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Abstract

Background: The use of an appropriate driving exposure measure is essential to calculate traffic 

crash rates and risks. Commonly used exposure measures include driving distance and the number 

of licensed drivers. These measures have some limitations, including the unavailability of 
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disaggregated estimates for consecutive years, low data quality, and the failure to represent the 

driving population when the crash occurred. However, the length of driving time, available 

annually from the American Time Use Survey (ATUS), can be disaggregated by age, gender, time-

of-day, and day-of week, and addresses the temporal discontinuity limitation of driving distance on 

the United States (U.S.) national scale.

Objectives: The objective of this study is to determine if the length of driving time as a driving 

exposure measure is comparable to driving distance by comparing distance-based and time-based 

fatal crash risk ratios by driver age category, gender, time-of-day, and day-of-week.

Methods: The 2016–2017 National Household Travel Survey (NHTS) provided driving distance, 

and 2016–2017 Fatality Analysis Reporting System provided the number of drivers in fatal 

crashes. The distributions of driving distance and length of driving time by driver age category 

(16–24, 25–44, 45–64, and 65 years or older), gender, time-of-day, day-of-week were compared. 

Two negative binomial regression models were used to compute the distance-based and time-based 

fatal crash risk ratios.

Results: The distributions of driving-distance were not different from the length-of-driving-time 

distributions by driver age category, gender, time-of-day, and day-of-week. Driving distance and 

the length of driving time provide similar fatal crash risk ratio estimates.

Conclusions: The length of driving time can be an alternative to driving distance as a measure 

of driving exposure. The primary advantage of driving time over driving distance is that, starting 

from 2003, the disaggregated estimates of the length of driving time are available from ATUS over 

consecutive years, curtailing the discontinuity limitation of driving distance. Furthermore, the 

length of driving time is related to drivers’ perceived risks about their driving conditions and as a 

result, may be a better exposure measure than driving distance in comparing crash risks between 

drivers whose likelihood of traveling in hazardous driving conditions (e.g., nighttime) varies 

substantially.
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1. Introduction

Traffic deaths are among the leading causes of death globally (World Health Orgnanization, 

2018). In 2016, motor vehicle crashes accounted for more than 1.3 million deaths worldwide 

(World Health Orgnanization, 2018). To help identify and prioritize efforts to reduce traffic 

injuries and deaths, a significant amount of research effort has gone into evaluating traffic 

safety and measuring the crash risks for various driver groups or driving conditions. To 

compare the crash risks between driver groups or driving environments, researchers usually 

convert the absolute crash frequencies into crash rates by controlling the intensity of travel 

exposure (Chapman, 1973). The commonly used measures of travel exposure include the 

number of licensed drivers and the driving distance (vehicle miles driven).

Many limitations have been identified in using the number of licensed drivers and driving 

distance as driving exposures. First, the distribution of licensed drivers represents the general 
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driving population and is not equivalent to the specific driving population at the time of the 

crash (Curry, Pfeiffer, & Elliott, 2016). Driving exposure often varies substantially among 

driver subgroups. Using the number of licensed drivers as the exposure measure would over-

estimate the crash risks for those who drive more frequently than others. For example, males 

drive more distance than females and should therefore have greater exposure. By failing to 

account for the difference in exposure, the number-of-licensed-drivers-based fatal crash rate 

ratio between male and female drivers is 2.17, whereas the distance-based fatal crash rate 

ratio at 1.62 in 2017, United States (U.S.) (Federal Highway Administration, 2017b; 

Insurance Institute for Highway Safety, 2018). Additionally, the quality of the U.S. license 

data available from the Federal Highway Administration has been challenged, and the 

number of licensed teenage drivers were underreported in the database (Foss & Martell, 

2013; Curry, Kim, & Pfeiffer, 2014). Several studies simply used the population as an 

alternative exposure measure (Tefft, 2014; Chaudhuri et al., 2019). However, population is 

not equivalent to the general driver population, nor does it directly reflect travel intensity.

Driving distance (vehicle miles driven) is usually regarded as the “gold standard” to estimate 

the intensity of driving exposure. However, it is not always feasible to disaggregate estimates 

of driving distance by driver age, gender, time-of-day (daytime versus nighttime), and day-

of-week (weekday versus weekend) for consecutive years on the U.S. national scale. 

