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Abstract

Background—Recent advances in technology have enabled the development of head impact 

sensors, which provide a unique opportunity for sports medicine researchers to study head 

kinematics in contact sports. Studies have suggested that video or observer confirmation of head 

impact sensor data is required to remove false positives. In addition, manufacturer filtering 

algorithms may be ineffective in identifying true positives and removing true negatives.

Purpose—To (1) identify the percentage of video-confirmed events recorded by headband-

mounted sensors in high school soccer through video analysis, overall and by sex; (2) compare 

video-confirmed events with the classification by the manufacturer filtering algorithms; and (3) 

quantify and compare the kinematics of true- and false-positive events.

Study Design—Cohort study; Level of evidence, 2.

Methods—Adolescent female and male soccer teams were instrumented with headband-mounted 

impact sensors (SIM-G; Triax Technologies) during games over 2 seasons of suburban high school 

competition. Sensor data were sequentially reduced to remove events recorded outside of game 

times, associated with players not on the pitch (ie, field) and players outside the field of view of 

the camera. With video analysis, the remaining sensor-recorded events were identified as an 
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impact event, trivial event, or nonevent. The mechanisms of impact events were identified. The 

classifications of sensor-recorded events by the SIM-G algorithm were analyzed.

Results—A total of 6796 sensor events were recorded during scheduled varsity game times, of 

which 1893 (20%) were sensor-recorded events associated with players on the pitch in the field of 

view of the camera during verified game times. Most video-confirmed events were impact events 

(n = 1316, 70%), followed by trivial events (n = 396, 21%) and nonevents (n = 181, 10%). Female 

athletes had a significantly higher percentage of trivial events and nonevents with a significantly 

lower percentage of impact events. Most impact events were head-to-ball impacts (n = 1032, 

78%), followed by player contact (n = 144, 11%) and falls (n = 129, 10%) with no significant 

differences between male and female teams. The SIM-G algorithm correctly identified 70%, 52%, 

and 66% of video-confirmed impact events, trivial events, and nonevents, respectively.

Conclusion—Video confirmation is critical to the processing of head impact sensor data. 

Percentages of video-confirmed impact events, trivial events, and nonevents vary by sex in high 

school soccer. Current manufacturer filtering algorithms and magnitude thresholds are ineffective 

at correctly classifying sensor-recorded events and should be used with caution.

Keywords

head injuries/concussion; pediatric sports medicine; football (soccer); injury prevention

In any given sport, the potential for concussion is related to the number of opportunities for 

head impact11; therefore, the ability to quantitatively monitor the occurrence and severity of 

head impacts is an important methodologic approach for sports medicine researchers. Recent 

advances in technology have enabled the development of head impact sensors, which 

facilitate the study of head impact kinematics of athletes in vivo. Various head impact 

sensors are currently available, such as instrumented helmets, skull caps, headbands, 

mouthguards, and skin patches,10 which have been used to investigate head impact 

kinematics in sports such as soccer,2,7,9,12 lacrosse,3,13 and American football.4,6,8,14

Since head impact sensor data are collected during game play, rather than in a carefully 

controlled setting of a laboratory, it is often contaminated with false-positive results, and 

several studies have suggested that video or observer confirmation of head impact sensor 

data is required to remove such inaccuracies.3,12 Press and Rowson12 used the xPatch (X2 

Biosystems) to quantify head impact exposure in female collegiate soccer games and found 

that only 8% of sensor-recorded events were video-confirmed head impacts. Lamond et al7 

investigated head impacts in female collegiate soccer players using the SIM-G (Triax 

