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Abstract
Pancreatic neuroendocrine tumors (PNETs) are known to be the second most 
common epithelial malignancy of the pancreas. PNETs can be listed among the 
slowest growing as well as the fastest growing human cancers. The prevalence of 
PNETs is deceptively low; however, its incidence has significantly increased over 
the past decades. According to the American Cancer Society’s estimate, about 
4032 (> 7% of all pancreatic malignancies) individuals will be diagnosed with 
PNETs in 2020. PNETs often cause severe morbidity due to excessive secretion of 
hormones (such as serotonin) and/or overall tumor mass. Patients can live for 
many years (except for those patients with poorly differentiated G3 
neuroendocrine tumors); thus, the prevalence of the tumors that is the number of 
patients actually dealing with the disease at any given time is fairly high because 
the survival is much longer than pancreatic ductal adenocarcinoma. Due to 
significant heterogeneity, the management of PNETs is very complex and remains 
an unmet clinical challenge. In terms of research studies, modest improvements 
have been made over the past decades in the identification of potential oncogenic 
drivers in order to enhance the quality of life and increase survival for this 
growing population of patients. Unfortunately, the majority of systematic 
therapies approved for the management of advanced stage PNETs lack objective 
response or at most result in modest benefits in survival. In this review, we aim to 
discuss the broad challenges associated with the management and the study of 
PNETs.
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Core tip: Pancreatic Neuroendocrine Tumors (PNETs) can cause severe morbidity due to 
excessive hormones production and overall tumor mass. The majority of approved 
therapeutic options in PNETs lack objective response suggesting that there is still a void in 
the understanding of the biology of this neoplasia. With the rising incidence and the 
underestimated prevalence of PNETs in the United States, it is paramount to discuss the 
challenges associated with the study and the management of this intractable disease for 
better patient outcomes. In this paper we elaborate on the comprehensive challenges and 
discuss novel and emerging therapeutic target in PNETs.
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INTRODUCTION
Physiologically, neuroendocrine cells receive neurotransmitter signals from the 
nervous system to secrete hormones in the blood to control many body functions[1]. 
These specialized cells can be found in almost every organ of the body including the 
thymus, kidneys, prostate, skin, cervix, ovaries, testicles, stomach, colon, esophagus, 
appendix, small intestine, rectum, gallbladder, liver, and the pancreas[2]. The pancreas 
is an essential organ involved in the digestive system and the endocrine system[3]. In 
the endocrine system, pancreatic islet cells release hormones and polypeptides 
(including insulin, glucagon, somatostatin, amylin, pancreatic peptide, gastrin, 
incretin, and secretin) needed to regulate blood sugar level and multiple other body 
functions[4]. When these hormonal producing cells of the pancreas become cancerous, 
they are termed Pancreatic Neuroendocrine tumors (PNETs)[5].

Due to the advances in diagnostic modalities and the increase in awareness by 
oncologists and the general population, the incidence of PNETs is significantly 
increasing. According to the National Cancer Institute registry, the incidence of PNETs 
is estimated at 1000 new cases every year in the United States (https:// 
www.cancer.gov/types/pancreatic/hp/pnet-treatment-pdq). However, the American 
Cancer Society has predicted that about 4,032 people will be diagnosed with PNETs in 
2020 (https://www.cancer.org/cancer/pancreatic-neuroendocrine-tumor/about/key-
statistics.html). In the past decades, PNETs have often been diagnosed at a later stage 
when the disease is already advanced or metastatic[6]. In recent years, gastrointestinal 
oncologists are increasingly seeing patients diagnosed accidentally at an early 
stage[7,8]. In this scenario, the tumor is further diagnosed using gallium 68 DOTATATE 
PET imaging coupled with a diagnostic quality contrast-enhanced MRI of the upper 
abdomen[9]. The prevalence of the PNETs, that is the number of patients actually 
dealing with the disease at any given time is fairly high because the survival is much 
longer than pancreatic ductal adenocarcinoma (PDAC). In a retrospective study on 
about 1074 histopathological pancreatic specimens, Partelli et al[10] examined whether 
the real prevalence of PNETs was underestimated. After excluding 284 patients who 
were diagnosed with PNETs as the main lesion, they found an incidental associated 
diagnosis of PNETs in 4% of the remaining specimens and they concluded that the 
frequency of incidental histological diagnosis of PNETs is considerably high and its 
prevalence is probably underestimated[10].

In general, tumors grade and classification are the fundamental basis for 
neuroendocrine tumors (NETs) therapeutic decisions[11]. Tumor grade is a system used 
to predict how fast tumors would grow/spread and differentiation is a key feature to 
predict their behavior[12]. Ki-67 (MIB1) only stains actively dividing cells and not 
resting cells, is most commonly used to establish the grade of the tumor; thus, more 
dividing cells implies more aggressive PNETs. The world health organization classifies 
PNETs into three main categories based on the Ki67 proliferation index and/or mitotic 
count per 10 high power fields. Well-differentiated PNETs (also known as panNETs) 
are classified as Grade 1 (low grade), Grade 2 (intermediate grade), and Grade 3 (high 
grade) with a Ki67 index of < 2%, 2%-20%, and > 20% respectively. Poorly 
differentiated PNETs (also referred to as panNEC) are categorized as grade 3 (high 
grade) with a Ki67 index greater than 20%[13]. Also, tumor grade strongly predicts 
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outcomes such as how fast the tumor will grow and how long it can be controlled with 
therapy. For well-differentiated grade 1, meaning PNETs patients who have small low-
grade tumors, oncologists often wait and do not operate (watchful waiting protocol) 
and most recently treat with the PRRT (Peptide receptor radionuclide therapy), a 
treatment that is well tolerated and very safe (the latter drug will be further discussed 
in this manuscript)[14]. Well-differentiated grade 3 PNETs are fairly indolent but often 
have an unpredictable course and behave similarly to grade 2 panNETs; poorly 
differentiated grade 3 panNEC are aggressive[15]. It is important to note that there 
exists an additional category for PNET termed: Mixed neuroendocrine-non-
neuroendocrine neoplasm (MiNEN)[16,17].