Researchers usually obtain estimates of driving distance from the National Household Travel 

Survey (NHTS) which records an individual’s daily traveling behaviors (Ouimet et al., 2010; 

Zhu et al., 2015; Zhu et al., 2016). However, this survey is not conducted every year, and the 

three most recent surveys were conducted in 2001–2002, 2008–2009, and 2016–2017 

(Federal Highway Administration, 2017c). The estimated numbers of vehicle miles travelled 

(regardless of the vehicle type) were similar between the 2001–2002 and 2008–2009 NHTS 

surveys, (2,274,769 versus 2,245,111 million miles), but the number increased to 2,431,558 

million miles in the 2016–2017 survey. Thus, there was no obvious linear trend in the 

number of vehicle miles over the survey years. Such nonlinearity makes it difficult to 

interpolate driving distance for consecutive years and restricts researchers from evaluating 

the crash risk trajectories for a specific driver group or a driving condition. Additionally, 

Chipman et al. (1992) and (1993) have argued that driving distance does not consider the 

roadway hazards and the risk of driving conditions. The distancebased crash risk for drivers 

who drive more frequently on hazardous roadways or risky driving conditions may be 

overestimated (Chipman et al., 1992, 1993). The estimated distance-based crash risk for 

those drivers may be mixed with the risk of the driving conditions. Therefore, using these 

common travel exposures (including the number of licensed drivers and driving distance) in 

evaluating crash risks could misstate the true crash risks when the driving exposure varies 

substantially among driver groups or driving conditions.

Using length of driving time as a travel exposure has the potential to address the limitations 

posed by driving distance The American Time Use Survey (ATUS), conducted starting from 

2003, is a large-scale U.S. national activity-based time-use survey, where driving activities 

along with their durations for each survey respondent can be identified. Thus, disaggregated 

estimates are available for the length of driving time (vehicle hours driven) over consecutive 

years (2003–2018) by driver age, gender, time-of-day, and day-of-week (U.S. Census 
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Bureau, 2017). The availability of annual estimates of length of driving time curtails the 

discontinuity limitation of driving distance.

Some recent studies conducted in England and Australia have used the length of traveling 

time as the travel exposure measure to evaluate crash risks for cyclists and pedestrians due to 

the unavailability of the conventional risk exposures for those roadway users (e.g., riding 

distance or walking distance) (Mindell, Leslie, & Wardlaw, 2012; Santamarina-Rubio et al., 

2014). Previous studies, which compared the distance-based and time-based crash risk ratios 

by driver age category and gender, have suggested that the length of driving time was a 

feasible measure for driving exposure (Chipman et al., 1992, 1993). However, the driving 

distance and the length of driving time used by Chipman et al. (1992) and (1993) were 

collected by a survey conducted in the fall of 1988, in Ontario, Canada. Their findings may 

not be generalizable to the U.S. roadway system for recent years. Furthermore, Chipman et 

al. (1992) and (1993) did not compare the distance-based and time-based fatal crash risk 

ratios by driving condition, which limits their conclusion that the length of driving time is a 

better risk exposure measure than driving distance when people have substantially different 

exposures to hazardous driving situations. To our knowledge, no previous studies have 

utilized the length of driving time as the driving exposure measure to evaluate crash risks 

among U.S. drivers. The discontinuity of the driving distance obtained from NHTS 

necessitates an alternative driving exposure measure for consecutive years.

Bose and Sharp (2005) compared the 2003 U.S. American Time Use Survey (ATUS) with 

the 2000–2001 NHTS and found that these two surveys provided similar estimates (or 

relationships between estimates) for the distributions of trips between gender and age and 

the distribution of trips by day-of-week. However, they did not test the difference in utilizing 

the driving distance and length of driving time as risk exposure measure to evaluate crash 

risks. Additionally, the time windows for the surveys used in Bose and Sharp (2005) were 

not matched.