Technologies) and identified that 31% of sensor-recorded events were observer-confirmed 

head impacts. Cortes et al3 investigated male and female high school lacrosse players; 

however, given the different equipment requirements of the 2 sports, the male players wore 

the helmet-mounted GForceTracker (GForceTracker, Inc) and the female players wore the 

skin-affixed xPatch. Of the sensor events recorded by the GForceTracker, 65% were video-

confirmed head impacts, whereas the xPatch demonstrated twice as many false-positive 

readings, as 32% of sensor-recorded events were video-confirmed head impacts.
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In an attempt to address the presence of false-positive results, some head impact sensors 

have a processing algorithm provided by the manufacturer to filter and remove “spurious” 

events; for example, the Head Impact Telemetry System (Simbex) compares the sensor-

recorded kinematics to the expected acceleration signals for rigid body head acceleration,4 

whereas other sensors simply apply a magnitude-based filter. Although most processing 

algorithms are proprietary, some manufacturers allow the algorithm to be deactivated (eg, 

xPatch and SIM-G). Nevins et al9 used video analysis to investigate the classification of 116 

sensor-recorded events in male high school soccer players and found that the xPatch 

algorithm incorrectly classified 15% of video-confirmed impact events as spurious. In 

addition, 83% of sensor-recorded events determined to be nonevents by video analysis were 

incorrectly classified as valid by the algorithm. In a similar study of female collegiate soccer 

players, Press and Rowson12 found that the xPatch algorithm incorrectly classified 57% of 

nonevents, but only 4% of video-confirmed impact events were incorrectly classified. Such 

findings suggest that manufacturer filtering algorithms may be ineffective in identifying 

true-positive results and removing true-negative ones.

The percentage of false-positive results is likely dependent on sensor model, sensor 

attachment method, sport, and athlete behavior, the last of which may vary by sex and nature 

of the sporting environment—for instance, lacrosse has different rules and equipment for 

females and males. However, to our knowledge, the percentage of false-positive readings 

within a head impact sensor data set has not been evaluated previously for males and 

females in the same sport with the same sensor. Furthermore, quantification of the 

characteristics of the kinematics of false-positive events may provide insight into possible 

processing strategies to improve filtering algorithms for future sensor designs. Therefore, the 

aim of the current study was to illustrate the importance of video confirmation 

methodologies in the processing of head impact sensor data by (1) identifying the percentage 

of video-confirmed events recorded by headband-mounted sensors in high school soccer, 

overall and by sex; (2) comparing video-confirmed events with the classification by the 

manufacturer filtering algorithm; and (3) quantifying and comparing the kinematics of true- 

and false-positive events.

METHODS

A prospective observational study of adolescent female varsity, male varsity, and male junior 

varsity soccer teams from a suburban high school (grades 9–12) was conducted. Athletes 

were instrumented with headband-mounted SIM-G impact sensors during competitive games 

for the 2017 and 2018 seasons. The current study was approved by the Children’s Hospital 

of Philadelphia Internal Review Board (IRB-17–013875 and IRB-18–015265). The SIM-G 

device comprises a triaxial gyroscope, for measurement of angular velocity, and a high- and 

low-g triaxial accelerometer, for measurement of linear acceleration with a measurement 

range of 3 to 150g and a trigger threshold of 16g.17 For each impact, the sensor records 

linear acceleration and angular velocity time histories at 1000 Hz in all 3 unique axes and 

stores time series data from 10 ms preimpact to 52 ms after impact. The sensor device is 

mounted in a neoprene headband (Figure 1), which can be worn in helmeted and unhelmeted 

sports, and is positioned just above the greater occipital protuberance. Data are transmitted 

from the sensor via Bluetooth to the SKYi box up to 135 m away for up to 63 players per 
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box. If a player is out of transmission range, up to 140 impacts can be stored on the sensor 

until the player returns within range.

Sensors were assigned to individual players throughout the entire season and were linked to 

a SKYi box. As each sensor was turned on before each game, connection with the respective 

SKYi box was confirmed. Sensors were distributed before the players began warm-ups. The 

SKYi box was placed near the midpoint of the pitch (ie, field), and recording of sensor data 

on the SKYi box was typically initiated during warm-ups. In the case of away games, the 

SKYi box and sensors were sometimes turned on earlier (eg, on the way to the game) 

because of staffing limitations. After the game, collection of sensor data on the SKYi box 

ceased, and sensors were returned to study staff and deactivated. Headbands were washed, 

and the sensors and SKYi box were charged between games.

Video footage from games was captured from a single-camera view (Sony HD Camcorder 

CX405) located close to the midpoint of the pitch from as high a vantage point as possible. 