Recently, cross-species analysis of mice and human panNET tissues illustrate the 
existence of three molecular subtypes of PNETs including Islet/Insulinoma tumors [IT 
(less aggressive, and express genes associated with differentiated mature β-cells)]; 
metastasis-like/primary [MLP (invasive and express genes associated with immature 
β-cells, and stem cells)], and intermediate (express genes similar to IT and are 
moderately invasive)[18]. Next-Gen sequencing illustrates that commonly mutated 
genes associated with neoplasia pathogenesis are not significantly implicated in PNET 
development and progression[19]. However, hyperactivation of PI3K/Akt/mTOR and 
Ras/Raf/MEK/ERK signaling pathways have been well documented to be the main 
regulators of proliferation in NETs[20]. Frequent mutations in multiple endocrine 
neoplasia 1 (MEN1; 44%), death domain-associated protein (DAXX)/chromatin 
remodeler (ATRX; 43%), mTOR (15%) pathway genes, and Von Hippel Lindau (VHL) 
alongside several other hereditary disorders are observed in PNETs[21]. Loss of function 
of the tumor suppressor gene PTEN is frequently found in PanNETs and is responsible 
for the over-activation of the PI3K-Akt-mTOR cascade[22]. A new examination using 
whole-genome sequencing of 102 primary PNETs illustrates that germline mutations 
in DNA repair genes such as MUTYH, CHECK2, and BRCA2 were noted in sporadic 
PNETs[23].

Compared to other gastroenteropancreatic neuroendocrine tumors (GEP-NETs), 
PNETs are a very heterogeneous subtype of cancers with unique pathophysiological 
features that constitutes a major challenge in the management of this neoplasia[24]. 
Multiple factors impede the management and the study of PNETs. As mentioned 
above, the majority of patients are diagnosed at a later stage when the disease is 
already advanced due to the lack of specific biomarkers and disease-associated 
symptoms[6]. Systemic treatments for PNETs only stabilize the disease most likely 
because of inherent and acquired drug resistance. Another challenge in drug 
development is related to the poor delivery of therapeutic agents related to the 
location of the pancreas[25]. Lack of reliable preclinical models (mostly cell lines) limits 
the ability to rapidly test promising therapies. The small population of relevant 
candidates with PNETs is a major challenge for conducting larger clinical trials[26]. 
Immunotherapy is not an option for this patient population given that the pancreas 
appears to be an immunologically coldsite[27,28]. Despite significant increase in the 
incidence of PNETs in the United States, this disease remains an understudied and 
underfunded area of research. This review intends to discuss the major challenges 
associated with the management of PNETs in the clinic and highlight research 
limitations associated with its study.

CURRENT THERAPEUTIC OPTIONS
The ultimate question in the management of PNETs is when to give specific treatment 
to a patient; keeping in mind that one size cannot fit all. This is left to the clinician’s 
own assessment as to who should have surgery? Who are the ideal candidates for drug 
X? And who are the ideal candidates for chemotherapy? Systemic therapeutic 
decisions for the management of PNETs must be personalized and rely on various 
considerations including functional imaging and molecular profiling in addition to 
clinical considerations such as hormonal secretion, tumor grade, disease burden, and 
the rate at which tumor progresses[29]. These considerations predict whether systemic 
or locoregional treatment will benefit patients[30]. The impact of therapies on the 
quality of the life of the patient must be considered prior to making any therapeutic 
decision. More than 80-90% of pancreatic islet tumors express somatostatin receptors 
(SSTRs). These SSTRs are G protein-coupled seven transmembrane receptors that 
control cellular proliferation and hormone production by PNET cells and as such are 
targets for diagnostics and therapeutics (theranostics)[31-33]. The somatostatin analogs 
(SSRA) Octreotide and Lanreotide (targeting specifically SSTR2 and SSTR5) are 
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commonly used for initial treatment of advanced stage well-differentiated grade 1 or 2 
PNETs[34]. Somatostatin analogs can inhibit hormone production from PNETs. For 
example Octreotide and Lanreotide can be used to prevent hypoglycemia in patients 
with positive SSTR2; however, these drugs could worsen hypoglycemia in patients not 
expressing SSTR2[35]. In addition, SSRA are also used as palliative treatments to slow 
down the progression and stabilize the disease burden[36]. However, somatostatin 
analogs do not cause tumor shrinkage. Peptide Receptor Radionuclide Therapy 
(PRRT), everolimus (mTOR inhibitor), chemotherapy or sunitinib (multi RTK 
inhibitor) are used to manage well-differentiated PNETs that have progressed on 
SSRA[37,38]. A combination of chemotherapeutics agents (such as Capecitabine + 
Temozolomide or platinum-based regimens) constitutes the first-line treatment for 
panNEC, MiNEN, and metastatic disease[39]. PRRT is also relevant for metastatic 
disease. Unfortunately, most of these treatment strategies used by GI oncologists to 
overcome tumor burden lack objective response and PNETs remain a serious unmet 
problem in the clinic. At most, these therapies stabilize the tumors and do not enhance 
the overall survival of patients (Figure 1).

