
Persistence and Decay of Fecal Microbiota in
Aquatic Habitats

Asja Korajkic,a Pauline Wanjugi,b Lauren Brooks,c Yiping Cao,d Valerie J. Harwoode

aUnited States Environmental Protection Agency, Cincinnati, Ohio, USA
bWadsworth Center, New York State Department of Health, Albany, New York, USA
cUtah Valley University, Orem, Utah, USA
dSource Molecular, Miami, Florida, USA
eUniversity of South Florida, Tampa, Florida, USA

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
EFFECTS OF ABIOTIC FACTORS ON DECAY RATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Sunlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Water Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Nutrients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Alternative Habitats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Sediments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Vegetation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

EFFECTS OF BIOTIC FACTORS ON DECAY RATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Extrinsic Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Intrinsic Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SUPPLEMENTAL MATERIAL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
AUTHOR BIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

SUMMARY Fecal microorganisms can enter water bodies in diverse ways, including
runoff, sewage discharge, and direct fecal deposition. Once in water, the microor-
ganisms experience conditions that are very different from intestinal habitats. The
transition from host to aquatic environment may lead to rapid inactivation, some
degree of persistence, or growth. Microorganisms may remain planktonic, be depos-
ited in sediment, wash up on beaches, or attach to aquatic vegetation. Each of these
habitats offers a panoply of different stressors or advantages, including UV light ex-
posure, temperature fluctuations, salinity, nutrient availability, and biotic interactions
with the indigenous microbiota (e.g., predation and/or competition). The host sources of
fecal microorganisms are likewise numerous, including wildlife, pets, livestock, and hu-
mans. Most of these microorganisms are unlikely to affect human health, but certain
taxa can cause waterborne disease. Others signal increased probability of pathogen
presence, e.g., the fecal indicator bacteria Escherichia coli and enterococci and bacte-
riophages, or act as fecal source identifiers (microbial source tracking markers). The
effects of environmental factors on decay are frequently inconsistent across micro-
bial species, fecal sources, and measurement strategies (e.g., culture versus molecu-
lar). Therefore, broad generalizations about the fate of fecal microorganisms in
aquatic environments are problematic, compromising efforts to predict microbial de-
cay and health risk from contamination events. This review summarizes the recent
literature on decay of fecal microorganisms in aquatic environments, recognizes de-
fensible generalizations, and identifies knowledge gaps that may provide particularly
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fruitful avenues for obtaining a better understanding of the fates of these organisms
in aquatic environments.

KEYWORDS decay rate, persistence, aquatic, enteric pathogens, fecal organisms,
habitat, indicator organisms, survival, water quality, waterborne pathogens

INTRODUCTION

Many waterborne pathogens originate in the gastrointestinal tracts of humans or
other animals (the primary habitat) and enter water bodies (a secondary habitat)

via fecal or sewage contamination (Fig. 1). The fate of populations of fecal microor-
ganisms in aquatic environments is generally progression toward nonviability (frequently
termed decay); however, some aquatic environments support long-term survival or growth
of pathogens and commensal microorganisms shed in feces (1, 2). The trajectory
(growth, stasis, or death) and rate of change in fecal-microorganism populations in
secondary (extraintestinal) habitats have profound implications for our understanding
of the human health risk from fecal contamination. These implications affect practices
such as wastewater treatment, ambient water quality assessment, modeling of water
quality, risk assessment, and management of environmental waters.

An important mode of transmission for enteric pathogens in human infections is the
fecal-oral route, which frequently entails a transitory period in one or more secondary
habitats (e.g., water, sediment, or vegetation). Fecal indicator bacteria (FIB), such as
fecal coliforms, enterococci, and Escherichia coli, are used to indicate the presence and
level of fecal contamination in water. Microbial source tracking (MST) markers target
genes from microorganisms closely associated with human and animal hosts and are
used to identify the source of fecal contamination. FIB and MST markers can be used
as a general warning system in monitoring programs and as an indication of fecal
contamination and the possible presence of enteric pathogens associated with host
sources of fecal contamination. These fecal indicators can also help indicate which
pathogens to test for based on the contamination source and can serve as surrogates
for pathogens in risk assessment or as a direct measurement of human health risk if
the marker is a pathogen (e.g., adenovirus). Understanding the extent to which fecal
microorganisms can persist or grow in aquatic environments is essential to estimating
risk from sewage spills, animal inputs, and other contamination events, yet few general
principles about the fate of fecal microorganisms in water bodies have emerged from
many decades of research.

The metrics used to express changes in microbial concentrations over time vary
according to the subdiscipline of microbiology and author preference, which vastly
complicates comparisons across studies. Decay rates can be calculated in many differ-
ent ways, but all express the change in microbial concentrations over time. The terms
T90 and T99 refer to the time required to reduce a microbial population by 90% or 99%,
respectively, and are generally expressed in hours or days. A first-order (linear) decay
equation is frequently used to describe changes in microbial densities [e.g., k (decay
rate constant) � ln(C0/CT)], where C0 is the initial concentration, and CT is the concen-
tration at time T. The more rapid the decay, the higher the decay rate. In this model,
also called the Chick-Watson model, a consistent, log-linear rate of decay is assumed.
Biphasic and sigmoidal curves are also observed (3). In reality, however, decay may be
delayed, producing a shoulder, or the decay rate may decrease as the population
decreases, producing a tailing-off effect. More complex models can also be employed
to capture these variations in decay curves (3, 4).

Measurement techniques can also affect the observed decay rate. Values obtained
by culture, which is a stringent and sometimes selective measure of viability, are almost
always higher in a given population than those obtained by direct microscopic counts
or molecular methods (e.g., quantitative PCR [qPCR]). Wherever possible, we refer to
changes in microbial concentrations over time as decay rates for quantitative measure-
ments or decay for qualitative comparisons. As decay rates increase, the rate of
microbial decline increases, and survival (persistence) decreases. The term “decay”
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works well when a treatment is expected to increase the decay rate (e.g., UV light or the
presence of predators) (see Table S1 in the supplemental material). This terminology
becomes counterintuitive in a table format when a treatment is expected to decrease
decay (increase persistence), such as nutrient addition (Table 1). Both decay and
persistence are therefore used in this review and have essentially opposite meanings.