Video footage was recorded in high-definition 1080p with a 16:9 aspect ratio at 60 frames 

per second. Before the start and end of each half, a few seconds of a world clock website 

was filmed,16 which provided a timestamp for the video footage to align with that of the 

sensor data. Recording was done such that approximately one-third of the soccer pitch was 

shown in the field of view and the videographer panned the camera to follow the action of 

the ball.

After the game, the SKYi box was connected to a wireless network, and the data were 

uploaded to the cloud and processed by proprietary manufacturer software, which 

transformed linear acceleration data from the device location to the center of gravity of the 

head via the following equation:

aCG = aS + ω × (ω × r) + ω′ × r,

where aCG is linear acceleration of the center of gravity of the head, aS is linear acceleration 

of the sensor, ω is angular velocity recorded by the sensor, ω′ is angular acceleration 

recorded by the sensor, and r is the distance between the sensor and the center of gravity of 

the head for a 50th-percentile male. Resultant linear acceleration and angular velocity were 

calculated from axis-specific data. Angular acceleration is calculated; however, given the 

errors associated with numerical differentiation of gyroscopic impact data,1 only angular 

velocity was analyzed in the current study. In addition, the proprietary manufacturer 

software labeled each sensor-recorded event as either a “valid” or “spurious” impact. For 

each sensor-recorded event, the summary data comprised a unique event identifier, 

timestamp, peak linear acceleration, peak angular velocity, and impact direction. In addition 

to the summary data, axis-specific time series data for each kinematic profile were recorded.

Initially, sensor-recorded events outside of scheduled game times were removed. However, 

games did not always start according to scheduled times (eg, 16:05 instead of 16:00). 

Therefore, the timestamp in the video footage was used to determine the time points 

associated with the start and end of each half, as indicated by the whistle of the referee, and 

sensor data outside of verified game times were excluded. Next, the video was inspected to 
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identify time points where substitution of specific players occurred, and a list of players on 

the pitch by time of game was compiled. Any sensor-recorded events associated with players 

who were not on the pitch at the time were excluded. Last, any sensor-recorded event 

associated with a player who was out of frame of the camera at the time was excluded. The 

remaining sensor-recorded events were associated with players on the pitch and in the field 

of view of the camera during verified game times (hereafter, the final data set).

Remaining sensor-recorded events associated with a player who was in the field of view of 

the camera at the time were analyzed to categorize each event as an impact event (eg, player 

heading the ball), trivial event (eg, player adjusting the headband), or nonevent (eg, player 

stationary and not touching the headband). The mechanism of identified impact events was 

coded as ball to head (eg, unintentional ball impact to the face of an unsuspecting player), 

head to ball (eg, purposeful heading of the ball), fall (eg, player makes contact with the 

ground after losing balance), or player contact (eg, elbow of opposing player impacting the 

head during aerial contest). Data were summarized overall and by sex.

Percentages of event type (nonevents, trivial events, and impact events) and impact type (ball 

to head, fall, player contact, and head to ball) were calculated. Adjusted residual post hoc 

analyses of chi-square tests of independence with Bonferroni adjustment were performed to 

determine significant differences (P < .05) in the distribution of event types and impact types 

between female and male varsity players. The analyses were repeated to compare the 

distribution of event types and impact types between male varsity and junior varsity. 

Percentage correct classifications by the SIM-G algorithm of video-confirmed event types 

were calculated. Mean peak linear accelerations and angular velocities were calculated for 

the 3 event types, and significant differences (P < .05) between female and male varsity 

players for each kinematic outcome were assessed with the Student t test. To identify 

whether event types could be classified by differences in magnitude, unadjusted linear 

regressions were performed to assess significant differences (P < .05) in peak linear 

acceleration and angular velocity among the 3 event types (eg, impact events, trivial events, 

and nonevents) for female and male players.

RESULTS

Sensor data were recorded for 72 adolescent soccer players: 23 female varsity players and 49 

male players (31 varsity and 18 junior varsity). Of the 65 varsity games during the 2017 and 

2018 soccer seasons, 51 games (78%; 25 female and 26 male team games) had sensor data, 

and 54 (71%; 26 female and 28 male team games) had video data. A total of 41 varsity 

games (18 female and 23 male team games) had both sensor and video data. An additional 4 

male junior varsity games from the 2017 season had both sensor and video data.