THERAPEUTIC OPTIONS IN PNETS ONLY STABILIZE THE DISEASE
The management of NETs and PNETs, in particular, is greatly personalized and 
requires expert multidisciplinary strategies including surgery, medical oncology, 
endocrinology, radiation oncology, cardiology, gastroenterology, pathology, 
interventional radiology, diagnostic radiology, and nuclear medicine[40]. The majority 
of FDA approved drugs for the management of PNETs lack objective response 
characterized by meager progression free survival (PFS) and inability to shrink tumors 
in the clinic[41]. Yao et al[42] showed that the median progression free survival with 
everolimus as a single agent treatment for PNET patients is estimated at 11.0 mo 
relative to 4.6 mo with placebo. The overall survival (OS) with everolimus was 
estimated at 44.0 mo relative to 37.7 mo with placebo[43]. This means everolimus 
stabilizes PNETs progression for an average of 6.4 mo. Similarly, Faivre et al[44] and 
Vinik et al[45] showed that the PFS with sunitinib is evaluated at 11.4 mo relative to 5.5 
mo with placebo. The CLARINET study designed to evaluate the response of 
Lanreotide in metastatic enteropancreatic neuroendocrine tumors showed that this 
drug can only stabilize the progression of neuroendocrine tumors[46-49]. In the same 
manner, the PROMID study shows that Octreotide can only lengthen the time to 
tumor progression in functional and metastatic NET patients[50]. Exner et al recently 
showed that Octreotide does not inhibit the growth of multiple NET cell lines 
including BON-1 and QGP-1 the commonly available PNET cellular models[51]. The 
CAPTEM study (Capecitabine in combination with Temozolomide) shows that PNET 
patients achieved a median PFS of 13 mo[52]. Dilz and colleagues analyzed data from 96 
advanced PNET patients treated with Streptozocin + 5 FU; they found that 40.6% of 
patients showed stable disease while 16.7% showed progressive disease[53]. 
Nevertheless, in terms of treatment strategy, the PRRT, appear to be the most 
promising treatment for PNETs. PRRT is a drug coupled with therapeutic radionuclide 
lithium 177 and is injected intravenously irradiates PNET cells directly and radiates[54]. 
PRRT treatment results in PNET shrinkage; nevertheless, this treatment also stabilizes 
the tumor for a long period of time[55]. The side effects of PRRT are very mild, there can 
be some nausea with the treatment at the time of the administration which is much 
related to the IV fluid that is given to protect the patient’s kidneys[56].

HETEROGENEITY IN PNETS
PNETs’ heterogeneity is considered the major challenge in the management of this 
specific type of neoplasia in the clinic[57,58]. As mentioned above, pancreatic islet cells 
are specialized entities that participate in the endocrine function of the pancreas by 
releasing hormones and peptides necessary to maintain body homeostasis. PNETs can 
be functional or non-functional depending on whether they release these 
hormones[59,60]. Functional PNETs release excess hormones leading to a variety of 
hormonal associated symptoms. For example, Insulinoma can release excessive 
insulin, which results in hypoglycemia and related symptoms[61]. Insulinomas are 
mostly benign, < 10% are malignant; this subtype of PNETs can mostly be removed by 
surgery, but liver metastasis patients have < 2% survival[62]. In Gastrinoma 
(representing 30% of all PNET), excessive gastrin release would cause Zollinger-
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Figure 1  Graphical abstract. PFS: Progression free survival; PNET: Pancreatic neuroendocrine tumor.

Ellison syndrome characterized by increased acidity of the stomach and could 
eventually result in severe peptic ulcer disease and chronic diarrhea (surgery is the 
only potential cure for tumor > 2 cm followed with PPI)[63]. It is important to note that 
gastrinoma can also be found in the duodenum but there are much smaller than those 
from the pancreas. The last example will be VIPoma, in which vasoactive intestinal 
peptide is aberrantly released causing severe diarrhea and associated symptoms; 
however, this specific type of functional PNET is very unusual[64]. Thus PNET release 
hormones, which make the patients sick not the tumor itself. Meanwhile, non-
functioning PNETs do not develop hormonal symptoms because they produce 
insignificant amount of hormones that lack clinical implication. The majority of PNET 
is nonfunctional and is often diagnosed when the disease is unresectable, advanced or 
metastatic[6]. Attempts to manage tumor burden and hormonal symptoms 
concomitantly may constitute a challenge in the clinic. PNETs can also form a large 
mass, which causes pain by pushing on nerves at the pancreas. Additionally, patients 
could have a small tumor that has spread to the liver and the liver starts to fill up with 
metastasis and that may cause severe pain. Liver metastasis is the most significant 
prognosis factor in PNETs progression setting[65]. The poor quality of life due to the 
severity of pain in these patients could also alter the effectiveness and the treatment 
outcomes. As described above a wide range of malignant phenotypes characterizes 
PNETs’ clinical heterogeneity. Malignant phenotypes in PNETs range from slow-
growing (almost indolent), noninvasive tumors, locally invasive and metastatic 
tumors. Slow-growing tumors are often observed (watchful and waiting) and do not 
require any therapeutic intervention; however, PNETs have the potential to acquire 
aggressive phenotype when they reach a certain size and monitoring these tumors for 
prompt intervention is not an easy task[66].

