotro-
phies for vitamins (e.g., riboflavin, biotin, thiamin, choline) and
steroids (e.g., pantothenate, taurine, L-carnitine, quinate) (Supple-
mentary Fig. 2).
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Fig. 1 Properties of genomes and constraint-based metabolic models. a Percentage of protein sequence identity estimated using whole
genome sequences of Candidatus Liberibacter asiaticus (CLas) strains and L. crescens BT-1. The identity between each CLas strain and BT-1
varied from 60–70%. b Protein-homology identity among CLas strains, which were over 99% identical. c Example of pathway completeness
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Validation of the Liberibacter crescens BT-1 model and analysis of
Candidatus Liberibacter asiaticus models
Cruz-Munoz et al.33 recently reported citrate as the preferred
carbon and energy source for L. crescens BT-1. The authors
reported the growth of L. crescens BT-1 on the complex media BM-
7 by measuring optical density. They also tested various media
compositions (M13, M14, and M15), and developed an optimized
defined medium (M15, containing citrate), which improved the
growth rate33. Using OD measurements we determined the
growth rates of L. crescens BT-1 while growing in BM-7, reaching
a growth rate of 0.011 ± 0.007 1/h, which results in a 63 h
generation time. Defined media compositions, such as M13, M14,
and M15 can also support growth of this strain, resulting in growth
rates of 0.009 ± 0.0006 1/h, 0.0081 ± 0.0004 1/h, and 0.012 ± 0.003
1/h, respectively.
These growth rate phenotypes observed experimentally were

reproduced in silico by the BT-1 model, obtaining growth rate
predictions of 0.011, 0.009, 0.011, and 0.015 1/h for the culture
media BG-7, M13, M14, and M15, respectively. Complete data and
calculations about constraints are shown in Supplementary Table
3. Growth rate predictions using M15 media with varying citrate
concentrations are shown in Fig. 2a, along with the corroborating
experimental results33. To determine the impact of amino acids
and intermediaries of the TCA cycle on growth rate, we
interrogated the model for metabolites most affecting the growth
rate of L. crescens. We found that citrate, aspartate, and serine have
an interwoven growth effect. Simulations performed while varying
serine, aspartate, and citrate uptake rates are shown in Fig. 2b,
highlighting a proportional increase among predicted growth
rates and constrained uptake rates. Predicted trends were
confirmed experimentally for citrate and serine individually and
in combination (Fig. 2c); however, increased aspartate additions
reduced the growth of BT-1 experimentally. These aspartate
phenotypes can be attributed to high-metabolic regulation since
aspartate is link to nine operons in BT-134.
CLas models were evaluated using different culture media

compositions to unravel the most important metabolites con-
tributing to CLas growth. The culture media compositions tested
for L. crescens BT-1 were used as constraints to simulate CLas
growth as shown in Supplementary Table 3. Simulations using
single carbon sources (uptake rate of 15 mmol/gDWh) demon-
strated that none of the CLas strains were able to grow,
suggesting that co-metabolism with the host could play an
important role for these bacteria. Modeling results showed that
arginine, glucose, glutamate, glutamine, proline, ornithine, citrate,
and alpha-ketoglutarate could each support the growth of L.
crescens BT-1 individually. However, we found that CLas strains
were highly dependent on co-metabolism to stimulate growth,
necessitating the combination of two or more carbon sources at
the same time (e.g., glucose and glycine, or aspartate, or serine, or
succinate). The growth rate improvement due to the addition of

single metabolites in the culture media containing glucose was
evaluated for each metabolite (Supplementary Table 3). Co-
metabolism simulations were performed by assessing the growth
rate predictions while varying the uptake rates of serine, aspartate,
and citrate in a continuous gradient from 0 to 45 g/gDW/h.
Experimental results from L. crescens suggest that citrate and
serine are the main drivers of its growth, followed by aspartate
(Fig. 2c).
The role of each metabolite in the metabolic model was

evaluated across all models (Supplementary Fig. 3). We found that
all CLas strains have similar simulated growth rates across all
media compositions (i.e., BM-7, M13, M14, and M15). However,
when the effect of each metabolite was analyzed independently,
we found that media composition affected CLas growth rates
differentially (Supplementary Fig. 3), suggesting strain-specific
phenotypes. Also, the growth rates predicted for L. crescens BT-1
differed from those predicted for the six CLas strains (Supple-
mentary Fig. 3).
Part of the well established modeling protocols is the