For varsity game days, 40,352 sensor events were recorded. A total of 9503 sensor events 

were recorded during scheduled game times (Table 1; Appendix Figure A1, available in the 

online version of article); however, when verified game times were accounted for (eg, game 

started 5 minutes late), the number of sensor-recorded events was reduced to 6796. The 

number of sensor-recorded events was further reduced to 2775 after exclusion of data from 

players who were not on the pitch and to 1893 after exclusion of data from players not in the 
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field of view of the camera at the time when the sensor recorded the event. The final data set 

of sensor-recorded events represented 20% of the sensor-recorded impact events during 

scheduled game times.

Of the 1893 sensor-recorded events in the final data set, video confirmation revealed that 

1316 (70%) were impact events, 396 (21%) were trivial events, and 181 (10%) were 

nonevents. Females had significantly higher (P < .05) percentages of nonevents (15%) and 

trivial events (37%) than males (7% and 14%, respectively), whereas females had a 

significantly lower (P < .05) percentage of impact events (49%) than males (78%). Of the 

1316 sensor-recorded impact events, most were head-to-ball impacts (78%), for which the 

head intentionally impacts the ball, followed by player contact (11%) and falls (10%). Very 

few sensor-recorded events were ball-to-head impacts (<1%), for which the head is impacted 

by the ball unintentionally. No significant differences in impact event types were observed 

between males and females.

To compare level of play, a data set of 4 male junior varsity games comprising 96 video-

confirmed sensor-recorded events was examined, of which 68 (71%) were impact events, 16 

(17%) were nonevents, and 12 (13%) were trivial events. Male junior varsity teams had a 

significantly higher (P < .05) percentage of nonevents than male varsity teams. Of the 68 

sensor-recorded impact events, most were head to ball (74%), followed by falls (12%), 

player contact (10%), and ball to head (4%).

The SIM-G algorithm correctly classified 78% and 68% of all video-confirmed impact 

events as valid impacts for female and male players, respectively (Table 2). Similarly, the 

SIM-G algorithm correctly classified 63% and 69% of all video-confirmed nonevents as 

spurious impacts for female and male varsity players. For video-confirmed trivial events, the 

SIM-G algorithm was less accurate, correctly identifying 43% and 61% as spurious impacts 

for female and male varsity players.

When kinematics were compared across impact types for females, the mean peak linear 

acceleration of nonevents was significantly lower (P = .01) than that of impact events, 

whereas the mean peak angular velocity of trivial events was significantly higher (P < .001) 

than that of impact events (Table 3). Similarly for males, the mean peak linear acceleration 

of nonevents was significantly (P < .001) lower than that with impact events. The mean peak 

angular velocity for trivial events and nonevents for males was significantly higher (P 
< .001) and lower (P < .001) than that for impact events, respectively.

Within some categories of event types and impact types, significant differences in sensor-

recorded peak kinematics were found between females and males. For nonevents, females 

had significantly higher (P = .004) mean peak linear acceleration and angular velocity values 

than males (Figures 2 and 3). In contrast, females had a significantly lower (P = .037) mean 

peak linear acceleration for trivial events than males. No significant differences (P < .05) 

were found between females and males for impact events.
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DISCUSSION

With the proliferation of head impact sensors as an advantageous and accessible 

methodology for sports medicine researchers to study head impact kinematics in sports, the 

importance of identifying sensor-recorded events as head impacts with video or observer 

confirmation is critical. The percentage of false-positive results is likely dependent on 

athlete behavior, which may vary by sex; therefore, it is important to explore such a 

phenomenon by sex. To investigate such issues, the current study used a sample of head 

impacts recorded by a headband-based sensor worn by high school female and male soccer 

teams. We found that approximately 1 in 5 sensor events recorded during scheduled game 

times were associated with players on the pitch and within the field of view, of which 70% 

were video confirmed as impact events. The proportions of event type varied by sex, as 

females had a significantly lower percentage of impact events (49%) than males (78%). In 

addition, the SIM-G algorithm incorrectly classified approximately one-third of sensor-

recorded events.