PNETs can be sporadic or associated with a genetic syndrome. Genetic syndromes 
associated with PNETs include Multiple Endocrine Neoplasia type 1 (MEN 1), Von 
Hippel Lindau (VHL), Neurofibromatosis (NF), and Tuberous Sclerosis Complex 
(TSC)[67,68]. Syndrome associated PNETs demonstrate a significant challenge in the 
clinic when considering how to best manage patients. For instance, MEN1 functional 
PNETs patients can undergo tumor resection with a high cure potential; meanwhile, 
surgery is not a therapeutic option for MEN1 nonfunctional PNETs[69]. As mentioned 
above, nonfunctional PNETs are often diagnosed at a later stage, with multiple sites 
within the pancreas (when they are not metastatic); they are small tumors, thus, 
require resection. Moreover, MEN1 nonfunctional PNETs are often associated with 
diabetes; therefore, pancreatic resection is not advised especially in young patients[70].
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PNET LACK SPECIFIC AND SENSITIVE BIOMARKERS
A biomarker is a measurable biological indicator of the presence or severity of 
diseases. In cancer management biomarkers have critical importance; they are 
necessary for prognostication and highly essential to ease early diagnosis[71]. More 
importantly, biomarkers are necessary to predict and monitor response to specific 
treatment including recurrence after surgical intervention[72,73]. Lack of adequate 
biomarkers is another fundamental problem in the management of this disease in the 
clinic. Current PNET serum based biomarkers such as chromogranin A (CgA), 
pancreatic peptide (PP), and neuron specific enolase (NSE) have limited sensitivity 
and specificity[74,75]. The sensitivity and the specificity of a good biomarker should be 
greater or equal to 90%. The sensitivity of CgA range from 60 to 83% and its specificity 
ranged from 72 to 85%[76,78]. Meanwhile, the sensitivity of PP range from 31 to 63% and 
its specificity is approximately 67%[79,80]. The sensitivity of NSE is 33% and its 
specificity is 73%[81,82]. This poor sensitivity and specificity could be an explanation for 
the use of PNETs grade and stage as prognostic biomarkers for this neoplasia[83]. 
Additionally, CgA is an unspecific biomarker given that it can be released by non-
neuroendocrine tumors including gastric disorder, inflammatory bowel disease, end-
stage renal disease (ESRD), and obstruction of blood vessels (cardiovascular 
disease)[84,85]. NSE is also a non-specific biomarker because increase level of this 
molecule is associated with brain injury[86]. Nevertheless, vasostatin-1 (VS-1): The N-
terminal fragment of chromogranin A (CgA), has recently been identified to be more 
accurate than CgA as neuroendocrine biomarker and the plasma levels of VS-1 are not 
altered by proton pump inhibitors (PPI) used in gastrinoma[87].

PNETS LACK SIZABLE NUMBER OF PRE-CLINICAL CELLULAR MODELS
The development of novel anticancer drugs necessitates the development and use of 
appropriate and relevant representative in vitro and in vivo models. Lack of reliable 
PNETs’ cell lines holds back meaningful research and has significantly disadvantaged 
the management of PNETs for decades[88,89]. Significant strides have been made over 
the past four decades to develop cellular and mouse models of PNETs. Currently, 
there are only a few PNET cellular models available for biomedical research[90,91]. BON-
1, QGP-1, and CM are the available PNET cell lines often used in research to study this 
disease. Twenty-five years ago, Townsend et al[92] established BON-1 cell line from the 
lymph node of a 28-year-old male. QGP-1 is a functioning PNET cell line established in 
the 1980s from a 61-year-old male[93]. BON-1 and QGP-1 cells were recently 
authenticated to belong to neuroendocrine and epithelial lineage, but their molecular 
characterizations do not often resemble those seen in patients’ primary cancers. For 
instance, exome sequencing and genome-wide copy number analysis reveal that BON-
1 and QGP-1 do not harbor PNET-associated mutations such as mTOR, DAXX/ATRX, 
MEN1, VHL, and NF; questioning the relevance of using these models for PNET 
study[94,95]. The fast growing potential of these two cell lines does not reflect the slow 
growth phenotype of most PNETs[96]. In general neuroendocrine cancers are 
characterized by high expression levels of somatostatin receptors; however, BON-1 
and QGP-1 define a very low expression of somatostatin receptors[51]. Kim, B.L. and 
colleagues have recently shown that BON-1 and QGP-1 illustrate similar 
characteristics of immature/non-functional pancreatic β/δ-cells or pancreatic 
endocrine progenitors. They show that BON-1 and QGP-1 display high expression 
levels of NEUROG3 and FOXA2 two genes associated with immature/non-functional 
pancreatic β/δ-cells and pancreatic endocrine progenitor, respectively[97]. The latter 
suggests that these two cell lines have acquired malignant transformation at an early 
stage of their development. The latter also suggests that QGP-1 may not be functioning 
(gastrinoma) PNETs as previously characterized. Benten et al[98] established and 
characterized a novel lymph node-derived cell line (NT-3) from a male patient with 
well-differentiated PNETs. NT-3 cells are specifically insulinoma (the most common 
functional PNETs) and express neuroendocrine characteristics that surpass the 
phenotype observed in BON-1 and QGP-1. Even though NT-3 could become a relevant 
model for functioning PNETs, this cell line has not yet made any meaningful impact in 
the study of this intractable disease and only two studies has been published using 
these cells hitherto.

Several mouse models of PNETs have been developed throughout the years. It has 
been well established that MEN1 syndrome is associated with the development of 
PNETs. Therefore conventional MEN1 loss mouse model has been developed to 
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successfully characterized PNETs. For instance, Bertolino and his team have 
demonstrated that heterozygous MEN1 mutant mice develop a range of endocrine 
tumors often seen in multiple endocrine neoplasia type 1 patients[99]. Moreover, Shen 
and colleagues have developed the MEN1-PDXCre mouse model to illustrate that loss 
of the expression of menin via knockout of MEN-1 in mature pancreatic endocrine cells 
resulted in tumor development[100]. Here, they confirm an association between MEN1 
syndrome and the development of PNET lesions. Likewise, Li et al[101] have developed 
Men1f/f-RipCre+ mouse model in which MEN1 ablation in pancreatic β-cell decreased 
the expression of critical transcription factor and resulted in the development of 
glucagonoma one of the rarest PNET subtypes. The latter mouse models have been 
significantly important to successfully characterize PNETS. The RIP1-TAG2 mouse in 
which PNETs are induced by expression of SV40 T-antigen in the beta cells of 
Langerhans has been used as a relevant mouse model for PNETS[18]. However, there is 
a significant concern with RIP1-TAG2 mice because the viral system used to induce 
PNETs abrogates TP53 and RB genes that are rarely seen in PNETs. To complement 
the RIP1-TAG2 mouse model, Chung Wong et al[102], proposed [GEMMs-MPR 
(Men1flox/flox Ptenflox/flox RIP-Cre)] and MPM (Men1flox/flox Ptenflox/flox MIP-Cre) as novel 
mouse models for PNETs. At this point it is too early to assert the relevance of these 
two models for PNETs therapeutic examination. Here, we argue that there is a need to 
invest more in developing PNETs cellular models in order to enhance our 
understanding of the progression of PNETs. The study and analysis of patients’ tissue 
by researchers are fundamental for cancer research in general. Research on patient 
tissue could offer critical information necessary to prevent, diagnose, and more 
importantly treat cancer patients. However, lack of access to patient tissues also 
constitutes a barrier to study PNETs.