determination of the average metabolite connectivity32,35 and
respective contributions to growth. We evaluated the variation of
connectivity using our seven reconstructed models, determining
potential metabolites with strong role in the metabolism.
Metabolite connectivity highlighted differences among the
models for the six CLas strains (Fig. 3a). For example, proline
was connected (based on bubble size) to six reactions in the gxspy
model, but to only five reactions in the other CLas models, while
the opposite was observed for methionine and malate (Supple-
mentary Table 4). The connectivity network enabled us to
estimate the contribution of each metabolite to growth rate,
and thereby calculate the essentiality fraction (relative change in
growth rate). Figure 3a summarizes modeling predictions of the
individual carbon sources for the metabolic models in different
culture media compositions, highlighting the differences in
predicted growth rate by the presence of specific metabolites
(shaded areas in Fig. 3a). Highly connected metabolites, such as
glutamine, glutamate, serine, and alpha-ketoglutarate, had high
essentiality fractions, around 0.5-0.7 in both the CLas and L.
crescens BT-1 models. However, the only metabolite with the same
essentiality fraction as glucose was glycine for L. crescens BT-1. The
essentiality fraction of metabolites, such as succinate, fumarate,
citrate, urea, tryptophan, arginine, and riboflavin, were dramati-
cally lower for L. crescens compared to the CLas strains. The
metabolites predicted to increase growth rate for each of the four
media compositions are shown in a Venn diagram (Fig. 3b).
Glucose and nine amino acids improved the simulated CLas
growth rates in all culture media, whereas alpha-ketoglutarate
(akg) and urea were predicted to improve growth rate only for the
BM-7 media. Overall, modeling predictions showed that serine,
malate, fumarate, and aspartate will improve the growth rate of
CLas strains in culture medium M13, M14, and, M15. On the other

Table 1. Properties of the genome-scale metabolic models.

Microorganism Genome ID Model ID Genes Reactions Metabolites

Candidatus Liberibacter asiaticus

A4 34021.4 A4 283 840 837

FL17 34021.11 FL17 272 818 807

gxpsy 1174529.3 gxpsy 276 815 807

Ishi-1 931202.3 Ishi-1 253 818 802

psy62 537021.9 psy62 285 818 807

YCPsy 34021.12 YCPsy 279 814 805

Liberibacter crescens

BT-1 1215343.1 BT-1 372 892 887
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hand, predicted metabolites limiting the growth rate are
nicotinate, pantothenate, riboflavin, and aminobenzoate when
BM-7 culture media was used.
While these results hint at specific metabolites that could

improve CLas growth rates, they also suggest that phenotypic
outcomes depend on the media composition to which each
metabolic model is being subjected. The heatmap in Fig. 3c shows
the predicted number of metabolites produced when biomass
production is optimized. For microorganisms such as CLas gxpsy
and Ishi-1 the media composition can strongly affect the ability of
a strain to synthesize metabolites, varying from 60 to over 220
metabolites. The M15 media composition resulted in maximal
metabolite production for every model, except for CLas gxpsy. The
culture medium BM-7 resulted in a similar number of produced
metabolites for all seven models. We also evaluated the growth
phenotype under eight different carbon sources assayed experi-
mentally, predicting accurately the growth rate for oxoglutarate,
glucose, and malate and an overall growth increase for fructose,
fumarate, malate, maltose, and succinate (Fig. 2d). The BT-1 model
could explain up to 71% (Pearson correlation, p-value < 0.0041) of

the changes in the observed growth rate for the different carbon
sources33.
To test this experimentally with CLas, a cocktail of predicted

metabolites was added to in vitro citrus hairy root cultures
infected with CLas. Culture media B5, which is used to propagate
the hairy root cultures, was supplemented with three concentra-
tions (0.1, 1, or 5 mM) of an amino acid cocktail containing glycine,
serine, proline, aspartate, glutamine, and glutamate. Measure-
ments of CLas in the hairy root cultures obtained over the course
of seven days showed that the treatment of 1 mM significantly
improved CLas growth rate compared to 0.1 and 5mM
treatments, as well as controls (F= 5.99, Prob > F 0.01, df= 14)
(Fig. 3d).

Host-dependent constraints reveal activation of Candidatus
Liberibacter asiaticus pathways associated with pathogenic
phenotypes
After validating the L. crescens BT-1 genome-scale metabolic
model, we evaluated the response of CLas models using host-
specific RNA-sequencing data. Expression data was collected from
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phloem-enriched samples (referred to as phloem in the rest of the
paper) from three Citrus cultivars (Valencia orange, Washington
navel orange, and Tango mandarin) and from the alimentary
canals of Diaphorina citri (psyllid). Using RNA-sequencing reads we
generated strain-specific counts that were used to constrain the
boundaries of the reactions in each model. Supplementary Table 5
shows statistics about data preprocessing of RNA-seq data such as
number of raw reads and total counts generated after trimming
reads aligned to the citrus or psyllid genomes. Supplementary