The literature abounds with studies of the fates of fecal viruses, bacteria, and
protozoa in aquatic habitats, many of which have seemingly conflicting conclusions. A
general understanding exists that intrinsic (microbial type/species and host) and ex-
trinsic (competition and predation) biotic factors play important roles in survival, as do
abiotic factors, such as UV light intensity and temperature (Fig. 1). The great variability
in experimental design, measurement tools, and data analyses, however, may influence
measured decay rates and study conclusions. The ability to generalize from individual

FIG 1 A variety of habitats for FIB, MST markers, and enteric pathogens are associated with water and watersheds, including primary (e.g.,
gastrointestinal tracts of humans, farm animals, and wildlife) and secondary (e.g., wastewater, freshwater, and marine water) habitats.
Abiotic (e.g., sunlight, nutrients, temperature, salinity, and sediments) and biotic (e.g., competition, predation, and viral lysis) environ-
mental variables that influence microbial decay are depicted.
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studies to general principles and effective monitoring regimens, which are needed to
advance efforts to improve or maintain water quality, is then hindered.

The objective of this review is to examine the literature on the inactivation, survival,
and growth of fecal microorganisms, and sometimes their associated nucleic acids, in
aquatic environments. Constraints to study inclusion were that they must have been
conducted in a natural or simulated aquatic habitat, including submerged sediment
and aquatic vegetation but excluding engineered or completely simplified habitats,
such as wastewater treatment plants and drinking water. All the included studies
needed to juxtapose control versus treatment (e.g., sunlight exposure versus dark
controls) or two different treatments (e.g., freshwater versus marine water) and report
findings in some quantitative manner, such as decay rate or log10 reduction.

EFFECTS OF ABIOTIC FACTORS ON DECAY RATES

The characteristics of secondary habitats encountered by fecal microorganisms
released into aquatic ecosystems can contribute to rapid decay or extended microbial
survival and growth (5–9). Decay rates in aquatic habitats are influenced by a variety of
abiotic (physical and chemical) environmental factors that affect their physiological
status. Here, we explore the influence of sunlight, water type, nutrients, temperature,
and physical location (e.g., water column, sediment/sand, and aquatic vegetation) on
the decay rates of FIB, MST markers, and various pathogens.

Sunlight

Enteric microorganisms that enter aquatic habitats are subjected to numerous
environmental pressures that are absent from the gastrointestinal tract, including
sunlight and associated electromagnetic radiation (e.g., UV light). UVA (315 to 400 nm)
and UVB (280 to 315 nm) radiation are predominantly responsible for germicidal
properties associated with ambient sunlight (10, 11). Major mechanisms of microbial
inactivation by UV light include (i) UVB-induced formation of pyrimidine dimers, leading
to mutations, and (ii) UVA-induced photo-oxidative damage by free radicals and
reactive oxygen species (ROS) (10, 11). Photo-oxidative damage can be either exoge-
nous or endogenous, depending on the location of free radicals and ROS. In the
exogenous scenario, the source of free radicals and ROS is the natural organic matter
present in the water column, whereas in the endogenous mechanism, photons ab-
sorbed by internal cellular components create damaging molecules inside the cell.

Bacteria possess many different repair mechanisms that are activated following
direct DNA damage caused by UV light (e.g., photolyase-mediated repair, base/nucle-
otide excisions, and SOS repair) (10). In addition, global regulators (e.g., oxyR and soxRS)
become activated following oxidative stress, such as indirect DNA damage caused by
free radicals and ROS (12, 13). DNA repair mechanisms have been identified in a variety
of proteobacteria, including FIB and many bacterial pathogens, as well as Bacteroides
(10), a common target of the MST markers (2). The small genomes of viruses do not
usually include genes for nucleic acid repair, although the large megavirales possess a
suite of DNA repair genes (14). DNA repair genes have been found in other double-
stranded DNA viruses, including fowlpox virus (15, 16) and bacteriophage T4 (10, 17).
The susceptibility of Cryptosporidium and Giardia (oo)cysts to UV radiation characteristic
of drinking water treatment processes is well documented (reviewed in reference 18);
however, little is known about how exposure to ambient sunlight in an aquatic
environment affects these protozoa. Some evidence for repair exists (19, 20), and
necessary genes have been identified (21, 22).

Here, we focused on studies that investigated the effect of ambient (or simulated)
sunlight directly either by including dark (or shaded) controls (4, 23–38) or by con-
ducting experimentation at different depths (39–41). The sources of inocula ranged
from laboratory-propagated strains to a variety of human (feces, sewage, septage, and
a waste stabilization pond) and/or other animal (cattle manure/feces, dog feces, and
meat-processing facility effluent) sources (see Table S1 in the supplemental material),
and experimental design varied from indoor, laboratory-based studies (25, 42, 43) to
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experiments conducted outdoors (ex situ and in situ) (4, 23, 24, 26–36, 38–41, 44). Table
S1 and Fig. 2 summarize the effects of sunlight on the decay of various indicator
organisms and some enteric pathogens in brackish and marine water and a variety of
freshwater (groundwater and lake, river, creek, wetland, lagoon, and pond water).

Twenty-five of 30 (83.3%) FIB analyses by culture methods found that exposure to
sunlight increased decay rates (Fig. 2); however, this effect was sometimes either not
statistically significant or the statistical significance of the parameter was not reported
(see Table S1). Within these studies, other factors contributing to decay included
temperature (29, 32, 33, 35, 38, 39), biotic interactions (4, 25, 28, 39, 45), seasonality (31,
33, 34, 41), source of FIB (4, 27), salinity/water type (26, 34), presence of sediments (25),
and oxidative stress (30). In contrast, only 4 of 11 (36.4%) observations where FIB were
measured by qPCR found a significant effect of sunlight (Fig. 2) (23, 24, 26, 30, 46). The
few exceptions were noted for experiments that were conducted in situ (4, 28, 41). The
effect of sunlight on cultured (infectious) coliphages was similar to its effect on cultured
FIB, as 10 of 12 (83.3%) measurements found greater decay rates for somatic and F�

coliphage in the presence of sunlight (Fig. 2) (4, 29, 33, 34, 42–44) (see Table S1),
although statistical analysis was not always reported. Collectively, these studies deter-
mined that, while the effect of sunlight is particularly significant for cultured FIB and
bacteriophages, the magnitude of the effect likely depends on other parameters, such
as UVB intensity and seasonality (41), the source of the fecal material (4), or the duration
of exposure to the aquatic environment (28).