Due to the discontinuity limitations of driving distance as a driving exposure, as well as the 

large volume of research on fatal crash risk that uses data from the U.S., further work is 

needed to determine if length of driving time is as appropriate of an exposure as driving 

distance to study crash risk in the U.S. More specifically, there is a need to (1) compare the 

two exposure methods using more recent and relevant (i.e. U.S.) data; and (2) perform an 

explicit comparison of fatal crash risk between the two exposures for both driver 

characteristics and driving conditions. This study aims to address these needs by comparing 

the distance-based and timebased fatal crash risks and risk ratios by driver age category, 

gender, time-of-day, and day-of-week among U.S. drivers from 2016 to 2017.

2. Methods

Datasets

Estimates of driving distance in vehicle miles driven by privately owned vehicles (POV) 

were obtained from the 2016–2017 National Household Travel Survey (NHTS). A detailed 

description of the 2016–2017 NHTS can be found in Federal Highway Administration 

(2017c), but we briefly describe the database here. Using a stratified random sample of U.S. 
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households, the NHTS provides data on individual and household travel behavior (Federal 

Highway Administration, 2017a). The definition of POV includes cars, sports utility 

vehicles, vans, pickup trucks, motorcycles/mopeds, recreational vehicles, and rental cars 

(Federal Highway Administration, 2017a). Every survey participant was aged 5 years or 

older and kept a diary (or their proxy kept a diary for them) about all their trips during a 24-

hour day, including the mode of transport, trip duration, and trip distance. Each participant 

was assigned a final weight to normalize their data to the U.S. national scale. The variance 

of the distance estimates can be computed through Jackknife approximation using a set of 98 

replicate weights assigned to each observation (Federal Highway Administration, 2017c). 

The travel dates of the survey started on April 19, 2016 and ended on April 25, 2017 

(Federal Highway Administration, 2017c). The survey data were weighted to 12-month 

period to provide annual travel estimates (Federal Highway Administration, 2017c). We 

selected the travel records of the survey participants aged 16 years or older.

Estimates of the length of driving time in vehicle hours driven were provided by the 

American Time Use Survey (ATUS), which aims to understand how U.S. residents 15 years 

or older spend their time (U.S. Census Bureau, 2017). Each respondent reported their daily 

activities starting at 4:00 am on the previous day and ending at 4:00 am on the interview day. 

If an activity was travel-related and took place in a POV where the respondent was a driver, 

the activity was counted as a driving-related activity. Each respondent’s observations were 

weighted to the national scale using their assigned final weight, and a set of 160 replicate 

weights were used to calculate the variance of the estimates using successive difference 

replication (U.S. Census Bureau, 2017). The annual estimates of vehicle hours driven used 

in this study were based on the diary dates between May 1, 2016 and April 30, 2017 to best 

match the survey time window for NHTS, and the records of survey respondents aged 16 

years or older were included in this study.

The number of drivers in fatal crashes was obtained from the 2016–2017 Fatality Analysis 

and Reporting System (FARS). FARS is a census of all crashes on U.S. public roadways that 

result in at least one fatality within 30 days following the crash (National Highway Traffic 

Safety Administration, 2018). Drivers aged 16 years or older in POVs (i.e., passenger 

vehicles and motorcycles) between May 1, 2016 and April 30, 2017 were selected.

The number of drivers in fatal crashes was calculated by age category (i.e., 16–24, 25–44, 

45–64, and 65 years or older), gender, time-of-day (daytime or night-time), and day-of-week 

(weekday or weekend). Based on FARS definitions, crashes that occurred between 6:00 am 

– 5:59 pm were classified into daytime crashes, and crashes that occurred at 6:00 pm Friday 

through 5:59 am Monday were coded as weekend crashes (National Highway Traffic Safety 

Administration, 2018). The number of vehicle miles driven, estimated from NHTS, and the 

number of hours driven, estimated from ATUS, were also disaggregated by driver age 

category, gender, time-of-day, day-of-week, and quarter. We used the departure time for each 

trip in NHTS and ATUS to classify the trip into daytime/nighttime (6:00 am – 5:59 pm/6:00 

pm – 5:59 am) and weekday/weekend (6:00 am Monday through 5:59 pm Friday/6:00 pm 

Friday through 5:59 am Monday). The number of drivers in fatal crashes, vehicle miles 

driven, and vehicle hours driven were further disaggregated by quarters to control for the 

seasonality effects on fatal crash risk estimates (January to March was quarter 1, April to 
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June was quarter 2, July to September was quarter 3, and October to December was quarter 

4). We did not stratify the data by state because not all state-level estimates of vehicle miles 

driven or vehicle hours driven by driver groups or driving conditions could be obtained from 

NHTS or ATUS. Overall, every individual observation corresponded to the number of 

drivers in fatal crashes, vehicle miles driven, and vehicle hours driven for a specific 

combination of driver age category, gender, time-of-day, and day-of-week, and quarter.