Figs 4 and 5 show the expression profiles for all CLas strains and
the differentially expressed genes using a cut off of p-value < 0.05
(t-test).
As expected, gene expression fold change between phloem and

psyllid samples was normally distributed across genes. The
maximum fold change observed was 28. Figure 4a shows the
distribution of the flux ratio used to constrain the CLas models
from each host, as well as the fold change between samples from
the two hosts obtained from RNA-sequencing data. Data from the
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sample was measured four times (0, 3, 5, and 7 days). The ANOVA function tests the hypothesis that the samples (4–5 total) are drawn from
populations with the same mean against the alternative hypothesis that the population means are not all the same. Standard ANOVA stats are
given in each panel. Box plots, the central mark indicates the media and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively, marked with asterisk (*) are significantly different from the red boxplot(s) of the same panel.
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individual phloem and psyllid samples were combined into two
separate datasets that were used to constrain the models, giving
insight into specific metabolic traits operated by CLas under each
host. Constrained models are provided in at https://github.com/
cristalzucsd/Liberibacter.
Host-specific simulations performed using the CLas models (A4,

FL17, gxpsy, Ishi-1, psy62, and YCPsy) resulted in a growth rate

decrease of up to 68% and 74% for phloem and psyllid,
respectively, in comparison to media-constrained conditions in
which the predicted and experimental growth rate was around
0.013 ± 0.0009 1/h. Phloem-constraint flux distributions revealed
increased amino acid metabolism, fatty acid metabolism, gluco-
neogenesis, nitrogen metabolism, one-carbon pool of folate,
nicotinamide and nicotinate metabolism (Fig. 4b). Network
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evaluation showed that these pathways are interconnected
by metabolites, such as formate, glycine, and 5,10-methylenete-
trahydrofolate, linking these subsystems with possible pathogenic
traits.
On the other hand, psyllid-constraint flux distributions revealed

increased amino acid metabolism, cell envelope, glycolysis,
pyruvate metabolism, and TCA cycle (Fig. 4b). The reactions
associated with the cell envelope catalyze the synthesis of
membrane lipids (enoyl reductase, EC 1.3.1.9) and oligosacchar-
ides (DTDP-4-dehydrorhamnose 3,5-epimerase, EC 5.1.3.13,
DTDPglucose 4,6-dehydratase, EC 4.2.1.46, and Glucose-1-
phosphate thymidylyltransferase, EC 2.7.7.24). These oligosacchar-
ide enzymes also participate in the metabolism of nucleotide
sugars, streptomycin biosynthesis, and polyketide sugar biosynth-
esis. Polyketide biosynthesis is closely related to the additional
availability of sugars and organic acids (e.g., pyruvate, succinate,
malate), which are products of CLas metabolism.
Figure 4c shows the predicted flux distributions when BT-1 and

CLas models are differentially constrained (media and expression
data of phloem or psyllid). The overall flux distributions across all
constraints showed that subsystems, including glycolysis, trans-
porters, TCA cycle, pyruvate metabolism, and nitrogen metabolism
were highly activated, which was the opposite of riboflavin
metabolism, steroid biosynthesis, and cysteine and methionine
metabolism. Furthermore, the pentose phosphate pathway was
predicted to be active only under host-constraints while glycine,
serine, and threonine metabolism were reduced in flux.
Broadly, CLas models constrained with phloem expression data

clustered with models constrained with culture media M15 and
CLas models constrained with psyllid expression data clustered
with the flux distribution of BT-1 (Fig. 4c). These findings provide
insight into potential metabolic stages that could facilitate CLas
cultivation in vitro when obtained from the psyllid host.

Predicting genetic targets for HLB management
Identification of potential CLas essential genes can lead to the
development of HLB management strategies by designing
molecules that specifically block or inhibit these gene products.
We simulated single-gene knockouts, changing the reaction
bounds of all reaction(s) associated to each gene, while
maintaining the host-dependent constraints for the rest of the
network. Figure 5 shows the phenotypic changes when media,
psyllid RNA-seq data and phloem RNA-seq data constraints were
applied to each of the six CLas models and the BT-1 model.
We found that host-dependent constraints not only affect

growth phenotypes in different environments, but also affect
gene essentiality by strain and activated number of reactions. The
CLas strain YCPsy was the most sensitive, with 94 essential genes
in comparison with the strains gxpsy, Ishi-1, psy62, FL17, and A4,
which had 93, 91, 90, 89, and 87 essential genes, respectively (see
Supplementary Fig. 7). Overall, the number of essential genes
increased around 27 ± 2% because of the host-constraints
imposed on the models compared to media constraints (Fig. 5a,
green bars). Most of the essential genes common across the six
CLas strains are involved in purine and pyrimidine metabolism,
panthothenate and CoA biosynthesis, fatty acid metabolism and
gluconeogenesis (Supplementary Fig. 7). However, when we
evaluated the unique differences by subsystem across the six
CLas strains, we found that genes involved in fatty acid
metabolism, gluconeogenesis, glycine, isoleucine, leucine, serine,
threonine, and valine metabolism, the TCA cycle, transport
reactions, and urea cycle are the most sensitive and provide
potential targets for the development of HLB management
strategies (Fig. 5b). A full list of genes by subsystem is given in
Supplementary Tables 6–8.
Previously, a study of random transposon mutagenesis of L.

crescens suggested that 105 metabolic genes were essential36.