EMERGING NEW THERAPEUTIC TARGETS IN PNETS
Cysteine-rich angiogenic inducer 61
The CCN1-6 is a family of six extracellular associated proteins known to play a critical 
role in cellular processes including cell adhesion, migration, proliferation, 
differentiation, survival, apoptosis, and senescence[103]. This family of matricellular 
proteins contains: Cysteine-rich angiogenic inducer 61 (CYR61) or CCN1, CTGF or 
CCN2, NOV or CCN3, WISP1 or CCN4, WISP2 or CCN5, and WISP6 or CCN6[102]. 
Upon secretion in the extracellular matrix, CYR61 binds directly to various integrin 
receptors in a cell type-dependent manner[104]. It is important to note that human’s and 
mouse CYR61 protein share a 98.2% sequence identity[105]. Several studies have 
suggested the implication of CYR61 in tumorigenicity and progression. For instance, 
Huang et al have shown that CYR61 promotes breast cancer lung metastasis through 
tumor cell extravasation and suppression of anoikis[106]. The authors argued that 
CYR61 support lung metastasis by regulating two critical events relevant to the late 
steps of metastatic dissemination including enhancement of extravasation of cancer 
cells into the lung and, secondly, inhibition of process of anoikis via the activation of 
AMPKα pathway but not through AKT, FAK or ERK1/2 signaling. Recently, Habel 
and colleagues have illustrated that CYR61 induces metastatic spreading through 
IGF1Rβ-dependent EMT-like process in osteosarcoma[107]. It is well known that a large 
number of PNETs are metastatic at presentation (40-80%) and liver metastasis (about 
40-90%) is the most significant prognosis factor in PNETs progression. Thus, targets 
associated with metastasis/invasion could be an attractive area to manage this disease. 
Also, relevant to pancreatic cancers, it has been shown that CYR61/CCN1 signaling 
facilitates pancreatic carcinogenesis via activation of mechanisms of EMT and 
stemness[108]. In this study, Haque and colleagues illustrate that in PDAC, CYR61 
transcripts and proteins increase as the disease progresses. More significantly, Maity 
et al[109] have recently shown that CYR61 regulates dCK and CTGF causing 
Gemcitabine-resistance in PDAC. First, they show that CYR61 in highly activated in 
PDAC and correlates with Gemcitabine resistance. They also show that ablation of 
CYR61 sensitizes PDAC cellular models to Gemcitabine in 2D and 3D culture. The 
latter suggest that CYR61 is implicated in PDAC drug resistance, which is a major 
factor for therapeutic failure in PNETs. Thus, what is the implication of this target in 
the setting of PNETs development and progression? A novel study has suggested that 
CYR61 may be a tumor-promoting gene in PNETs. Notably, Huang and colleagues 
have newly shown that CYR61 interferes with normal pancreatic architecture and 
promotes PNETs progression[110]. They crossed Rip1CYR mice with Rip1-TAG2; the 
resulting Rip1Tag2CRY mice developed β-tumors significantly larger, more invasive 
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and more vascularized compared to β-tumors in the Rip1-Tag2 mice (keeping in mind 
that CYR61 is highly conserved in human and mice). The latter study demonstrates 
that CYR61 is viable target in the complex to treat PNETs and required further clinical 
examination.

Forkhead box protein M1
Forkhead box protein M1 (FOXM1) is a critical proliferation-associated transcription 
factor found to be increasingly and spatiotemporally expressed during the highly 
regulated cell cycle events[111]. Several studies have suggested that FOXM1 is closely 
involved with the processes of cell proliferation, self-renewal, and tumorigenesis[112-114]. 
FOXM1 is differentially expressed in typical carcinoids relative to atypical carcinoids 
cells and more importantly, FOXM1 expression was significantly different in large cell 
neuroendocrine carcinomas compared to small cell lung cancers[115,116]. In a recent 
study, Franziska et al[117] have shown that FOXM1 expression is linked to proliferation, 
differentiation and metastasis in GEP-NETs and that inhibition of FOXM1 is a 
potential new therapeutic option for these intractable subtypes of cancers. Utilizing 
Genome-wide expression profiling on biopsies from well-differentiated 
neuroendocrine tumors of the distal ileum and metastatic disease at the time of 
diagnostic, Ellinor Andersson et al[118] have shown that FOXM1 expression is 
upregulated in small intestinal neuroendocrine tumors. The latter studies illustrate 
that FOXM1 has a significant implication in the development and progression of 
NETs. This is also true for PNETs, as De Rycke et al[119] have shown that FOXM1 
expression defines highly proliferative group of tumors in pancreatic neuroendocrine 
tumors and pulmonary neuroendocrine tumors. They also showed that the 
Thiostrepton (FOXM1 specific inhibitor) display a strong anti-tumor effect in (BON-1, 
and QGP-1), and H-227, pancreatic and pulmonary neuroendocrine cell lines, 
respectively.