Statistical analysis

We compared the distributions of the driving distance (vehicle miles driven) and the length 

of driving time (vehicle hours driven) by driver age category, gender, time-of-day, and day-

of-week. Driver fatal crash rates per 100 million vehicle miles driven and per 100 million 

vehicle hours driven were calculated by driver age category, gender, time-of-day, and day-of-

week. Two individual negative binomial regression models, both with a natural log link 

function, estimated the distance-based and time-based fatal crash risk ratios. The 

independent variables in each model included driver age category (coded as dummy 

variables for 16–24 years, 25–44 years, and 65 years or older, with 45–64 as a reference 

group), gender (0=female and 1 = male), time-of-day (0=daytime and 1=nighttime), day-of-

week ( 0=weekend and 1=weekday), and quarter (coded as dummy variables for second, 

third, and fourth quarter, with first quarter as a reference group), and the dependent variable 

was the number of drivers in fatal crashes, modeled on the log scale. The two negative 

binomial regression models used the natural logs of vehicle miles driven and vehicle hours 

driven as offsets to convert the number of drivers into a fatal crash rate per vehicle miles 

driven and vehicle hours driven, respectively. Therefore, the estimated regression 

coefficients of the independent variables represent additive changes to the log of crash rate, 

and the exponentiation of the coefficients represents multiplicative changes of crash rate 

(i.e., risk ratio) associated with each specified category of age, gender, time-of-day, and day-

of-week. As the seasonal quarters were included in the models as a categorical variable, the 

estimated risk ratios are seasonally adjusted.

When modeling the crash frequency data (i.e., counts) which are integer-valued, 

nonnegative, and sporadic, Poisson and negative binomial regressions are the natural 

modeling choices (Poch & Mannering, 1996). However, a major restriction of the Poisson 

distribution is that the mean and variance of the dependent variable (crash frequency) should 

be equal. In most crash data, the variance is larger than the mean and, in this case, the data 

are over-dispersed (Abdel-Aty & Radwan, 2000). Negative binomial regression can address 

the overdispersion issue (Shankar, Mannering, & Barfield, 1995). We started our analysis 

with Poison regression and found that the estimates of the overdispersion parameter for the 

distance-based and time-based models were 21.3 and 24.7, respectively, suggesting that our 

data are over-dispersed and negative binomial regression is preferable to Poisson regression. 

The proc surveymeans in SAS Enterprise Guide 7 was used to calculate the weighted 

estimates of vehicle miles driven and vehicle hours driven. The function glmmadmb in R×64 

3.5.2 was used to build negative binomial regression models.
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3. Results

Table 1 presents the unweighted sample sizes and the corresponding weighted estimates of 

vehicle miles and hours driven by driver group and driving condition with 95% confidence 

intervals (CIs) obtained from NHTS and ATUS. The coefficient of variation (CV) for each 

variable is also shown in Table 1. The CV is the ratio of the standard deviation to the mean 

and is positively related to the dispersion of the variable (Abdi, 2010). The small CVs for the 

weighted estimates suggest that our estimates for vehicle miles driven and vehicle hours 

driven were precise. In total, drivers aged 25–44 years had the greatest driving distance 

among all the age categories and drove 786,400 million miles during the 28,200 million 

hours over the study period (Table 1). Males drove 32% more miles and 26% more hours 

than females (Table 1).