Genome-scale models contain 71 of those genes and predict that
18 of those genes are essential, 12 reduce the growth rate, and 41
are not essential (Supplementary Table 8). We then compared the
18 essential genes that were identified both experimentally and in
silico with genes overexpressed during CLas infection to pinpoint
potential targets for HLB mitigation. During CLas infection of C.
sinensis the enzymes DTMP kinase (EC 2.7.4.9), inorganic dipho-
sphatase (3.6.1.1), coproporphyrinogen oxidase (EC 1.3.3.3), and
protoporphyrinogen oxidase (EC 1.3.3.4) were overexpressed (t-
test, p-value < 0.05, fold change > 3) and identified as essential.
Additionally, we compared all predicted essential genes (91) with
genes overexpressed (t-test, p-value < 0.05 and fold change > 10,
n= 3) in the citrus cultivars Valencia and Washington navel
orange (C. sinensis L. Osb.) and Tango mandarin (C. reticulata
Blanco) and the CLas enzymes phosphoglycerate mutase (EC
5.4.2.12), dihydroorotic acid (menaquinone-8) (EC 1.3.5.2),
ribonucleoside-diphosphate reductase (UDP) (glutaredoxin) (EC
1.17.4.1), and glutaredoxin reductase (EC 1.20.4.1) were selected.
Together, these results suggest eight distinct enzymes, whose
inhibition could reduce CLas pathogenicity. The full dataset of
metabolic reactions that are potential genetic targets in the CLas
strains studied here are shown in Supplementary Table 9 and
Supplementary Fig. 6.

DISCUSSION
Constraint-based modeling allowed us to elucidate metabolic
changes in Candidatus Liberibacter asiaticus (CLas) during growth
in the psyllid host Diaphorina citri Kuwayama and infection of the
plant host Citrus spp. This work represents a systems biology
modeling approach to understand the metabolic role of CLas, the
putative vector-borne causal pathogen of HLB, in citrus infection.
We generated high-quality, manually curated genome-scale
metabolic models of the six CLas strains A4, FL17, gxpsy, Ishi-1,
psy62, and YCPsy (Fig. 1). All models combine genomic and
biochemical information with available literature resources to
date. Manually curated models are characterized by an unprece-
dented quality in annotation16,17,29, since they dramatically reduce
the amount of possible misannotation caused by automated tools.
In metabolic models, annotation is referred to as gene-protein-
reaction associations. Compared to the genome annotations,
~24–28% of the gene-protein-reaction associations in the models
were improved during the manual curation process, increasing the
accuracy of predicted metabolic phenotypes (Supplementary
Table 1).
Metabolic models are broadly used because they can simulate

the metabolism of organisms with minimal experimental data,
such as substrate uptake rates32. When such data is not available,
it can be generalized using experimental data from closely related
organisms37. For this purpose, we reconstructed a model of L.
crescens BT-1, a closely related, culturable microorganism. We
generated constraints to simulate growth phenotypes based on
BT-1 experimental data33. The BT-1 model was validated by
accurately predicting growth rates across four culture media
compositions (i.e., BM-7, M13, M14, and M15) and multiple
substrates (e.g., fumarate, glucose, oxoglutarate) (Fig. 2). In
confirmation of these findings, citrate was recently discovered to
improve the growth rate of BT-1 experimentally33. In addition, we
experimentally confirmed our serine and other amino acid
predictions in L. crescens and in the CLas-hairy root-assays.
After successful validation of the BT-1 model we performed

simulations to understand CLas metabolism. We found an
interwoven effect of media composition on phenotypic traits,
such as growth rate and metabolic production capabilities, which
identified citrate and amino acids, such as glycine, serine, proline,
glutamine, and glutamate, as metabolites with a significant effect
on CLas and L. crescens BT-1 growth (Figs 2d and 3d). Furthermore,
it has been observed that metabolites, such as glycine, serine,
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citrate, glycine, glutamic acid, inositol, and malate, significantly
change their concentration during CLas habitation in the psyllid
host38 and citrate, histidine, phenylalanine, and sucrose during
infection of C. sinensis39.
Genes essential for L. crescens BT-1 growth in vitro that are

absent in CLas may be responsible for the failure of maintaining
CLas strains in culture40. The lack of these genes suggests that
CLas acquires aromatic amino acids, vitamins, saccharides, and
fatty acids from their hosts, as previously shown in other microbial
communities28. We identified over 109 metabolic reactions that
are present in L. crescens BT-1 but missing across all CLas strains
(Supplementary Table 2). Previous studies have also suggested
that CLas species lost the ability to synthesize proline, phenyla-
lanine, tryptophan, cysteine, tyrosine, and histidine in addition to
other translation components that may compromise regulatory
systems36,41. We confirmed all of these auxotrophies and found
that the proline, aspartate, arginine and serine auxotrophies are
CLas strain-specific. Additionally, we predicted auxotrophies for
steroids, cofactors and vitamins such as biotin, carnitine, choline,
coniferol, riboflavin, and thiamin (Supplementary Fig. 2).
Using genome-scale metabolic models, we focused on under-