UPR coordinator proteins IREα and PERK
It has been well established that increased protein translation, accumulation of 
unfolded/misfolded proteins, and several other dynamic changes in the cells 
microenvironment can activate endoplasmic reticulum (ER) stress and promotes the 
unfolded protein response (UPR) that aide cell survival[120]. Nevertheless, sustained ER 
stress could lead to ER-associated programmed cell death. Inositol-requiring enzyme 1 
α(IRE1α) and protein kinase R-like endoplasmic reticulum kinase(PERK) are two of 
the major coordinators of the UPR response[121]. Activation of the latter has been shown 
in several cancers and linked to oncogenesis, tumor growth, metastasis and 
chemoresistance. Croft A et al[122] have illustrated that mutant BRAF (V600E) promotes 
IRE1 and ATF6 activation in melanoma cellular models. Additionally, Hart et al[123] 
have shown that activation of c-MYC in mouse embryonic fibroblasts induces IRE1 
and PERK activation. Moreover, Blazanin et al[124] have recently demonstrated that RAS 
activation was followed with UPR activation in melanocytes and keratinocytes. All 
these studies suggest that UPR coordination proteins are very much likely to promote 
cancer progression. Another recent publication demonstrates that secretory factors 
from endoplasmic-stressed cells aided survival of nearby cells to cytotoxic agents vie 
UPR activation[125]. It is well known that islet cells in the pancreas secrete hormones 
and polypeptides that could sensitize these cells to elevated ER stress. Therefore, 
sustain ER stress coupled with hyper activation of UPR could be a major mechanism 
regulating PNET tumor growth and/or drug resistance. More importantly, a recent 
study has revealed that the expression level of key proteins such as BiP, CHOP, ATF4 
involved ER stress are significantly upregulated in PNET and that this hyperactivation 
was associated with advanced clinicopathological features[126]. The authors of the latter 
study used immunohistochemical analysis by tissue microarray of 49 human PNET 
tissues and found that BiP, CHOP, ATF4 were significantly upregulated compared to 
normal tissues. They also show that high expression of Bip was significantly associated 
with high grade tumor, proliferation and poor survival. Finally, Moore and colleagues 
published an excellent paper illustrating the implication of UPR signaling in PNETs 
growth and survival. Using available mouse models for PNETs including RIP1-TAG2 
mouse model, they specifically show that UPR is upregulated in this disease and 
inhibition of UPR cascade significantly reduces tumor growth[127].

Nicotinamide phosphoribosyltransferase
In general, cancer cells often develop strategies to promote their survival under 
stressful conditions caused by the administration of anticancer therapeutics. As 
mentioned above, PNETs are known to be equipped with intrinsic drug resistance 
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mechanisms that alter the efficacy of personalized or systemic therapies. The protein 
nicotinamide pho-sphoribosyltransferase (NAMPT), best known as the rate-limiting 
enzyme involved in the salvage pathway of Nicotine Adenine Dinucleotide (NAD) 
biosynthesis in mammals[128] could become a novel target for therapy-resistant PNETs. 
NAD is a critical redox coenzyme that is essential for multiple physiological processes 
including DNA repair, oncogenic signal transduction, transcription, genomic integrity, 
and apoptosis[129]. Three different pathways govern the biosynthesis of NAD in 
mammals. The essential amino acid tryptophan is the precursor of the de novo pathway 
that includes 9 steps in which the tryptophan is converted into quinolinic acid that is 
further metabolized into NAD+[130]. This de novo pathway of NAD synthesis includes 
multiple steps and requires more energy; thus, most cancers cells rely on the 
alternative pathway of NAD synthesis. The alternative pathways of NAD biosynthesis 
are termed NAD salvage pathway and the Preiss-Handler pathway[131]. Nicotinate 
phosphoribosyltransferase (NAPRT1) is the rate-limiting enzyme in the Preiss-Handler 
pathway. In this pathway, Niacin (also known as Nicotinic acid or Vitamin B3) is 
converted into Nicotinic acid mononucleotide (NMN) by the nicotinate 
phosphoribosyltransferase (NAPRT), and then NMN is converted into Nicotinic acid 
adenine dinucleotide (NAAD) that is finally converted into NAD by the enzyme NAD 
synthetase[132]. NAPRT1 is often lost in cancer; thus, the salvage pathway, governed by 
NAMPT is preferably used in cancer; making NAMPT a potential therapeutic target 
for the management of cancers. In the salvage pathway, Nicotinamide (an additional 
form of vitamin B3) is converted into Nicotinamide mononucleotide by the rate-
limiting enzyme NAMPT in the presence of the phosphoribosyl pyrophosphate 
(PRPP); next, the nuclear Nicotinamide Mononucleotide Adenylyltransferase 
(NMNAT) further converts the NMN into NAD[131]. NAMPT biological function is not 
limited to the regulation of total cellular and mitochondrial levels of NAD necessary 
for cell survival. NAMPT also exhibits growth factor activity in this regard, it is called 
Pre-B cell colony enhancer factor (PBEF)[133]. Evidence has also shown that NAMPT has 
a hormonal activity, it’s cad Visfatin (therefore named Visaftin)[134]. NAMPT could also 
be an adipocytokine and called Insulin-mimetic hormone; however, this adipocytokine 
function is the object of controversy hitherto. When located in the cytoplasm 
(intracellular milieu) iNAMPT has an enzymatic function mainly the catalysis of the 
salvage pathway of NAD[129]. Outside the cell (extracellular milieu or circulating in the 
plasma), eNAMPT presumably plays the role of growth factor, and hormone (PBEF, 
Visfatin respectively) and allegedly adipocytokine (Insulin-mimetic hormone)[132,134]. 
NAMPT is a 52-kDa molecule with a length of 36.908 base pairs encoded by the 
NAMPT gene located at the 7q22[129]. Human NAMPT’s crystal structure alone or in 
complex with nicotinamide was determined at 2.1 Å resolution by the selenomethionyl 
SAD method[135]. Tao Wang et al[136] described the crystal structure of NAMPT as a 
dimeric type II pho-sphoribosyltransferase homolog of NAPRT1. NAMPT comprises 
491 (including initial methionine) amino acids and its active site includes an Asp 219 
that forms a hydrogen bond with Nicotinamide[131]. Over the past three decades, 
multiple studies have illustrated the involvement of NAMPT in numerous 
malignancies[137-138]. An important number of cancers including PNETs[139] show 
increased expression of NAMPT; however, the mechanism associated with NAMPT 
upregulation is unknown. In a recent study, Alvarez M.J. and colleagues evaluated 
more than 200 patient cohort of GEP-NETs[140]. They showed that NAMPT is one of the 
mechanistic dependencies of neuroendocrine tumors. This paper looked at the 
responsiveness of GEP-NET cell lines to different agents and found that NAMPT 
inhibition can impact their proliferation. The findings of this comprehensive study 
support the fact that NAMPT is critical for GEP-NET survival. Additionally, Michael 
Ohanna and colleagues have shown that NAMPT regulates drug resistance and 
invasive phenotype in melanoma[141]. In the forthcoming passages we will discuss the 
utility of targeting NAMPT in PNET using small molecule drugs (Figure 2).