The distributions of vehicle miles driven and vehicle hours driven by age category, gender, 

time-of-day, and day-of-week are shown in Figure 1. Overall, the distributions of vehicle 

miles driven and hours driven were very similar across the driver groups and driving 

conditions (Figure 1). The largest discrepancy between vehicle miles driven and vehicle 

hours driven occurred for time-of-day (Figure 1c). In total, 79.8% of vehicle miles driven 

occurred during the daytime, whereas 77.0% of vehicle hours driven occurred in daytime, 

suggesting that on average, drivers may drive at a higher speed in daytime than in nighttime. 

Similarly, drivers aged 25–44 years and male drivers had higher proportions of vehicle miles 

driven than vehicle hours driven (Figure 1a and 1b).

The fatal crash rates per 100 million miles driven and per 100 million hours driven as well as 

the model-based estimated fatal crash risk ratios broken up by driver age category, gender, 

time-of-day, and day-of-week are summarized in Table 2. Younger drivers had higher crash 

risks than drivers in any other age category, regardless of the exposure measure (Table 2). 

Compared to females, males were more likely to be involved in fatal crashes (distance-based 

risk ratio: 1.75, 95% CI [1.61–1.91] and time-based risk ratio: 1.75, 95% CI [1.60–1.92]). 

When using driving distance and the length of driving time as the exposure measures, 

nighttime driving had a higher fatal crash risk than daytime driving (distance-based risk 

ratio: 3.13, 95% CI [2.87–3.41]; timebased risk ratio: 2.83, 95% CI [2.58, 3.10]), and 

weekend driving had a lower fatal crash risk than weekdays (distance-based risk ratio: 0.79, 

95% CI [0.73–0.86]; time-based risk ratio: 0.76, 95% CI [0.70, 0.84]; Table 2). The 

estimates of fatal crash risk ratios were very similar between the models that used vehicle 

miles driven and vehicle hours driven as the exposures (Table 2). While not equivalent to a 

formal statistical test, we note that the confidence intervals for distance-based and time-

based fatal crash risk ratios exhibited a high degree of overlap, further suggesting that there 

was minimal difference between distance-based and time-based fatal crash risk ratios.

4. Discussion

Our objective was to determine if the length of driving time is comparable to driving 

distance as a driving exposure measure by comparing the distributions of driving distance 

and the length of driving time and distance-based and time-based fatal crash risk ratios by 

categories of driver age, gender, time-of-day, and day-of-week among U.S. drivers. The 
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distributions of driving distance were similar to those of the length of driving time, 

supporting the findings of Bose and Sharp (2005) that the NHTS and ATUS data provided 

similar estimates for the distributions of trips between driver age category, driver gender, and 

time-of-crash. The similarity between the point estimates of distance-based and time-based 

fatal crash risk ratios for age category, gender, time-of-day, and day-of-week, along with the 

large amount of overlap in their confidence intervals further suggest that using driving 

distance and the length of driving time as exposure measures result in consistent 

comparisons of fatal crash risk by driver groups and driving conditions. Therefore, the 

length of driving time is an appropriate alternative to driving distance as a measure of 

driving exposure.

More importantly, starting from 2003, the yearly disaggregated estimates of the length of 

driving time (vehicle hours driven) by age, gender, time-of-day, and day-of-week on the U.S. 

national scale became available from ATUS (U.S. Census Bureau, 2017), allowing 

researchers to evaluate the crash risk trajectories for a specific driver group or driving 

condition over consecutive years. In contrast, the disaggregated estimates of driving distance 

(vehicle miles driven) can only be obtained in discrete periods (e.g., 2001–2002, 2008–2009, 

and 2016–2017). The length of time estimates of other modes of transport (e.g., walking, 

taking a bus, and bicycling) can also be obtained from ATUS, which provides researchers an 

opportunity to evaluate the user risks of other modes of transport.

The small differences between distance-based and time-based fatal crash risk ratios for time-

of-day may be related to differences in driving speed between the daytime/nighttime driving 

conditions. With the limited visibility after dark, drivers may reduce their speed to 

accommodate the increased risks within the dark driving condition. Our study has identified 

that, compared to driving distance, a greater proportion of the length of driving time occurs 

at night (Figure 1 [b]), suggesting that drivers drive at a lower speed at night. Thus, for a 

given distance, people may drive for a longer time period at night than in daytime, 

increasing the denominator (the length of driving time) for the nighttime fatal crash rate. 

