Skip to main content
. 2020 Jun 15;215(4):947–958. doi: 10.1534/genetics.120.303242

Table 2. Type l error rates for different methods with the estimated Volume trait correlation matrix R^(104).

α 0.05 0.01 1 × 104 1 × 106 5 × 107 5 × 108
SUM 5.0 × 10−2 1.0 × 10−2 1.0 × 10−4 1.0 × 10−6 5.0 × 10−7 4.7 × 10−8
SSU 4.6 × 10−2 1.0 × 10−2 1.9 × 10−4 4.1 × 10−6 2.4 × 10−6 3.9 × 10−7
Chi-squared 6.4 × 10−2 2.8 × 10−2 1.1 × 10−2 7.4 × 10−3 7.1 × 10−3 6.2 × 10−3
Hom 1.7 × 10−1 9.9 × 10−2 5.0 × 10−2 3.6 × 10−2 3.4 × 10−2 3.1 × 10−2
MAT(1) 5.0 × 10−2 1.0 × 10−2 1.0 × 10−4 1.0 × 10−6 5.2 × 10−7 4.9 × 10−8
MAT(10) 5.0 × 10−2 1.0 × 10−2 9.9 × 10−5 1.0 × 10−6 5.0 × 10−7 5.7 × 10−8
MAT(30) 5.0 × 10−2 1.0 × 10−2 1.0 × 10−4 1.0 × 10−6 5.2 × 10−7 4.5 × 10−8
MAT(50) 5.0 × 10−2 1.0 × 10−2 9.9 × 10−5 1.0 × 10−6 5.0 × 10−7 4.5 × 10−8
aMAT 4.7 × 10−2 9.4 × 10−3 9.9 × 10−5 1.2 × 10−6 6.4 × 10−7 4.7 × 10−8

We simulated 500 million (5 × 108) replications with true Volume trait correlation matrix R under the null and constructed test statistics with R^(104). Type 1 error rates were estimated as the proportions of P-values less than significance level α.