standing the metabolic behavior of CLas when it inhabits its two
hosts. Application of modeling constraints based on CLas
expression data enabled simulation and identification of meta-
bolic changes at various functional stages, for example when CLas
inhabits the psyllid or the plant. In vivo data (i.e., metagenomics
and metatranscriptomics) are reliable sources of information for
modeling uncultivable microorganisms. Host-specific (psyllid or

plant expression data) constrained models predicted growth rates
~70% slower than media-constrained models. The predicted
growth rate in the psyllid was higher than in the plant, as was
previously observed experimentally42. These findings suggest
different behaviors of CLas are dependent on its host (Fig. 4). CLas
grows faster while inhabiting the psyllid, activating pathways
related to nucleotide sugar metabolism, streptomycin biosynth-
esis, polyketide sugar unit biosynthesis, and cell envelope
synthesis. Among these pathways, enzymes related to cell wall
oligosaccharide enzymes were identified by screening all pre-
dicted flux distributions. It has been observed that CLas uses these
enzymes to synthesize polysaccharides and thrive under different
environments, especially in the presence of competitive bacterial
biological agents43–45. These results suggest that in the psyllid
host, CLas may activate the synthesis of antibiotics and
antimicrobial precursors to compete with endogenous bacteria
in the psyllid gut. On the other hand, in the citrus phloem, CLas
may activate pathways that counteract plant defense mechan-
isms, such as the production of reactive oxygen species by NADPH
oxidase46,47, or the synthesis of antimicrobial peptides and long
chain fatty acids48,49 by activating reactions that depletes
intermediaries of these toxic metabolites (e.g., orotic acid
dehydrogenase, L-aspartate and glycolate oxidases). We also
found that fatty acid metabolism was highly activated in CLas
from citrus phloem samples, including enoyl-acyl reductase, which
has been associated with antibiotic resistance50.
Significant progress has been made toward understanding the

interactions between CLas and its hosts, and systems biology and
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omics tools can help to further unravel metabolic mechanisms
associated with HLB initiation and progression, as well as to
identify targets in CLas that can be used to develop HLB
management strategies. Our results are consistent with and
expand on prior findings. For example, other studies in L. crescens
have shown that supplementation of amino acids to the culture
media increases growth rates36. Gene essentiality simulations
(Fig. 5) agree with previous findings, revealing ABC transporters,
cell envelope biosynthesis, and fatty acid metabolism to be crucial
subsystems for CLas36,49,51. Additionally, we found genetic targets
in metabolic pathways whose inhibition may block the growth of
CLas, thus preventing spread of this destructive disease (Supple-
mentary Fig. 7). The systems biology tools presented here allow
for the simulation of thousands of conditions, by applying
environmental and/or genetic constraints, which reveal the
vulnerabilities of CLas across various environments and improve
our ability to guide future research and management efforts to
combat this pathogen.

METHODS
Draft model reconstruction and manual curation
Reconstructions are biochemically and genomically structured networks
that contain information about associations among genes, reaction
stoichiometry, and reaction reversibility. Here, we used a semi-
automated process to reconstruct high-quality metabolic models, which
comprises four fundamental steps: (i) creation of an automated draft
reconstruction, (ii) draft refinement by manual curation, (iii) conversion
from reconstruction to mathematical model, and (iv) model evaluation.
Semi-automatic reconstruction methods reduce building time, while

maintaining high-quality architecture and prediction accuracy52. This
method results in draft models, which require refinement through manual
curation. Draft models are generated based on protein-homology
comparison between each protein sequence in the genome of the target
microorganism (e.g., CLas) and the protein sequence of a manually curated
reference model(s).
The reference models used here were chosen from the BiGG Database53.

Supplementary Fig. 1 shows the phylogenetic relationships between
Liberibacter strains and bacteria with available reference models in the
repository. Pseudomonas putida KT2440, iJN74654 was the closest related
microorganism to Liberibacter, followed by Yersinia pestis CO92, iPC81555

and the model of Escherichia coli str. K-12 substr. MG1655, iML151556.
Table 1 shows the genome IDs of the protein sequences of CLas strains A4,
FL17, gxpsy, psy62, YCPsy and L. crescens BT-1, which were used as input to
The COBRA32 and RAVEN Toolboxes57 for MATLAB (The MathWorks Inc.,
Natick, MA).
Each metabolic reaction in the reconstructed models was manually

curated for their correct gene-protein-reaction association (GPR) using
protein BLAST58 to compare protein sequences between each strain of
Liberibacter in the multi-strain model with sequences of E. coli, P. putida,
and Y. pestis using UniProtKB/Swiss-Prot databases59. Transporter protein
sequences were identified and compared using the TCBD database60.
Metabolic reactions where no gene association could be found underwent
another round of curation, where literature was reviewed to find evidence
for the presence/absence of these proteins. Reactions with no supportive
literature or matching sequences were included in the model for gap filling
to ensure the completeness of relevant pathways37. The Supplementary
Table 10 shows the reaction without GPR included in the models and a pie
chart of the distribution of reactions across subsystems.
The manual curation process was followed by model evaluation and

validation. The reconstructions were analyzed for connectivity, mass and
charge balance and converted into a functional mathematical model for
simulation using The COBRA Toolbox32. Metabolic models were shared
following the standard protocols for computational analysis61.