This increase in the denominator decreases the time-based fatal crash rate for nighttime, 

resulting in smaller a time-based fatal crash risk ratio than the distance-based one for 

nighttime vs. daytime.

Chipman et al. (1993) have argued that the length of driving time is not only a function of 

driving distance, but also a reflection of other factors (e.g., roadway hazards), and the length 

of driving time may be a better driving exposure measure than distance to account for those 

factors (Chipman et al., 1993). Chipman et al. (1993) further suggested that studies of 

characteristics of the time of a trip would support their arguments. The relatively smaller 

time-based fatal crash rate ratio for nighttime driving than the distance-based one in our 

study suggests that the length of driving time may be influenced drivers’ perceptions to 

roadway risks. However, using distance as an exposure measure includes a mixture of high- 

and low-risk driving conditions, ignores drivers’ perceptions to roadway hazards, and 

potentially results in overestimation to the crash risks for drivers who are more likely to be 

exposed in risky driving conditions (i.e., the estimated distance-based crash risk for those 

drivers may be mixed with the risk of the driving conditions). In relatively hazardous 

situations (e.g., nighttime versus daytime in this study), drivers would reduce their driving 
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speed and have a reduced crash risk per unit time than per unit distance. As a result, the risks 

of the driving conditions could be partially separated from the estimated time-based crash 

risk for drivers who are more likely to be exposed to risky driving conditions. We believe 

that the length of driving time is a better exposure measure than driving distance in 

comparing crash risks for drivers who have substantially different levels of exposures to 

risky driving conditions.

There are several considerations when using the length of driving time as the exposure 

measure. First, basing exposure on the length of driving time may result in a paradoxical 

argument that for a given distance, drivers driving at a higher speed would have reduced 

exposure to risk, but the high speed may in turn increase the crash likelihoods and injury 

severities. Many previous studies have found that the increased speed limit was associated 

with an increased traffic fatality rate for U.S. states (Baum, Lund, & Wells, 1989; Ossiander 

& Cummings, 2002). Thus, drivers who habitually exceed the speed limit even possibly with 

reduced length of driving time are expected to have higher fatal crash risk. More 

importantly, if time is used to compare the crash risks between driver groups or driving 

conditions, the driving speed for those groups or conditions over the study period should not 

change substantially (e.g., no substantial change for speed limit). Second, the driving 

distance estimated by 2016–2017 NHTS is based on a Google API shortest path route 

between a geocoded origin and destination (McGuckin & Fucci, 2018), while the estimated 

length of driving time obtained from 2003–2018 is based on participants’ estimate (U.S. 

Census Bureau, 2017). Thus, the driving distance may be more objective than the length of 

driving time. Third, the linearity between the length of driving time and crash frequency 

cannot be determined. A so-called “low-mileage bias” issue is associated with the using of 

number of vehicle miles driven as the exposure measure (Janke, 1991; Langford, Methorst, 

& Hakamies-Blomqvist, 2006; Langford et al., 2008). The relationship between the number 

of crashes and driving distance is described as a logarithmic curve (Janke, 1991; Langford et 

al., 2006). That is, the number of crashes increases rapidly at lower distance levels but 

gradually plateaus at higher exposure levels. Drivers with lower miles driven usually had a 

greater crash rate than drivers with higher miles driven (Janke, 1991; Langford et al., 2006; 

Langford et al., 2008). We are not able to determine analytically if the “low hours bias” issue 

also exists when the length of driving time is used as the exposure measure, as ATUS does 

not record their participants’ crash history. The overestimation of the older drivers’ crash 

risk per unit of distance is well documented (Massie, Campbell, & Williams, 1995; Langford 

et al., 2006). Since our results showed that distance-based and time-based fatal crash risk 

ratios for older drivers were similar, overestimation of time-based fatal crash risk for older 

adults may also exist.