The effect of sunlight on decay rates of MST marker genes measured by qPCR
followed the trend of decreased impact compared to the strong effects of sunlight
noted on cultured microorganisms (23, 24, 26, 35, 36, 41), although several studies
found accelerated decay rates for certain markers (4, 25, 28). Overall, in 11 of 26 (42.3%)
instances, sunlight increased the decay rates of MST markers (Fig. 2). Sunlight signifi-
cantly increased the decay rates of general Bacteroidales (GenBac3) and human-
associated (HF183 and HumM2) MST markers in three of nine (33.3%) studies (4, 25, 28)
(see Table S1). Interestingly, all three studies found that sunlight was a dominant factor
in decay rates in the first 2 to 5 days of the study; however, the effect of the indigenous
microbiota was the principal factor influencing decay rates in later stages. Decay studies
conducted using animal-associated MST markers are much less numerous in the
literature. Out of the five studies investigating the effect of sunlight on decay of
cattle-associated MST markers (BacCow-UCD, BacR, CF 128/193, CowM2, CowM3, and

FIG 2 Effect of sunlight exposure on culture and molecular (i.e., qPCR) measurements of FIB, infectious
coliphage, and various MST markers. N represents the number of observations from all studies; in some
cases, more than one species or target is included per study.
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Rum2Bac), one study conducted in marine water (23) reported a significant effect of
sunlight on decay whereas the three conducted in freshwater and groundwater
generally did not observe a similar effect (24, 35, 36) (see Table S1). The remaining
study, conducted in both marine water and freshwater, reported a significant effect of
sunlight on decay of CowM2 and Rum2Bac, but not CowM3 (46) (see Table S1).

Studies investigating pathogen decay are less numerous, but the discrepancy
between culture and qPCR holds, with detrimental effects of sunlight on decay noted
on cultured Salmonella enterica, Campylobacter jejuni, and E. coli O157:H7 (31, 38, 39),
but not for S. enterica or C. jejuni measured by qPCR (24) (see Table S1). A study
determining the effect of ambient sunlight on infectious Cryptosporidium parvum also
noted faster decay in sunlight-exposed treatments than in the dark controls (37).
Sunlight also accelerated the decay rates of cultured adenovirus type 2 (42, 43) and
poliovirus type 3 (42, 44) (see Table S1). The exception was the qPCR signal for
adenovirus type 2, which was not significantly affected by sunlight (24).

Studies that attempted to assess the impacts of multiple environmental variables on
decay rates are more ambiguous about the detrimental effects of sunlight than the
simplistic laboratory studies. While differences in study designs are likely contributing
factors, it should also be noted that the germicidal effects of sunlight depend on factors
such as dissolved oxygen concentrations (34, 47–51), humic acids (48, 52), and tem-
perature and pH (48, 53, 54), as well as water depth and turbidity (55–57). In addition,
other variables affecting decay that are not uniform across the studies (e.g., seasonality,
salinity/water type, biotic interactions, presence of sediment, oxidative stress, inoculum
source, and water composition) may interact with the observed effects of sunlight (see
Table S1). The relative sensitivity to sunlight of bacteria and viruses measured by
culture methods compared to those measured by qPCR is the most generalizable
conclusion gained from comparison of these studies.

Water Type

The salinity and the associated ionic content of marine and estuarine waters presents a
hypertonic environment for most enteric microorganisms, which can induce osmotic shock
and negatively impact survival. Exposure of bacteria to waters with high salinity content
induces osmoregulatory systems, leading to accumulation of compatible solutes (58–
61) and differential expression of genes affecting membrane composition (58). As a
result, changes in salinity may cause immediate loss of culturability due to sublethal
injury, but some enteric microorganisms can adapt to survive in waters with higher salt
content (62, 63). Less is known about the effect of osmotic shock on viruses, although
earlier research indicated that osmotic shock can lead to rupture of viral capsids and
loss of infectivity (64).

Here, we focus on studies that compared decay rates under contrasting salinity
conditions. Our criteria for study inclusion required direct comparisons between dif-
ferent water types (9, 26, 27, 34, 45, 65–73) or within the same water type but with
varied levels of salinity obtained by addition of artificial salts (74, 75). We found 18
studies conducted over the last 4 decades that investigated the effect of water type on
the decay of FIB; bacterial, viral, and protozoan pathogens; coliphage; and a variety of
MST markers and also met our selection criteria (Fig. 3). Since a number of these studies
measured more than one microorganism and often used more than one analytical
technique for the same organisms, this combined data set produced 74 unique
observations or data points regarding the effect of the water type (Fig. 3). Specifically,
there were 24 data points for culturable FIB (9, 27–29, 34, 45, 65, 67–72), 5 for FIB
measured by qPCR (26, 46, 69), 2 for bacterial pathogens measured by qPCR (69), 4 for
infectious coliphage (29, 34, 68), 7 for infectious enteric viruses (73, 75), 1 for enteric
viruses measured by qPCR (65), 1 for infectious C. parvum (76), and 30 for a variety of
MST marker genes (7 for general MST, 12 for human-associated, and 11 for non-human-
associated) (26, 46, 65, 66, 68, 69, 71, 72, 74).

The water type affected the decay rate of microorganisms in only 55.4% of all
comparisons (46, 65–70, 73, 75) (Table 2). Faster decay in estuarine/marine waters was
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noted in approximately 32% of all comparisons (9, 27, 34, 45, 46, 66, 68, 72, 73, 76),
while �23% of observations recorded faster decay in freshwater (Table 2) (26, 27, 46,
65, 68, 71, 74). Faster decay in estuarine/marine waters was most frequently observed
for microorganisms measured by culture-dependent methods, including FIB (9, 27, 34,
45, 65, 68), coliphage (34, 68), and viral/protozoan pathogens (73, 76) (Fig. 3 and Table
2). Freshwater rarely increased the decay rates of culturable microorganisms (2.8% of
observations) but more frequently increased the decay rates of molecular targets
(42.1%), e.g., human MST markers (Fig. 3). The trend of faster decay in freshwater versus
estuarine/marine waters was observed for FIB, pathogens, and various MST markers
measured by qPCR (26, 46, 65, 68, 71, 74) (Table 2 and Fig. 3). This differential effect of
water type on the persistence of culture-based versus molecular targets was statistically
significant (Fisher exact test; P � 0.0001).