The analysis in the current study identified several methodological steps that are critical to 

implement in studies with data from head impact sensors, including verifying game time and 

limiting data to players on the pitch. The majority (76%) of the 40,352 sensor events 

recorded on game days were excluded because they occurred outside of scheduled game 

times. This was attributed to the practical logistics of implementing a sensor program within 

a sports team, such as the sensors being turned on well before a game, handled and inserted 

into headbands, and adjusted and worn during warm-ups. Similarly, after the game, the 

headbands were removed by the players, and the sensors were removed from the headbands 

and collected before being deactivated.

A total of 9503 sensor events were recorded during scheduled game times; however, less 

than three-quarters (72%) were recorded during verified game times. Therefore, it is 

essential to verify game time and not rely on scheduled game time. In addition, 

approximately 60% of sensor events recorded during verified game times were associated 

with players not on the pitch. Therefore, if the intent is to study head kinematics in live 

sports, it is crucial to limit the final data set to players on the pitch. It is possible for player-

to-player interaction to occur on the sideline, as in a celebratory manner, which may result in 

loading of the head; however, it is more plausible that events occurring off the pitch are 

associated with players manipulating their sensors (eg, hitting the headband on the knee as a 

repetitive behavior) or placing their sensors on their persons (eg, winding the headband 

around the wrist) as they move about the sideline. Regardless of the cause, sensor-recorded 

events associated with players not in active play are typically not the focus of head impact 

biomechanics studies. Practically, to exclude such data, the timing of specific player 

substitutions needs to be recorded via video or visual observations.

After video analysis was used to reduce data for verified game time and players on the pitch, 

most sensor-recorded events were confirmed to be impact events (70%), indicating that head 

impact sensors do indeed capture valuable data if rigorous methodological steps are 

followed. Video analysis also identified 1 in 5 sensor-recorded events as trivial events and 1 

in 10 as nonevents. As trivial events involve movement of the sensor, it is expected that the 
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sensor record such events. Nonevents may also involve some sensor movement; however, 

this was not discernable by video. Therefore, it is encouraging that <10% of events recorded 

by the SIM-G in the final data set may be artifacts of the system.

To illustrate the importance of the methodological steps in the current study, consider how 

the percentage of the 1316 video-confirmed impact events changes from 3.3% when the 

40,352 sensor events recorded on game days were used as the denominator to 70% when the 

1893 sensor-recorded events in the final data set were used as the denominator. Lamond et 

al7 found that a similarly low percentage of sensor events recorded on game days for female 

collegiate soccer players were observer-confirmed direct head impacts (6.1%). If removing 

sensor-recorded events occurring outside scheduled game times is the only method used to 

reduce data, approximately 1 in 7 (14%) events recorded by the sensor in the current study 

was a video-confirmed impact event. However, if verified game times are used to reduce 

sensor-recorded data, then approximately 1 in 5 (19%) events recorded by the sensors were 

associated with a video-confirmed impact event.

As athlete behavior influences the percentage of false-positive readings in head impact 

sensor data, the methodological steps in the current study were explored by sex and level of 

play. The percentages of event type differed between females and males: females 

experienced a higher percentage of trivial events and nonevents and therefore a lower 

percentage of impact events as compared with males. There were no significant differences 

between the percentages of impact events for male junior varsity players and male varsity 

players. Such findings may be due to game differences between males and females (eg, 

playing style) or other factors (eg, headband fit) rather than competition level. Video data 

exist for trivial events; however, no formal observations regarding the nature of the events 

were recorded (eg, player adjusted headband), and such observations may give insight into 

the higher percentage of trivial events for females. Interestingly, of the video-confirmed 

impact events, there were no significant differences in the percentages of impact types (ie, 

head to ball, player contact, fall) between females and males.