P21-activated kinase 4
P21-activated kinase 4 (PAK4) is a member of a family of serine-threonine kinases that 
play a role in both oncogenesis and cancer progression[142,143]. PAK family members are 
key effectors of the Rho family of GTPases (a sub family of the Ras superfamily), 
which act as regulatory switches that control critical cellular processes such as motility, 
proliferation, and survival[144]. The latter indicates that PAK4 is the downstream 
effector of Ras activity that promotes growth and proliferation in PNETs; thus making 
PAK4 a relevant target for this disease. P21-Activated kinase name arose following 
their identification as effectors of Rho GTPases (e.g., CDC42 and Rac), each of which is 
21 kDa in size. Upon activation by mutation or overexpression, the majority of Pak 
isoforms (Group I PAK 1,2,3 or Group II PAK 4,5,6) have oncogenic signaling effects. 
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Figure 2  Nicotinamide phosphoribosyltransferas’s biological functions. A: Structure of nicotinamide phosphoribosyltransferas (NAMPT). Structure 
obtained from RSCB Protein Data Bank, Deposited: 2008-06-15 Released: 2009-08-18. Deposition Author(s): Ho, M., Burgos, E.S., Almo, S.C., Schramm, V.L.; B: 
NAMPT and immune signaling; C: NAMPT signaling in NAD biosynthesis. NAD: Nicotinamide adenine dinucleotide; NAMPT: Nicotinamide phosphoribosyltransferas; 
eNAMPT: Extracellular Nicotinamide phosphoribosyltransferase; iNAMPT: Intracellular nicotinamide phosphoribosyltransferase; NMNAT: Nicotinamide 
mononucleotide adenylyltransferase; TNFa: Tumor necrosis factor alpha; IL: Interleukin; MCP-1: Monocyte chemoattractant protein-1; PARP: Poly(ADP-ribose) 
polymerase.

As previously mentioned, PAK4 is a key effector of Cdc42 (cell division control protein 
42 homolog) and Rac1 (Ras-related C3 botulinum toxin substrate 1); thus, acts as a 
critical mediator of the RhoA family of GTPases[145]. Pertinent to pancreatic neoplasia, 
earlier studies have shown that copy number alteration analyses illustrate increased 
expression of PAK4 in pancreatic ductal adenocarcinoma (PDAC) patients[146]. 
Hyperactivity of PAK4 has been implicated in cancer progression by activating 
oncogenic signaling pathways, such as RAF/MEK/ERK and PI3K/AKT[147-149]. 
Additionally, other investigations have also linked PAK4 overexpression to cell 
migration, cell adhesion, and anchorage-independent growth[150]. PAK amplification 
can cause the activation of markers associated with drug resistance in PNETs 
including Akt, ERK, mTORC1, mTORC2[151], β-catenin, and IGF-1[152]. PAKs have also 
been shown to promote FAK (additional drug resistant molecule in PNETs) by this 
means it enhances cell migration and metastasis in breast carcinoma models[153]. Our 
group has demonstrated that PAK4 knockdown by means of siRNA inhibits the 
growth of PNETs cellular models (QGP-1 and BON-1)[139].

NAMPT and PAK4 inhibition
For decades, PAK4 and NAMPT have remained non-drugable targets. The adenosine-
triphosphate (ATP) binding cleft in PAK4 is a flexible hinge structure, which does not 
allow the development of effective inhibitors[154]. The first PAK4 small molecule 
inhibitor PF3578309 (IC50: 1.3nm in cell-free assay) is an ATP competitive Type I and 
pyrrolopyrazole inhibitor of PAK4 failed to move in advanced clinical trials for cancer 
management. PF3578309 failed clinical study because it happened to be a PGP 
substrate. Among all NAMPT inhibitors, only two: APO866/FK866, and GMX1777 
(GMX1778/CHS828), were evaluated in phase I clinical trials. Unfortunately, further 
evaluations were discontinued predominantly due to undesired dose-limiting 
toxicities. APO866 is the first developed NAMPT inhibitor with an IC50 varying 
between (0.09 and 27.2 nm in cell-free based assay[155]. It had been well established that 
APO866 inhibits proliferation and growth in a wide variety of human cancers in vitro 
and in vivo. For instance, in 2003 Hasmann et al[156] showed that inhibition of NAMPT 
using APO866 is a novel mechanism to induce apoptosis in leukemia. At exactly the 
same time, Drevs et al[157] were the first to illustrate the antiangiogenic properties of 
APO866. These two pilot studies lead to a phase I/II trial (NCT00435084) opened in 
the United Kingdom to investigate the safety and tolerability of APO866 for the 
treatment of refractory chronic lymphocytic leukemia ( https://clinicaltrials.gov/ 
ct2/archive/NCT00435084). Phase II study (NCT00432107; and NCT00431912) of 
APO866 were opened at four locations (Austria, France, Germany, and Switzerland) to 
define its efficacy and safety for the treatment of melanoma and cutaneous T cell 
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lymphoma https://clinicaltrials.gov/ct2/show/NCT00432107, and https:// 
clinicaltrials.gov/ ct2/show/NCT00431912, respectively. The primary outcome 
measure of APO866 in these studies lacked objective responses (pharmacodynamics) 
and the dose limit toxicity was found to be thrombocytopenia[158]. GMX1777 (EB1627) is 
a water-soluble prodrug of the GMX1778 a cyanoguanidine compound that selectively 
inhibits NAMPT with an IC50 of less than 100 nm in cell-free assay[159]. Two trials 
conducted by Gemin X pharmaceutical had investigated this drug for anticancer 
therapy. Firstly, GMX1777 was evaluated for safety and efficacy in phase I clinical trial 
(NCT00457574) for the treatment of refractory solid tumors and lymphomas https:// 
clinicaltrials.gov/ct2/show/NCT00457574. Secondly, GMX1777 was evaluated in 
phase I/II study in combination with Temozolomide (an oral chemotherapy drug) for 
the treatment of metastatic melanoma https://clinicaltrials.gov/ct2/show/ 
NCT00724841.