While the salinity level is the most apparent difference between marine water,
estuarine water, and freshwater, several other factors may influence microbial decay.
For example, it has been noted that predatory protozoan populations vary within and
among the water types (77–80); thus, it is difficult to separate the effects of salinity and
biotic interactions on decay rates. Furthermore, differences in clarity among the water
types can also affect the magnitude of exposure to ambient sunlight, where more
suspended organic matter in the water column can inhibit the penetration of UV
radiation (56, 57).

Nutrients

The gastrointestinal tracts of animals and humans are copiotrophic environments
characterized by abundant nutrient supplies; therefore, the transition to oligotrophic
environments, such as aquatic habitats, is generally detrimental to the survival of

FIG 3 Effect of water type on decay of fecal microorganisms measured by qPCR (q; circles) or culture (c;
triangles). The symbols represent studies in which decay rates were significantly greater in marine water
or freshwater or in which the water type had no effect. The symbol size corresponds to the number of
studies with results that fall within each category (greater decay in marine water or freshwater or no
effect).

TABLE 2 Summary of the influence of water type on decay rates of various microbial
targets for culture versus molecular measurement strategies

Measurement strategy

Water type with more rapid decay [no. of observations (%)]

Marine Freshwater No effect

Culture based 17 (47.2) 1 (2.8) 18 (50.0)
Molecular (qPCR based) 7 (18.4) 16 (42.1) 15 (39.5)
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enteric bacteria. Alternatively, an abundance of nutrients, such as in eutrophic aquatic
systems, can facilitate proliferation or extended survival of enteric bacteria, including
pathogens. The influx of nutrients into aquatic environments can originate from various
sources, including urban runoff, sewage effluent, fecal material, and resuspension from
sediments (81–83).

To simulate the effect of elevated nutrients in eutrophic aquatic systems, studies
have employed various nutrient sources, including vegetation extracts (82), inorganic
fertilizer (84–86), fecal material (87–89), and synthetic/artificial nutrients (89–91). The
majority of these studies have been conducted in the laboratory and can be divided
into several categories based on experimental design; some studies utilized both
sediments and the overlying water column (81, 87–89), while others focused on the
water column only (83, 92). Another distinguishing characteristic was the source of the
bacterial inoculum, which ranged from laboratory-propagated strains (81) to organisms
in feces (83, 87, 88) to environmental strains from water/sediments (83, 89, 92). Of note,
most of the studies utilized nonsterilized water and sediment that contained a full
complement of indigenous microbiota, including predators and competitors. Table 1
summarizes how certain nutrients (organic carbon, phosphorus, and nitrogen) influ-
enced the decay of various indicators. It is important to note that most studies
investigating the effects of nutrients focused only on changes in culturable-FIB levels,
and therefore, there are few data available for other groups of interest (e.g., MST
genetic markers and various pathogens).

Organic carbon is a limiting nutrient for bacteria in many environments and
generally constrains the survival of enteric bacteria in aquatic environments (93).
Several studies reported increased E. coli persistence after addition of organic carbon in
the form of fecal material (88, 89) or organic-rich sediment (81) (Table 1). FIB decay rates
were often reduced in sediment compared to the overlying water column (81, 88), and
culturable E. coli and enterococci, as well as the GenBac3 MST marker, decayed more
slowly in sediments with higher organic carbon levels (94). Extended survival in
sediments is attributed to factors including greater access to nutrients, such as organic
carbon, and protection from UV light and predators. Other factors, such as sediment
properties (e.g., particle size and clay content), as well as the presence of biofilms, can
also promote extended survival in sediment (81, 88, 94).

In surface waters, FIB concentrations were often correlated with organic carbon
concentrations (82, 83). In particular, elevated indicator concentrations were observed
when organic carbon levels were at or above 7 mg/liter (83). Other studies conducted
using incremental levels of organic carbon also reported enhanced survival of E. coli in
the water column (90, 91). In both studies, the positive effect of nutrient addition on E.
coli varied depending on nutrient levels and/or the presence of biota (predators and
competitors) (90, 91).

Both phosphorus and nitrogen are necessary for bacterial growth and metabolism,
and either may be a limiting nutrient in certain aquatic environments (82, 83, 87, 89,
92). Table 1 lists several laboratory studies in which phosphorus and nitrogen were
added in the form of artificial nutrients (84–86, 91, 92) or fecal matter (87–89). In
addition, other studies that assessed the relationship between FIB and elevated phos-
phorus and nitrogen in surface waters are listed (82, 83). In general, organic and/or
inorganic phosphorus addition increased the survival of fecal coliforms, enterococci,
and E. coli (84–86, 89, 92). In one study comparing the effects of the addition of
phosphorus in the form of fecal matter (bovine, deer, and goose), only deer feces,
which had a comparatively high phosphorus content, decreased the decay rate of FIB
(87).

The results of studies conducted in surface waters were similar to those of laboratory
studies, finding that FIB concentrations (E. coli and enterococci) were often correlated
with phosphorus concentrations (82, 83). At lower nutrient concentrations, studies have
shown that the presence of biota can confound the effect of nutrient addition in the
water column (89, 92), diminishing the effect of nutrients on FIB persistence. This
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finding is consistent with those of another laboratory-based study in which the effect
of organic carbon addition on FIB persistence was concentration dependent (90).

Temperature

Enteric bacteria (indicators and pathogens alike) are mesophiles, with optimal
growth temperatures within the moderate range (20°C to 40°C), consistent with the
temperatures characteristic of human and other animals’ gastrointestinal tracts. In
many ecosystems, temperature fluctuates on a daily and seasonal basis, presenting
adaptational challenges for microbes entering their secondary habitats. While higher
temperatures (within the tolerance range of a given organism) typically result in elevated
metabolic activities when nutrients are abundant, survival in nutrient-poor environ-
ments tends to be prolonged at low temperatures (93).