Constraints and growth simulations
The seven CLas and BT-1 metabolic model reconstructions were
constrained identically using the culture media BM-7, M13, M14, and
M1533. All media compositions were simulated by setting a lower bound of
−100 (allowing unlimited uptake) on the exchange reactions for Co2+,
Fe2+, H+, H2O, Na

+, NH4, PO4, SO4. Supplementary Table 3 shows the
media compositions and applied constraints for each culture media.

Conversion from optical density to dry weight was based on the
BIONUMB3R5 database62. Growth simulations were performed using the
flux balance analysis procedure32. Constraints on biomass composition
were imported from the reference model of P. putida KT2440, iJN74654.
Stoichiometry of the biomass composition was estimated to be 1 g of dry
weight of biomass.
The model topology was evaluated following the constraint-based

modeling standard protocol32,35. Methods listed under growth simulations
of alternate substrates of Orth et al. protocol were used to calculate the
degree of metabolite connectivity (D, Eq. 1)35, identifying metabolites with
remarkable effect on the growth rate across the entire network. The matrix
S is a feature in constraint-based modeling and its size is determined by
the number of metabolites (rows) and reactions (columns) in the model.
Reaction essentiality by metabolite was calculated by scanning the matrix
S across all reactions. For the reactions in which each metabolite was found
to participate the boundaries were set to zero and compound growth rate
was estimated (µcomp,metabolite). The essentiality fraction was determined by
the ratio between compound growth rate and the growth rate determined
without any modification to the boundaries (wild-type growth rate, µWT).

Dconnectivity;i ¼
P

Sbin;i;:

Acomp
� �

: Acomp ¼ Sbin � STbin
γbenefitial;i ¼ μcomp;i

μWT

(1)

Phenotypic experimental data
Liberibacter crescens cultivation. M15 media consists of CaCl2•2H2O
(1320mg/L), MgCl2 (1068.2mg/L), MgSO4•7H2O (2778mg/L), KCl
(2240mg/L), NaH2PO4•H2O (1007mg/L), L-alanine (447.24mg/L),
L-arginine-HCl (1777mg/L), L-asparagine monohydrate (1075.45mg/L),
L-cysteine-2HCl (56.38mg/L), L-glutamic acid (1502.2mg/L), glycine
(859.51mg/L), L-histidine hydrochloride monohydrate (2366.11mg/L),
L-isoleucine (687.36mg/L), L-leucine (592.89mg/L), L-lysine-HCl
(1464.85mg/L), L-methionine (678.9 mg/L), L-phenylalanine (789.62mg/L),
L-proline (940.61mg/L), L-threonine (459.8mg/L), L-tryptophan (373.73mg/L),
L-tyrosine disodium salt (391.37mg/L), L-valine (644.31mg/L), betaine
monohydrate (0.36mg/L), DL-ornithine hydrochloride (293.39mg/L),
methionine sulfoxide (18.2mg/L), D-biotin (0.1 mg/L), choline chloride
(1000mg/L), folic acid (0.2mg/L), myo-inositol (0.2mg/L), niacin (0.2mg/L),
D-calcium pantothenate (0.2mg/L), para-aminobenzoic acid (0.2mg/L),
pyridoxine-HCl (0.2mg/L), riboflavin (0.2mg/L), thiamine-HCl (0.2mg/L),
L-aspartic acid (2500mg/L), DL-serine (2500mg/L), L-glutamine (358.04mg/L),
and citric acid (2500mg/L)33. All ingredients were combined with the
exception of tyrosine, which was first dissolved in 1 M HCl before being
added. Once all ingredients were dissolved, the medium was adjusted to
pH 5.92 with 5 M KOH and filter sterilized. Other derivatives of M15 (the
different treatment media types) were prepared in the same way, but with
differing concentrations of the components being examined (i.e., L-aspartic
acid, DL-serine, L-glutamine, and citric acid). The concentrations of all other
components were kept the same as the original M15 recipe. M15-basic
media was made with minimal (0.1 mg/L) amounts of the treatment
components (i.e., citrate, serine, and aspartate or citrate, serine, and
glutamine) but was otherwise kept the same as the original M15 recipe.
Liberibacter crescens (type strain BT-1T, 5ATCC BAA-2481T5DSM T 26877)

was used for all experiments21. Glycerol stocks of L. crescens strain BT-1 in
BM-7 complex media were used to inoculate M15 media, which was then
shaken at 150 r.p.m. and 28 °C for 3–5 days to grow sufficient quantities for
the experiments. Bacteria were pelleted via centrifugation at 6000 rcf for
10min, re-suspended in M15-basic medium, which does not contain the
treatment components (citrate, serine, and aspartate or citrate, serine, and
glutamine) and shaken at 150 r.p.m. and 28 °C for 1 h to remove any large
traces of the treatment components. OD600 was measured, and bacteria
were re-pelleted using the same conditions described above. Pelleted
bacteria were re-suspended in sterile DI water and used to inoculate
treatment media for growth to stationary phase: OD600= 0.8. Treatment
media tubes were grown in 5mL volumes in 16 × 100mm tubes at
150 r.p.m. and 28 °C. Growth was measured every 12–24 h for 300 h using a
Spectronic-20 (Milton Roy, Houston, TX) spectrophotometer and OD600.