Our study has several limitations. First, the 2016–2017 NHTS data allowed a proxy to 

answer for participants in some situations (e.g., participant unavailability). In our analysis, 

more than 30% of trips for younger drivers aged 16–24 years were answered by a proxy. In 

contrast, the proxy rate is less than 17% for respondents aged 25 years or older. The effects 

of proxy response were indeterministic (Dell et al., 2016). Second, we only used fatal 

crashes to determine if driving distance and the length of driving time could provide 

comparable risk estimates by driver age category, driver gender, time-of-day, and day-of-

week. The generalizability of our results to crashes with all levels of severity is unknown. 
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Third, our study was also limited by the coding of time-of-day and day-of-week based on 

the departure time of the trips. Some trips started in the daytime but ended at night, and vice 

versa. Thus, some bias might be introduced into our analysis when estimating miles driven 

and hours driven for each category of time-of-day and day-of-week. However, as we used 

consistent categorization for both the NHTS and ATUS surveys, distance-based and time-

based estimates should be biased in the same direction. In total, less than 3% trips in NHTS 

and ATUS started in nighttime but ended in daytime or started in daytime but ended in 

nighttime, and less than 1% trips started in weekday but ended in weekend or started in 

weekend but ended in weekday. As a result, our comparison should not be highly influenced 

by bias effects. Finally, the negative binomial regression models allowed us to model counts 

of the drivers in fatal crashes with the natural logs of point estimates of vehicle miles driven 

or vehicle hours driven as the offsets to estimate the risk ratios and the corresponding 95% 

confidence intervals (CIs). However, we did not account for the variances of the estimated 

offsets in our models. Appendix A details a sensitivity analysis in which we iteratively 

imputed draws from the distributions of the exposure estimates. Within each iteration, we fit 

negative binomial regression models with the imputed exposures as offsets. The confidence 

intervals for the risk ratios that resulted from pooling the between- and within- iteration 

variances are wider than those in Table 2. However, we reach the same conclusions as we do 

with the present analysis.

5. Conclusion

This study demonstrates that the length of driving time is an alternative driving exposure 

measure to driving distance, which is usually regarded as the “gold standard” driving 

exposure. However, the length of driving time has the additional benefit of being available 

annually starting from 2003, curtailing the discontinuity limitation of driving distance. In 

addition, the length of driving time can capture the drivers’ perceived risks about their 

driving conditions and as a result, may be a better exposure measure than driving distance in 

comparing crash risks between drivers whose likelihood of traveling in hazardous driving 

conditions (e.g., nighttime) varies substantially. A better knowledge of the availability of 

different driving exposures and the differences between exposure measures in evaluating 

crash risks can help researchers choose an appropriate exposure measure to identify at-risk 

driver groups or driving conditions. This understanding could, in turn, support educational 

efforts and other specific interventions to reduce traffic crashes and injuries and improve 

transportation safety.
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Appendix

Appendix A. Accounting for the variance of the estimated offsets via 

imputation.

The offsets of the models (i.e., the natural logs of vehicle miles driven and vehicle hours 

driven) estimated from NHTS and ATUS are not fixed and known, as they are treated in the 

models used in Table 2 of the main text. Rather, they are estimated and have their own 

variance. However, our modeling frameworks did not allow us to incorporate the variances 

of those estimated offsets. Therefore, we present an additional sensitivity analyses to 

investigate the effects of failing to incorporate the variances of offsets on our model 

estimates and their corresponding confidence intervals.

We performed two Monte Carlo simulations, each for 10,000 iterations. At each iteration 

vehicle miles driven or vehicle hours driven for each observation was imputed based on a 

zerotruncated normal distribution with mean and standard deviation estimated from NHTS 

or ATUS. In each iteration, a negative binomial regression was fit with the sampled offset, 

and the associated estimates of dependent variables were obtained. Treating this procedure 

as a form of multiple imputation of the offsets, we followed the method described in Little 

and Rubin (2019) to calculate the pooled mean and pooled variance of each estimate (e.g., 

age category and time-of-day) as follows:

βD = 1
D ∑d = 1

D βd equation (1)

V arD = V arwitℎin + 1 + 1
D V arbetween equation (2)

V arwitℎin = 1
D ∑d = 1

D V ard equation (3)

V arbetween= 1
D−1 ∑d = 1

D βd‐βD
2

equation (4)

where βd is the estimate from dth iteration and V ard is the estimated variance for the estimate 

from dth iteration (d = 1, …, D). In our analysis, D = 10,000. Negative binomial regression 

analyses were conducted in R×64 3.5.2 with function glmmadmb.