The extended survival at lower temperatures has been attributed to various stress
response mechanisms. For example, exposure of Enterococcus faecalis to lowered
temperature triggers a cold shock response (95). In E. coli, a temperature downshift
from 37°C to 15°C induces expression of various cold shock proteins (mostly belonging
to the CspA family), leading to the adjustment of the membrane lipid composition and
the ability to overcome deleterious effects of cold shock on transcription and transla-
tion (96). Less is known about temperature adaptation in enteric viruses, but available
research on the � bacteriophage suggests greater stability at lower temperatures
(97–99). For example, at low temperatures, the � bacteriophage follows a lysogenic
pathway that leads to a stable prophage, but at higher temperatures, it follows a lytic
cycle that results in production of phage progeny (99, 100).

Here, our criteria for study inclusion required direct comparison of decay at a
minimum of two temperatures under controlled laboratory settings (25, 29, 66, 71, 74,
75, 81, 88, 101–113) or a seasonal comparison in field studies (32, 33, 35, 101, 111, 114).
Temperatures reported in the individual studies ranged from 4°C to 45°C, but since 20°C
is the lower bound for the optimal growth of mesophilic organisms, we binned study
conditions into temperatures of �20°C or �20°C. This strategy yielded 63 data points
or observations: 6 for culturable fecal coliforms (32, 33, 71, 101, 112, 114); 11 for E. coli
measured by culture and qPCR (25, 29, 32, 35, 81, 88, 104, 105, 110, 111); 6 for
enterococci measured by culture and qPCR (29, 35, 101, 104, 105); 4 (33, 35, 107, 112)
and 3 (33, 109, 113) for infectious somatic and F� coliphage, respectively; 4 for
culturable bacterial pathogens (Salmonella enterica serovar Typhi and Shigella sonnei)
(111); 8 for viral pathogens (coxsackievirus B5, echovirus type 6, norovirus, and polio-
virus type 1) measured by culture and qPCR (75, 108, 111, 112); 5 for general MST
markers (AllBac, BacPre1, and BacUni) (25, 66, 71, 102, 104, 114); 8 for human MST
markers (BacH, BacHum, HF183, Human-Bac1, and the alpha-1,6-mannanase gene) (25,
35, 66, 71, 74, 104, 105); 7 for other animal MST markers (BacR, CowBac2, BacCow,
BacCan, and PigBac2) (35, 66, 71, 104); and 1 for infectious C. parvum (115).

Our findings are summarized in Fig. 4. A strong trend among all the microorganisms
indicated extended persistence at temperatures of �20°C (55/63; 87%). Only 3% (2/63)
of the comparisons noted the opposite trend, while 8% (5/63) showed no effect on the
decay rate. The null findings were observed for culturable E. coli, S. Typhi, S. sonnei,
infectious poliovirus type 1 (111), and a general MST marker (AllBac) (25). The studies
that observed no effect shared dark-only (no-sunlight) conditions, as one was an
outdoor in situ study conducted at depths of 3 and 10 m (111) and the other was an
indoor study without exposure to UV light (25). Extended persistence at temperatures
of �20°C was observed in only two instances (for culturable E. coli and fecal coliforms)
(101, 104), and it is more difficult to understand. However, it should be noted that in
the study reporting on fecal coliforms, (i) the lengths of the experiments for the
summer (�20°C) and winter seasons were uneven (1 week versus 2 weeks, respec-
tively), possibly confounding the findings, and (ii) enterococci persisted longer in the
winter than in the summer, as would be expected (101). The study that noted extended
persistence of E. coli at 20°C versus 6°C was conducted in anaerobic sediments (104),
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where nutrients may have been abundant enough to support growth of E. coli at the
higher temperature.

Alternative Habitats

The many types of microbial habitats offered by aquatic environments differ widely
in terms of benefits and stressors, thereby affecting the persistence of various indicators
and pathogens. Microorganisms tend to attach to particles, which can mediate rela-
tively rapid transport to sediments (116). They may also form biofilms on aquatic
vegetation or other structures (117). Although not strictly an aquatic environment, sand
on beaches can provide a habitat in a sand-water continuum (118). The stressors and
advantages of these various environments, and their effects on the survival of enteric
microorganisms, are explored below.

Sediments. In a rare consensus, all the studies comparing decay in sediments versus
the overlying water column found extended persistence in sediments. This finding
applied to culturable FIB (fecal coliforms, E. coli, and enterococci) (9, 45, 69, 85, 88, 104,
119–122), FIB quantified by qPCR (Entero1a and uidA) (69, 104), a variety of MST markers
(BacCan, BacCow, BacHum, and LA35) (69, 104), and bacterial pathogens quantified by
both culture and qPCR (Campylobacter coli, E. coli O157:H7, Salmonella spp., and Vibrio
parahaemolyticus) (69, 120, 122). The trend was also consistent regardless of the water
type (i.e., freshwater or marine water), experimental design (outdoor or indoor), or
inoculum source (strains, human and other animal fecal material, or organisms indig-
enous to aquatic habitats). The only notable exception (no difference in decay between
sediments and the overlying water column) was reported for Entero1a qPCR in an
indoor study utilizing lake-derived water and sediments (104). Of note, this particular
study was conducted in the dark, which potentially contributed to extended persis-
tence in the water column (104). Other studies focused on elucidating the effects of
sediment characteristics on decay, rather than direct comparisons between the two
matrices. In general, smaller grain size was frequently associated with elevated nutrient
content and extended survival of culturable FIB (E. coli and enterococci) (94, 121, 123,
124), FIB quantified by qPCR (Entero1a) (94), general (GenBac3) as well human-
associated (HF183) MST markers (94), and a variety of bacterial pathogens (Vibrio
cholerae, Salmonella enterica serovar Typhimurium, and Shigella dysenteriae) (124).

Vegetation. Decay studies exploring the effect of aquatic vegetation on microbial
decay are comparatively rare, although filamentous green algae, such as Cladophora
glomerata, contribute to water quality degradation in the Great Lakes (reviewed in
reference 117). Three available reports investigated the effects of (i) freshwater sub-

FIG 4 Effect of temperature on survival of FIB (fecal coliforms, E. coli, and enterococci); coliphage (somatic
and F�); bacterial (S. Typhi and S. sonnei), viral (coxsackievirus B5, echovirus type 6, norovirus, and
poliovirus type 1), and protozoan pathogens (C. parvum); and MST markers.
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merged aquatic vegetation (SAV) on the decay of enterococci (125), (ii) marine wrack on
the decay of E. coli and enterococci (126), and (iii) senescing seaweeds on the survival
of E. coli (127). All the studies noted extended persistence of FIB in vegetated meso-
cosms as opposed to unvegetated controls (125, 126) and enhanced survival in the
presence of aquatic vegetation (127).