CLas-Citrus hairy root culturing and in vitro assays. The ex vivo CLas-citrus
hairy root cultures were generated using methods described previously63,
with CLas-infected sour orange tissues (Citrus x aurantium L.) as ex-plant/
inoculum source for CLas. Briefly, quantitative polymerase chain reaction
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(qPCR) validated CLas containing sour orange were identified and 5–10 cm
shoots were excised for hairy root induction. The cut-end of the ex-plant
was inoculated with fresh culture of Rhizobium rhizogenes (American Type
Culture Collection strain 15834, OD 0.5) under gentle vacuum infiltration
(~200 kPa). R. rhizogenes is a soil bacterium that naturally transforms plant
cells to induce hairy roots at the point of contact by reprogramming plant
hormone signaling64. In citrus, hairy root formation typically occurs in
~90 days, and because of the vascular connectivity between the shoot ex-
plant, CLas naturally migrates into the newly formed hairy roots. Presence
of CLas in the hairy root cultures was further confirmed by qPCR, using
CLas-specific primers as described below. To determine the effect of amino
acids on CLas titers, in vitro assays were set up using the validated CLas-
citrus hairy roots63. Briefly, the CLas-citrus hairy roots were surface
sterilized with 70% ethanol and 2.5% sodium hypochlorite for five minutes
followed by six washes with sterile water. Approximately 100mg of CLas-
citrus hairy roots were added to a multi-well culture plates and
supplemented with B5+ amino acid cocktail (glycine, serine, proline,
aspartate, glutamine, and glutamate) concentrations (0, 0.1, 1, and 5 µM).
An oxytetracycline (500 p.p.m.= 500mg/L) treatment was included as a
CLas-inhibitor control for the in vitro assay. Four to five independent
biological replicates were included for all treatments. The samples were
vacuum infiltrated at 200 kPa for ~15min to facilitate penetration of the
media and nutrients into the hairy root cultures. The assay plates were
placed on an orbital shaker at 40 r.p.m. at~25 °C and in dark. Fresh B5
medium was replaced at 3 and 5 days after incubation. Samples were
collected at 0, 3, 5, and 7 days after treatment and flash-frozen in liquid
nitrogen and stored at −80 °C until further use.

DNA extraction and qPCR analysis. All control and treated CLas-citrus hairy
root cultures were lyophilized and homogenized in a MiniG 1600 (Spex
Sample Prep) homogenizer at 1500 x r.p.m. for 30 s, with a single steel
bead (two times, re-freezing samples at −80 °C in between). Total DNA
extraction was carried out according to Almeyda et al.65. qPCR reactions
were carried out in a CFX-384 Real-Time PCR Detection System (BioRad,
Hercules, CA) with 25 ng of DNA as template, using Sso Advanced
Universal SYBR Green Supermix (BioRad, Hercules, CA), and the following
primers for citrus GAPC2 (CsiGAPC2-F 5′-TCTTGCCTGCTTTGAATGGA-3′and
CsiGAPC2-R 5′-TGTGAGGTCAACCACTGCGACAT-3′) and for the β-subunit
od nrdB gene from CLas, RNR (RNRf 5′-CATGCTCCATGAAGCTACCC-3′ and
RNRr 5′-GGAGCATTTAACCCCACGAA-3′)66. The reactions were carried out
under the following conditions: Initial denaturation 95 °C for 3 min,
followed by 95 °C for 15 s and 55 °C for 30 s for 40 cycles, and a final
extension at 65 °C for 5 s. Relative CLas titers were estimated using the ΔΔCt
method67. Briefly, the CLas Ct was first normalized to the housekeeping
gene (GAPC2) to account for DNA template differences, and then to the
0 days Ct, which was set to 1 (or 100%). Growth rates at each time point
were calculated using the initial CLas titer as a reference point. The
minimal and maximal data were discarded before the analysis of variance
(ANOVA) analysis. Calculations were performed using The Preprocessing
Data and The Statistics and Machine Learning Toolboxes of MATLAB (The
MathWorks Inc.).

Expression data
RNA-sequencing data collected from environmental samples was used to
constrain the CLas models. The samples were obtained from the phloem-
enriched samples from different citrus cultivars and from Asian citrus
psyllid (ACP) alimentary canals as described below. For each growth
condition, the storage and consumption of starch, calculated using
experimental data, were taken into account (Supplementary Table 6).