Table A-1:

Pooled distance-based, time-based risk ratios, and the confidence intervals after 10,000 

iterations

Distance-based risk ratio (CI 
a
) Time-based risk ratio (CI)

Age category
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Distance-based risk ratio (CI 
a
) Time-based risk ratio (CI)

 16–24 2.54 (2.08, 3.10) 2.60 (1.92, 3.52)

 25–44 1.33 (1.11, 1.60) 1.30 (1.06, 1.59)

 45–64 -- 
b

--

 ≥ 65 1.50 (1.27, 1.77) 1.56 (1.22, 2.00)

Gender

 Female -- --

 Male 1.75 (1.54, 2.00) 1.74 (1.45, 2.09)

Time-of-day

Daytime -- --

 Nighttime 3.13 (2.74, 3.57) 2.99 (2.49, 3.59)

Day-of-week

 Weekend -- --

 Weekday 0.78 (0.69, 0.90) 0.77 (0.64, 0.93)

a
Confidence intervals;

b
Reference group.

The results of our sensitivity analysis are shown in Table A-1. The pooled distance-based 

and time-based estimates were quite similar to the ones shown in Table 2. However, the 

pooled confidence intervals were larger than their corresponding CIs (e.g., the distance-

based 95% CI for male in Table 2 is 1.61–1.91 versus the distance-based 95% CI for male 

[1.54–2.00] in Table A-1). It suggests that not incorporating the variances of the offsets 

results in underestimation of the standard errors of each estimated risk ratio and thereby, 

underestimation of the width of their 95% CIs. Some bias may have been introduced due to 

the truncation of the offset at zero. Future work should investigate practical methods for 

incorporating the variance of various offsets into models of crash risk.
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Highlight

• Comparison of driving time-based and population-based fatal crash risk ratios 

was conducted.

• Time-based fatal crash risk ratios are consistent with distance-based ones.

• Using the length of driving time as a driving exposure measure can curtail the 

discontinuity limitation with driving distance.
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Figure 1. Distributions of vehicle miles driven and vehicle hours driven by age category (a), 
gender (b), time-of-day (c), and day-of-week (d).
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Table 2.

Fatal crash counts, rates, and distance-based, time-based risk ratios for driver age category, gender, time-of-

day, and day-of-week

No. of fatal 
crashes

Fatal crash rate 
per 100 million 

miles driven

Distance-based risk ratio 
a 

(CI 
b
)

Fatal crash rate 
per 100 million 
hours driven

Time-based risk ratio 
c 

(CI)

Age category

 16–24 9,263 4.42 2.43 (2.16, 2.74) 104.59 2.39 (2.10, 2.72)

 25–44 17,075 2.17 1.32 (1.17, 1.48) 60.58 1.31 (1.15, 1.49)

 45–64 12.805 1.72
--

d 44.94 --

 ≥ 65 6,714 2.39 1.49 (1.32, 1.68) 60.69 1.50 (1.31, 1.71)

Gender

 Female 13,111 1.51 -- 38.14 --

 Male 32,746 2.84 1.75 (1.61, 1.91) 77.55 1./5 (1.60, 1.92)

Time-of-day

 Daytime 24,011 1.49 -- 40.72 --

 Nighttime 21,846 5.36 3.13 (2.87, 3.41) *V3.8’ 2.83 (2.58, 3.10)

Day-of-week

 Weekend 18,512 3.17 -- 82.97 --

 Weekday 27,345 1.90 0.79 (0.73, 0.86) 50.37 0.76 (0.70, 0.84)

a
The estimates were obtained through a negative binomial regression model with an offset equal to the natural log of the number of vehicle miles 

driven. The model included age category, gender, time-of-day, day-of-week, and quarter as independent variables and the number of drivers in fatal 
crashes as the dependent variable;

b
Confidence intervals;

c
The estimates were obtained through a negative regression model with an offset equal to the natural log of the number of vehicle hours driven. The 

model included age category, gender, time-of-day, day-of-week, and quarter as independent variables and the number of drivers in fatal crashes as 
the dependent variable;

d
Reference group.
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