Sand. A recent review (118) provided an exhaustive summary of our understanding
of the community structure, ecology, fate, transport, and public health implications of
various microbes in beach sand. Our goal here was to focus exclusively on decay studies
that examined the survival of FIB (103, 106, 110, 128–135) and bacterial pathogens (130,
134, 136, 137) analyzed by culture and qPCR, coliphage (culture) (134), and various MST
markers (128–130, 134, 138) in lake and marine beach sands. However, the effects of
additional factors studied (e.g., moisture, grain size, temperature, interactions with the
indigenous microbiota, the quantification technique, and the intrinsic properties of the
microorganisms studied) varied in direction and magnitude across the studies (Table 3).
In summary, the decay rates of various indicators and pathogens tended to be greater
in the water column than in sediments/sands, and aquatic vegetation could augment
persistence in marine and freshwater environments alike.

EFFECTS OF BIOTIC FACTORS ON DECAY RATES

Biological characteristics of microorganisms, relationships among microbial species,
and interactions within microbial communities influence FIB, MST genetic marker, and
pathogen decay rates in aquatic environments. Below, we categorize these factors as
extrinsic or intrinsic, where the former encompasses the effects of other microorgan-
isms on the target microorganism and the latter refers to the physiological and genetic
characteristics of the target microorganism itself.

Extrinsic Factors

Ecosystem functions at all scales are influenced by top-down (consumer-based) and
bottom-up (production-based) processes. Resource scarcity increases the influence of
interspecies competition on reproductive success, while predation acts as a top-down
control on populations. Field observations and modeling studies in freshwater and
marine environments suggest that top-down processes are more applicable in oligo-
trophic systems while bottom-up processes are more important in eutrophic systems
(139–143). Interactions among members of microbial communities are frequently
dominated by competition, which may be characterized by exploitative (use of scarce
nutrients) or interference (production of antagonistic substances) mechanisms (144).

Protozoan grazing accounts for up to 90% of bacterial mortality in freshwater and
marine systems (70) and is attributed to several key players, including flagellated and
ciliated protozoa and amoebas in certain environments, such as soil (77, 145). Small
heterotrophic flagellates contribute �30% of the total plankton biomass, but they are
important grazers of bacteria (141, 146). Similarly, ciliated protists are important
bacterial grazers, especially in highly productive environments (e.g., ponds and
throughout surface marine waters) (147–149). Although lytic activity by some bacteria,
e.g., Bdellovibrio, can be a factor in decay rates (150), none of the studies included here
explored this facet of predation.

Unlike protozoan grazing and competition with indigenous bacteria, the contribu-
tion of viral lysis to mortality of FIB, MST genetic markers, and pathogens in fresh and
marine waters is far less clear and may be system specific, as some authors have
suggested that virus-mediated lysis is greater in oxygen-poor or highly productive
systems (145). The only viral study included here tested the effect of bacteriophage-
mediated lysis on E. coli in beach sand and found little influence (131). This result is not
surprising, considering that certain threshold densities of both coliphage and its
bacterial host (as well as the appropriate physiological condition of the host) are
required for bacteriophage replication, conditions rarely found in ambient waters or
other extraintestinal environments (151). Therefore, our focus here is on predation by
bacterivorous protozoa and competition with the indigenous microbiota.
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Various experimental designs have been employed to assess the effects of predation
and/or competition in aquatic systems. Some studies have allowed discrimination
between the effects of protozoa and those of indigenous bacteria (roughly, predation
versus competition) via the use of inhibitory compounds (e.g., cycloheximide and
various antibiotics) (28, 90, 122, 131, 152–156) that affect only one group, while others
have excluded all indigenous microbiota by filtration (4, 27, 28, 45, 90, 102, 153,
155–161), autoclaving (25, 101, 131, 156), or “baking” of sediments (45, 122, 156), which
does not allow comparison of the effects of different protozoa and bacteria but instead
evaluates the effect of the total indigenous microbiota.

The trend toward greater decay rates in the presence of the indigenous microbiota
is consistently seen in the literature and is exemplified by a collection of studies that
assessed the decay of culturable E. coli and enterococci in the presence (unfiltered
water) and absence (filtered water) of the indigenous biota (27, 28, 45, 90, 156). While
decay rates (log10 reduction) were greater for E. coli (Fig. 5A) and enterococci (Fig. 5B)
as the length of exposure to water increased, both FIB consistently decayed more
rapidly in the presence of the indigenous microbiota than in their absence. Removal of
all indigenous microbiota resulted in reduced decay rates of FIB (culture-based and
molecular measurements) (4, 25, 27, 28, 39, 45, 90, 122, 131, 152–154, 156–158,
162–164); culturable Bacteroides fragilis and Bacteroides distasonis (101, 155); Bacte-
roides spp. measured by qPCR (102); various general and human-associated MST
markers (GenBac3, HF183, HumBac, and HumM2) (4, 25, 28); and bacterial pathogens,
including C. jejuni (162), S. enterica (122), and, in some instances, E. coli O157:H7 (122,
161, 165). Certain studies reported no effect of the indigenous microbiota (39), while
others noted preferential grazing of Platophyra spp. and Colpoda spp. on E. coli O157:H7
over autochthonous bacteria (165). Another study observed higher decay rates of E. coli

FIG 5 Decay (log10 reduction) of culturable E. coli (A) and enterococci (B). Means � standard deviations
for aggregate values from several studies are shown for each time point of exposure to the indigenous
freshwater and marine microbiota (blue symbols) or to filtered water with no indigenous microbiota (red
symbols) (27, 28, 45, 122, 156).

Decay of Fecal Microbes in Aquatic Habitats Microbiology and Molecular Biology Reviews

December 2019 Volume 83 Issue 4 e00005-19 mmbr.asm.org 15

https://mmbr.asm.org


O157:H7 in water from an area impacted by livestock than in less impacted waters
(161). Taken together with reports of preferential protozoan grazing on the C� phe-
notype of E. coli O157:H7 (compared to the C� phenotype) (166) and the differential
effects of motility on grazing effectiveness (122), these studies suggest that decay of
this bacterial pathogen (and likely others) in aquatic habitats is influenced by individual
characteristics of pathogenic strains.