RNA extraction from citrus. Samples were harvested from 12 CLas-infected
citrus trees grown in a greenhouse at the U.S. Horticultural Research
Facility in Fort Pierce, Florida. Three trees were selected each from three
different Citrus cultivars: Valencia orange (Citrus sinensis [L.] Osbeck) on
Swingle citrumelo (C. paradisi Macf. X Poncirus trifoliate [L.] Raf.) rootstock,
Tango mandarin (Citrus reticulata Blanco) on Sour orange rootstock, and
Washington navel orange (Citrus sinensis [L.] Osbeck) on Sour orange
rootstock (Supplementary Table 6). One to 2 years prior to sampling, the
greenhouse trees were exposed to CLas-positive ACP for varying lengths of
time between one week and one month, and CLas infection was verified
using qPCR at or near the time of harvest.
Four pieces of budwood that were roughly one year old and ~15 cm

long were harvested from each tree and immediately placed on ice. Within
15min, they were sampled from as follows: budwood was removed from

ice and sprayed with CVS brand Health Alcohol Free Liquid Bandage Spray
(CVS, Woonsocket, RI) to prevent surface contamination. After drying for
three minutes, the bark was peeled from each piece and the inside surface
located away from the cut ends was quickly scraped with a razor blade
twice—first to remove surface contamination and potential xylem and
second to collect a phloem-enriched sample. Samples were immediately
placed in PowerBead Tubes filled with Solution MBL and the Phenolic
Separation Solution from an RNeasy PowerPlant Kit (Qiagen, Valencia, CA),
which were held in a CoolRack (BioCision, San Rafael, CA) on dry ice. RNA
was extracted using the RNeasy PowerPlant Kit following the kit protocol
with two minutes of bead beating, eluted in 50 µL of RNase-free water, and
stored at −80 °C for library preparation.

RNA extraction from Asian citrus psyllids. Approximately 100 adult ACP
were collected from CLas-exposed colonies maintained at the U.S.
Horticultural Research Facility in Fort Pierce, Florida using an aspirator.
Alimentary canals were dissected from ACP in a weight-boat containing
Solution PM1 from an RNeasy PowerMicrobiome Kit (Qiagen, Valencia, CA)
placed on ice, and deposited in two PowerBead Tubes containing Solution
PM1 (50 canals each) held in a CoolRack (BioCision) on dry ice. RNA was
extracted using the RNeasy PowerMicrobiome Kit following the kit
protocol with one minute of bead beating, eluted in 50 µL of RNase-free
water, and stored at −80 °C for library preparation.

Library preparation and sequencing. Alimentary canal sample comple-
mentary DNA (cDNA) libraries were prepared using the ScriptSeq Complete
Gold Kit (Yeast) (Illumina, San Diego, CA), following kit protocols and
performing ribo-depletion. Citrus sample cDNA libraries were prepared
using the ScriptSeq Complete Kit (Plant Leaf) (Illumina, San Diego, CA),
again using provided protocols and ribo-depletion. In both cases, ScriptSeq
Index PCR Primers (Illumina, San Diego, CA) were used for barcoding
samples. RNA Sequencing was performed using Illumina’s HiSeq2500
platform. Raw RNA reads were trimmed using TrimGalore (version 0.4.4)
including adapter removal and quality control: low-quality ends from reads
(Phred score < 20) were trimmed and reads less than 20 bp were discarded.
Next, read quality was checked using FastQC (version 0.11.7). To discard
host and 16S rRNA reads, C. maxima (Burm.) Merr. genome (NCBI_Assem-
bly: GCA_002006925.1) and bacterial 16S rRNA sequences (SILVA database:
https://www.arb-silva.de/) were chosen as reference templates. Valid
reads were aligned to reference templates using bowtie2 (version
2.3.4.1) with parameters set by the flag very-sensitive. Unmatched reads
were picked out and converted to fastq format using samtools (version 1.8)
and bam2fastq (http://www.hudsonalpha.org/gsl/information/software/
bam2fastq), respectively. To count the FPKM (fragment per kilobase per
million mapped reads), reads were mapped to 7 Liberibacter strains: CLas
strains A4 (GCF_000590865.2), FL17 (GCF_000820625.1), psy62
(GCF_000023765.2), YCPsy (GCF_001296945.1), gxpsy (GCF_000346595.1),
Ishi-1 (GCF_000829355.1) and L. crescens BT-1 (GCF_000325745.1).

DATA AVAILABILITY
The Liberibacter models are available at https://github.com/cristalzucsd/Liberibacter.
Models were constrained using the traditional culture medium BG-7 and the
optimized culture media M13, M14 and M15. All sequencing reads were deposited in
the Sequence Read Archive under BioProject PRJNA509215, with specific numbers
listed in Supplementary Table 5. Additionally, all supplemental materials are available
at https://github.com/cristalzucsd/Liberibacter.
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