The current study compared the video classification of sensor-recorded events with that of 

the SIM-G algorithm. Only 70% of video-confirmed impact events were correctly classified 

as valid impacts by the SIM-G algorithm; therefore, 30% of video-confirmed impact events 

would be removed by the algorithm. In male high school soccer players, Nevins et al9 

reported that 85% of video-confirmed impact events were correctly classified as valid 

impacts by the xPatch algorithm. In addition, Nevins et al reported that only 17% of video-

confirmed nonevents were correctly classified as spurious events by the xPatch algorithm. 

Although 66% of video-confirmed nonevents were correctly classified as spurious events by 

the SIM-G algorithm in the current study, the remaining 34% of video-confirmed nonevents 

would be included in a data set as impact events if video confirmation were not used. In 

addition, almost half of all video-confirmed trivial events (48%) would be included as false-

positive results in the absence of video confirmation. Such findings highlight the caution that 

should be used with manufacturer filtering algorithms and the need for video confirmation of 

sensor-recorded events. Quantification of the characteristics of the kinematics of false-

positive events may provide insight into possible processing strategies that may improve 
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filtering algorithms for future sensor designs. One strategy to discriminate true-positive from 

false-positive results is the implementation of a magnitude threshold.

In general, the mean peak head kinematics was significantly lower for nonevents than for 

impact events. Mean peak linear acceleration was approximately 10g less, and mean peak 

angular velocity was 2 rad/s less—both of which were more exaggerated for males as 

compared with females. Although such findings suggest that simple magnitude thresholds 

could be used to separate impact events from nonevents, the regression models that include 

event type explain <3% of the variability in peak linear acceleration, which suggests that 

discrimination among event types is more complex. Interestingly, trivial events were 

characterized by significantly greater angular velocity when compared with impact events 

but similar peak linear accelerations. Angular velocity is likely elevated for trivial events 

because of the range of activities and sensor manipulation (eg, adjusting the headband). The 

sensor may truly be experiencing elevated angular velocities during trivial events, that are 

not representative of head kinematics owing to poor coupling with the head. The complex 

relationship between the magnitude of linear acceleration and angular velocities among 

impact events (eg, those of interest to study), trivial events, and nonevents suggests that a 

window of angular velocities would be required to accurately discriminate true-positive from 

false-positive readings.

Comparing kinematics between females and males revealed interesting findings. Most 

important, no significant differences in mean peak linear acceleration and angular velocity 

for impact events were found between females and males, which is consistent with 

laboratory studies.5,15 Such a finding has implications regarding differing rates of 

concussion for females and males in sports. In terms of false-positive events, females had 

significantly lower and higher mean peak linear accelerations than males for trivial events 

and nonevents, respectively. Females also demonstrated a significantly higher mean peak 

angular velocity than males for nonevents. The cause of significant differences in mean peak 

kinematics between female and male trivial and nonevents is unknown.

Several limitations of the current study exist. First, only a single-camera view was used for 

video confirmation. The field of view encompassed approximately one-third of the soccer 

pitch at any one time; therefore, a portion of sensor-recorded events were unable to be 

observed. Although the video footage was recorded in high-definition 1080p with a 16:9 

aspect ratio at 60 frames per second, some impacts in the far corners of the pitch were 

difficult to observe. However, none of the unobserved sensor-recorded events involved the 

ball (ie, head to ball or ball to head), as the camera panned to follow the play and always 

contained the ball within the field of view. Impact events involving the ball compose nearly 

80% of all video-confirmed sensor-recorded impact events. Therefore, some unobserved 

events may be falls and player contact; however, verification cannot be performed owing to 

the lack of video data. Multiple camera views would assist in minimizing the number of 

unobserved sensor-recorded events and potentially provide additional information for 

sensor-recorded events observed within the fields of view.