Some studies conducted in the presence of native microbes noted a temporal trend
in which the decay rates of FIB and MST genetic markers increased in the later stages
of the experiment (generally after 72 h of exposure) (4, 28). This time frame corresponds
well to the time required for protozoan populations to adjust to an influx of prey and
start feeding (167–169), and it is substantiated by a next-generation-sequencing decay
study of 16S and 18S metagenomes, which indicated an increase in the relative
abundance of Bodo sp. flagellates after 72 h (170).

Studies that selectively excluded either predators or bacterial competitors noted
that predation is the dominant mechanism governing culturable-FIB decay in many
marine waters and freshwater, although the effects of competition are also significant
in most systems (45, 90, 153, 155–157, 164). The interplay between nutrient levels,
predation, and competition in aquatic habitats creates complex interactions. For ex-
ample, elevated levels of nutrients mitigated the effects of predation on E. coli (90). E.
coli and enterococcus levels were also influenced by dissolved organic carbon and
phosphorus concentrations, where decay was observed when nutrients were below a
certain threshold (83). Above the threshold, FIB either grew or appeared to be in a
steady state, which the authors attributed to predator-prey oscillations (83). Lastly, it is
important to point out that rates of predation on FIB, MST genetic markers, and
bacterial pathogens in environmental waters are influenced by various factors, includ-
ing temperature (101, 102, 155, 157), location (45, 122, 156), water type (27, 28), nutrient
availability (83, 90), source (4, 27), prey characteristics (39, 122, 154, 158, 163, 166), and
predator/prey densities (157, 158) (Table 4).

Several studies investigated the effect of the indigenous aquatic microbiota on
microorganisms other than bacteria (e.g., bacteriophages and C. parvum oocysts) in
marine water and freshwater (159, 160), albeit with mixed results. While the decay rates
of C. parvum were greater in the presence of the indigenous microbiota, suggesting
that biotic interactions play a role in its survival (160), the presence of indigenous
microbiota increased the decay rates of enterococcal bacteriophages (159), but not
somatic and F� coliphages or GB-124, a bacteriophage that infects Bacteroides spp. (4).
While laboratory feeding experiments suggest that protozoan predators do feed on
both of these groups under controlled conditions (171, 172), additional work is needed
to verify their role under ambient conditions.

In marine and freshwater sediments and sands, removal of all indigenous microbiota
generally extended the survival of various culturable FIB (fecal coliforms, E. coli, and
enterococci) (28, 152, 156), but studies investigating isolated effects of either predation
or competition generally reported that while predation typically increases decay rates,
competition appears to be the main driver of decay (28, 131, 156). It is noteworthy that
the detrimental effects of competition can also vary by FIB type, since the presence of
indigenous bacteria led to greater decay of E. coli than of E. faecalis in water and
sediment microcosms (156) and in beach sands (131).

No data exist to date regarding the effect of the indigenous microbiota (and
associated predation/competition interactions) on the decay rates of genetic MST
markers, bacteriophages, and viral or protozoan pathogens in sands and sediments, but
several studies have addressed the effect of predation on the decay rates of bacterial
pathogens. In one study, neither removal of all indigenous microbiota nor addition of
the predatory protozoan Tetrahymena pyriformis had any effect on the survival of E. coli
O157:H7 (156). On the other hand, addition of the same protozoan predator increased
the decay rates of S. enterica (122).
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Intrinsic Factors

Above, we explored unifying trends from research findings that allow some gener-
alizations of the effects of environmental factors on microbial decay in aquatic envi-
ronments. For example, in general, exposure to sunlight increases decay rates, partic-
ularly for culturable bacteria (Fig. 2). However, for each environmental factor considered
thus far, exceptions have been noted. While some of these exceptions may be attributable
to differences in experimental design or environmental conditions, others are doubtless
influenced by the intrinsic characteristics of the bacterial population(s) in question. The
gut microbiota is shaped by the selective pressures exerted by the varied physiologies,
diets, and life histories of their animal hosts, which result in different subpopulations of
indicators and pathogens in the gastrointestinal tract of each host. In addition, a myriad
of waste collection systems (e.g., wastewater treatment plants, septic tanks, manure
pits, and lagoons) present different sets of environmental stressors to microbial pop-
ulations and therefore may select for different subpopulations used in decay experi-
ments.

The diversity and variability of fecal microbial populations, even within a species,
further complicate comparison of the effects of a given environmental stressor on
pathogens, indicators, and MST markers. Because they are used in a regulatory context
worldwide, the persistence of E. coli is frequently compared to that of enterococci.
While E. coli is a (nominal) species with great genetic diversity (173), the enterococci
include the entire genus Enterococcus, which contains some 36 species that are
differentially distributed among various hosts and environmental sources (1). Further-
more, culturable enterococci are defined by the growth of characteristic colonies on
selective differential media, providing even greater potential for phylogenetic and
phenotypic diversity within the group. E. coli also contains great genetic diversity; while
all the strains share a suite of core genes, nearly 80% of the genome may differ among
strains (173). Thus, any comparison of decay rates between E. coli and Enterococcus spp.
is fraught with potential pitfalls depending on the groups, species, strains, and/or
sources used in the study.

Here, we focus on studies that compared the decay rates of different microbes
under the same conditions in order to ensure that they experienced the same stressors
and that factors intrinsic to the microorganism were driving any observed differences.
In the first case, where we considered the source of microorganisms, we included only
those studies that directly compared the decay rates of microorganisms from at least
two discrete sources. Only general fecal indicators were included, and several studies
that mixed fecal sources prior to inoculation were excluded (23, 24, 35, 71, 104, 174).
Lastly, whenever possible, we included comparisons with organisms isolated from
water column, soil, and sediments (9, 87, 101). Depending on the study design, decay
was assessed in both the water column and sediments (9, 87, 121, 175) or in only one
of these matrices (4, 27, 29, 36, 101, 129, 176).