KPT-9274: Available PAK4-NAMPT dual inhibitor
Recently, Karyopharm Therapeutics Inc. developed KPT-9274 a first in class orally 
bioavailable small molecule inhibitor which targets PAK4 and NAMPT[139]. KPT-9274 is 
a distinct class of allosteric modulator that binds to the kinase domain of PAK4. Most 
importantly, the latter investigational drug is not a PGP substrate. It is important to 
know that the drug KPT-9274 has been established to be a dual inhibitor of PAK4 and 
NAMPT[160,161]. Senapedis et al used stable isotope labeling of amino acids in cells 
(SILAC) to illustrate that PAK4 is a target of KPT-9274. In a very recent paper, Neggers 
and colleagues used CRISPRres, “a CRISPR-Cas-based genetic screening approach to 
rapidly derive and identify drug resistance mutations in essential genes”, to identify 
the targets of KPT-9274. They showed that NAMPT is the principal target of this 
investigational compound[162]. KPT-9274 remains the only agent in Phase I studies that 
target both PAK4 and NAMPT and KPT-9274 has demonstrated evaluable response in 
patients with solid tumor and hematological malignancies[163,164]. Our laboratory has 
recently shown that KPT-9274 is effective against PNET models in vitro and in vivo[139]. 
The drug blocks PAK4 signaling leading to inhibition of mTOR pathway molecules. 
We also demonstrated that KPT-9274 causes metabolic alterations in PNET cell that is 
reflective of its NAMPT targeted effects. More significantly, the drug synergized with 
everolimus and other commonly used therapies for PNETs. Based on these findings, it 
is anticipated that this agent will be evaluated in Phase 1b/II clinical study for 
advanced PNETs. The mechanism of action of KPT-9274 is illustrated in Figure 3.

CONCLUSION
The incidence of PNETs is vastly increasing worldwide; therefore, novel strategies to 
manage this specific neoplasia are urgently needed. Several factors contribute to the 
management failure of PNETs in the clinic. PNET is characterized by significant 
heterogeneity that is the major challenge associated with the management of this 
neoplasia. Also, the majority of PNET therapeutics only stabilizes the disease with 
minimal benefits for patients. Lack of specific biomarkers inhibits early diagnosis and 
the selection of effective drugs in the clinic. The absence of preclinical models, mainly 
cellular models, limits effective anticancer examination and a better understanding of 
the biology of PNETs in the laboratory. Immunotherapy does not work in this patient 
population. Nevertheless, several molecules are emerging as new therapeutic targets 
for the management of PNETs. FOXM1 that is involved in all the hallmarks of cancer 
has been identified as a new target to effectively manage tumorigenicity, growth and 
proliferation in gastroenteropancreatic neuroendocrine tumors. The matricellular 
proteins CYR61 has also been identified as tumor-promoting gene in PNETs. Finally, 
overexpression of PAK4 and NAMPT in PNET patients’ biopsies suggests that 
inhibition of these two targets could become a feasible strategy for therapy resistant 
PNETs.

https://clinicaltrials.gov/ct2/show/NCT00432107
https:// clinicaltrials.gov/ct2/show/NCT00431912
https:// clinicaltrials.gov/ct2/show/NCT00431912
https:// clinicaltrials.gov/ct2/show/NCT00457574
https:// clinicaltrials.gov/ct2/show/NCT00457574
https://clinicaltrials.gov/ct2/show/ NCT00724841
https://clinicaltrials.gov/ct2/show/ NCT00724841
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Figure 3  Mechanism of action of available PAK4-NAMPT dual inhibitor. Dual inhibition of PAK4 and NAMPT using KPT-9274 single agent or in 
combination with everolimus results in lower case tumor shrinkage. KPT-9274 inhibits NAMPT causing downregulation of NAD and ATP and alteration of cell 
metabolism. Additionally, KPT-9274 Inhibits PAK4 resulting in downregulation of β-catenin and RICTOR. Downregulation of RICTOR causes the inhibition of 
mTORC2 implicated in everolimus resistance. R: Resistance; PAK4: p21-activated kinase 4; NAMPT: Nicotinamide Phosphoribosyltransferase; KPT-9274: Available 
PAK4-NAMPT dual inhibitor; NAD: Nicotine adenine dinucleotide; ATP: Adenosine-triphosphate; RICTOR: Rapamycin-insensitive companion of Tor; mTORC2: 
Mammalian target of rapamycincomplex 2.
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