In addition, the current study investigated a single sensor in a single high school sport. The 

results of the current study compare well with investigations in female and male high school 
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lacrosse with the xPatch and GForceTracker,3 respectively, and female collegiate soccer with 

the xPatch12 and SIM-G.7 It should be noted that, in addition to soccer, the SIM-G has been 

used to investigate head impacts in lacrosse13 and American football8,14; however, video 

confirmation and the SIM-G algorithm were not assessed. It is possible that performing the 

same study in different sports may yield different results owing to differences in equipment, 

game play, and contact levels. For example, American football players wear helmets, do not 

purposefully head the ball, and are allowed to block and tackle opposing players. In 

addition, some sensors have advanced design features to remove false-positive results, such 

as mouthguard sensors with infrared detection designed to record data only in the presence 

of teeth within the mouthguard,6 which would be useful to reduce the number of trivial 

events and limit the reliance on video confirmation. However, while the percentages of 

impact events and impact types may vary by sport and sensor, the concepts illustrated herein 

are critical to implement in any study using sensors to investigate head impact biomechanics.

It is important to note that the current study did not establish the percentage of false-negative 

results (ie, kinematics experienced by the head that were not captured by the head impact 

sensor). Such analysis is difficult, as video needs to be observed independently by multiple 

reviewers to code head contacts. In addition, the severity of an impact cannot be accurately 

ascertained from video to determine if a given impact was over the recording threshold of 

the sensor. Therefore, identifying false-negative results was outside the scope of the current 

study.

In summary, the current study illustrated necessary methodological steps critical to the 

processing of head impact sensor data from athletes during play. Sensors are increasingly 

being used as investigative tools by sports medicine researchers; therefore, it is important to 

emphasize approaches to extract valuable and accurate data from head impacts in a live sport 

setting. First, a series of necessary methodological steps were highlighted, including the 

exclusion of data recorded outside verified game times and from players not on the pitch—

both of which can be achieved via video analysis. Such data reduction resulted in a final data 

set that was 20% of the original data set collected during scheduled game times. Second, 

video confirmation is necessary to discriminate head impacts from false-positive readings 

(ie, trivial events and nonevents). After such exclusion procedures were implemented, the 

percentage of verified head impact events recorded by headband-mounted sensors in high 

school soccer with video analysis was 70% of all sensor-recorded events. The percentage of 

impact events, trivial events, and nonevents were significantly different between females and 

males, with more trivial events and nonevents recorded for females. Manufacturer 

algorithms represent an alternative approach to reduce false-positive results; however, the 

current study highlighted that the SIM-G algorithm incorrectly classified a third of sensor-

recorded events. Therefore, it is recommended that manufacturer filtering algorithms be 

avoided. Last, kinematic magnitudes did not provide a convenient approach to discriminate 

between true-positive and false-positive results, given the complex relationship of peak 

linear acceleration and angular velocity among head impact events, trivial events, and 

nonevents.

Head impact sensors are a valuable research tool in sports medicine research, including their 

potential use in rigorous study designs to monitor head impacts during live play and evaluate 
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the effectiveness of interventions such as rule changes, coaching strategies, and behavioral 

interventions. Using head impact sensor data without video verification may lead to a biased 

estimate of head impacts, thus biasing the evaluated effect of the targeted intervention. 

Sports medicine researchers should be aware of the limitations of head impact sensors and 

employ methodologies to minimize such limitations, which include performing video or 

observer confirmation of sensor-recorded events and avoiding manufacturer filtering 

algorithms. The findings of any clinical study not employing such methodologies may result 

in overestimation of impact frequency and magnitude and should be interpreted with 

caution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
SIM-G impact sensor device (center), neoprene headband (right), and SKYi box (left).
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Figure 2. 
Mean peak linear head accelerations for sensor-recorded event types. Error bars represent 

95% CIs. *Significant difference (P < .05) between males and females.
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Figure 3. 
Mean peak angular head velocities for sensor-recorded event types. Error bars represent 95% 

CIs. *Significant difference (P < .05) between males and females.
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TABLE 2

Classification of Sensor-Recorded Events by Video Analysis and the SIM-G Algorithm: Varsity
a

Events Correctly Classified by SIM-G, %

Video-Confirmed Events All Female Male

Impact (n = 1316) 70.1 77.5 68.0

Trivial (n = 396) 52.0 43.5 61.4

Nonevents (n = 181) 66.3 62.7 69.4

All (n = 1893) 65.9 62.8 67.2

a
For impact events, the value corresponds to the percentage of impacts identified as “valid”; for trivial and nonevents, the value corresponds to the 

percentage of impacts identified as “spurious.”
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