In these studies, decay of E. coli and enterococci from cattle, bovine, deer, goose,
and ovine feces was considerably slower than that of organisms originating from
sewage (27, 175) or human feces (36, 176). In contrast, FIB from dog (9) and seagull
(121, 129) feces decayed more rapidly than those from sewage and human feces. FIB
isolated from environmental water, soil, and sediments typically decayed more slowly
than FIB from sewage (9) or organisms originating from dog, bovine, deer, or goose
feces (9, 87). Two studies comparing the decay rates of FIB from primary (human feces)
and postprimary (raw and treated wastewater and septage) sources found that organ-
isms from septage decayed more slowly than organisms from feces and raw wastewater
(4) while there was no difference in decay for FIB derived from raw versus treated
wastewater (29). The source of the inoculum also affected the bacterial response to the
environmental stressors, as the decay rate of E. coli from cattle feces, but not human
feces, was significantly higher under light than under dark conditions (36).

To further test this assertion, we compared the reported decay rates of closely
related species (e.g., E. coli to E. coli O157:H7 or Salmonella spp. and various MST
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markers targeting Bacteroides spp. or Bacteroidales). We focused only on studies or
specific treatments within the study that attempted to simulate environmental condi-
tions (4, 25, 26, 28, 31, 39, 41, 46, 69, 94, 122, 156) (Fig. 6). These conditions included
exposure to ambient or artificial sunlight and the presence of a full complement of
indigenous aquatic microbiota, while it excluded any data where the water and
sediment compositions were artificially altered (including addition of nutrients and
other chemicals [e.g., cycloheximide or antibiotics], autoclaving and/or baking of water
and sediments, and filter sterilization of water). Furthermore, comparisons were made
only between analogous measurement techniques (e.g., culture based to culture based
or qPCR to qPCR). Since viruses may have seven different types of genomes (DNA/RNA,
single stranded [ss]/double stranded [ds], positive sense/negative sense, and reverse-
transcribing ssRNA/dsDNA) and the presence of a membrane, as well as a myriad of
different capsid proteins that affect their decay outside the host (177), they were not
included in this comparison.

The results of this analysis revealed that the decay rates of even closely related
species or strains were frequently not comparable (Fig. 6). For example, in one study,
nonpathogenic E. coli decayed faster than E. coli O157:H7 in freshwater during winter
(39), while another freshwater study conducted across three seasons in a subtropical
climate found a similar trend of E. coli decay being faster than that of E. coli O157:H7
in sediments but no difference in the water column (156) (Fig. 6). Another study
comparing the decay rates of S. enterica and E. coli O157:H7 in freshwater and
sediments noted more rapid decay of S. enterica in both matrices (122). Other studies
comparing the decay rates of nonpathogenic E. coli and S. enterica in marine water and
freshwater found no difference between the two, regardless of whether they were
measured by culture (31) or qPCR (69).

Observations on the decay of various MST markers measured by qPCR are more
straightforward. Most of the studies reported no difference in decay rates (4, 25, 26, 41),
and those that did noted that general MST markers (e.g., GenBac3) decayed more

FIG 6 Decay ratio of closely related species in marine water (blue bars), freshwater (green bars), and
sands/sediments (brown bars). The dashed line represents a ratio of 1 (no difference in decay rates);
values of �1 indicate that the first target decayed more rapidly than the second. Citations for individual
studies are provided in parentheses (including references 4, 25, 26, 28, 31, 39, 41, 46, 69, 94, 122, and
156). C, culture-based measurements; q, molecular (e.g., qPCR) measurements; Tn, measurements at
multiple time points within a study.
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slowly than the host-associated subset (e.g., HF183 and Rum2Bac) (28, 46, 94) (Fig. 6).
This finding is not surprising, considering that general MST markers also target some
environmental Bacteroidales (178, 179), a subset of the order known to persist longer
than fecal-associated members (101). Lastly, the decay ratio of MST markers (and likely
other, related species) is influenced by the time elapsed since the “pollution event” or,
within the studies, since the start of the experiment. For example, the decay ratio
between Rum2Bac and GenBac3 (46) increased with time, but the ratio between HF183
and GenBac3 decreased with time (28). As evidenced by the examples above, the
differential decay of closely related taxa is one reason that generalizations about
microbial persistence in aquatic environments are problematic.

CONCLUSIONS

After more than 30 years of research investigating the decay rates of various fecal
indicators and enteric pathogens in aquatic habitats, there has been a progression from
simplified laboratory-based experimental designs to more complex in situ systems that
better mimic environmental conditions, including experimental designs that include
predator and competitor populations. Similarly, we have seen movement toward more
realistic sources of microbial inocula (e.g., various primary and postprimary sources or
environmental isolates) as opposed to relying on a laboratory-derived strain(s). Gaining
a better understanding of the behavior of these organisms in their secondary habitats
is essential for accurate evaluation of predictive relationships between indicators and
pathogens, which could have profound implications for public health and water manage-
ment strategies.

The literature on decay rates of FIB, enteric pathogens, and MST genetic markers in
environmental waters indicates that the effects of environmental factors on the decay
of the microorganisms varies according to the microbial species or group and how it is
measured. Sunlight is a good example, as it consistently increased the decay rate of
culturable indicators and pathogens but much less frequently affected the decay of
microbes measured by qPCR. The effect of water type (saline versus fresh water) is
similarly influenced by the measurement method, as decay rates of fecal microorgan-
isms measured by culture tend to be greater in salt water, while those measured by
qPCR tend to be greater in freshwater. Another consistent observation is that proto-
zoan grazing and competition with indigenous bacteria lead to increased decay rates
of fecal bacteria, although most studies have been conducted on FIB. However,
additional research is needed to further elucidate the interplay between the effects of
nutrients and intrinsic and extrinsic biotic interactions and to better understand the
effects of biotic factors on MST markers and pathogens. Thus, what might seem like a
simple question of teasing out the generalizable effects of the environment on micro-
bial decay can rapidly become a complex problem. Lastly, currently accepted gener-
alizations regarding the effects of temperature and physical location (soil/sediments/
water column) on the decay rates of indicators and enteric pathogens may be
defensible, since there was a general consensus in the literature concerning extended
survival at lower temperatures and in sediments/soils (compared to the water column),
irrespective of the organism or measurement strategy.

Future decay studies are needed to broaden our general knowledge about the
decay rates of pathogens and their relationship to various indicator decay rates. Further-
more, future studies should evaluate and report the statistical significance (or lack thereof)
of these relationships and provide the concentration data on a per sample basis to
enable meta-analyses across multiple studies, which may yield a more robust assess-
ment of relationships between indicator and pathogen decay rates.
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