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A central question in psychophysical research is how
perceptual differences between stimuli translate into
physical differences and vice versa. Characterizing such a
psychophysical scale would reveal how a stimulus is
converted into a perceptual event, particularly under
changes in viewing conditions (e.g., illumination).
Various methods exist to derive perceptual scales, but in
practice, scale estimation is often bypassed by assessing
appearance matches. Matches, however, only reflect the
underlying perceptual scales but do not reveal them
directly. Two recently developed methods, MLDS
(Maximum Likelihood Difference Scaling) and MLCM
(Maximum Likelihood Conjoint Measurement), promise
to reliably estimate perceptual scales. Here we
compared both methods in their ability to estimate
perceptual scales across context changes in the domain
of lightness perception. In simulations, we adopted a
lightness constant, a contrast, and a luminance-based
observer model to generate differential patterns of
perceptual scales. MLCM correctly recovered all models.
MLDS correctly recovered only the lightness constant
observer model. We also empirically probed both
methods with two types of stimuli: (a) variegated
checkerboards that support lightness constancy and (b)
center-surround stimuli that do not support lightness
constancy. Consistent with the simulations, MLDS and
MLCM provided similar scale estimates in the first case
and divergent estimates in the second. In addition,
scales from MLCM–and not from MLDS–accurately
predicted asymmetric matches for both types of stimuli.
Taking experimental and simulation results together,
MLCM seems more apt to provide a valid estimate of the
perceptual scales underlying judgments of lightness
across viewing conditions.

Introduction

One goal of visual perception research is to
characterize the relationship between visual experiences
and the physical world. Mathematics and physics
provide us with sophisticated tools to measure variables
in the physical world, but we struggle to provide equally
sophisticated tools to characterize the variables of
visual experience.

The most widely used tool to assess people’s
subjective experiences is still Fechner’s method of
adjustment (Koenderink, 2013), or simply matching.
In matching, an observer adjusts the intensity of a
test stimulus so that it looks identical to a given target
stimulus. When the test stimulus varies only along
a single dimension, the method can be likened to
measuring the unknown length of a rod with a ruler.

The analogy is not exactly right, because matching
procedures rely on a linking assumption whereby
observers’ matches reflect the function that relates
physical and visual magnitudes but do not reveal the
shape of the function directly (see, e.g., Maertens
and Shapley, 2013; Wiebel et al., 2017). Figure 1
illustrates the relationship between matches and internal
scales. A target of a certain physical intensity xT
(i.e., luminance), evokes a response on the perceptual
dimension of interest �(xT) (i.e., lightness). To
perform a matching, the observer chooses a physical
match intensity, xM, which evokes a perceptual
response, �(xM), that is as close as possible to the
perceptual response to the target. The functions that
relate �(x) and x are known as perceptual scales,
transducer functions (e.g., Kingdom and Prins,
2010), or transfer functions in lightness perception
(Adelson, 2000). It is evident from Figure 1 that one
and the same pattern of matching data (Figure 1B)
may be consistent with different combinations
of internal response functions (Figure 1A).
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Figure 1. Matching procedures and underlying perceptual processes. (A) The target is the check with a yellow frame in the
checkerboard and observers adjust the intensity of the test check embedded in a small coplanar checkerboard so as to match the
perceived lightness of the target. It is assumed that at match and target positions, physical luminances (xM, xT) are mapped to
perceived lightness (�P(xM), �T(xT)) by unique transducer functions, �T in transparency and �P in plain view (see insets). (B) The
matching procedure assesses the luminances xM and xT, which evoke equal perceived lightnesses, so that �P(xM) = �T(xT). After
Wiebel et al. (2017).

Thus, matching data alone are insufficient to infer
perceptual scales.

A more straightforward approach to measure
perceptual scales are scaling procedures. A variety of
scaling procedures has been developed in the history of
psychophysical research, from Fechner’s integration of
just noticeable differences (jnds) to Stevens’s direct scal-
ing techniques (for a review, see, e.g., Gescheider, 1997;
Marks and Gescheider, 2002), but their validity has
been a topic of debate. For example, integrating jnds is
problematic, practically, because the error in each JND
estimation propagates to the subsequent estimation,
and theoretically, because the shapes of the estimated
functions will differ as a function of the noise underlying
the perceptual judgments (Kingdom and Prins, 2010;
Kingdom, 2016). Stevens’s direct methods (e.g., mag-
nitude estimation, ratio estimation) might be affected
by the choice of the numerical categorization and hence
are not guaranteed to provide a meaningful perceptual
scale either (see, e.g., Treisman, 1964; Krueger, 1989).

More recently, Maloney and Yang (2003) presented
a new type of psychophysical scaling method based
on judgments of perceived differences, Maximum
Likelihood Difference Scaling (MLDS). MLDS
promises to reliably estimate perceptual scales and to
be more robust when compared with other scaling
methods (Knoblauch and Maloney, 2008). The method
uses a stochastic model of difference judgments, which
allow maximum likelihood estimation of the underlying
perceptual scale. Practically, an MLDS experiment can
be executed with the “method of triads” or the “method
of quadruples” (Knoblauch and Maloney, 2012). In
the method of triads, the observer is presented with
three ordered stimuli and has to judge which of the
two extremes is more different from the one in between,
a procedure rather intuitive for the observer.1 Using

simulations, we showed that MLDS is able to recover
different ground truth perceptual scales regardless of
whether we assumed the underlying noise to be additive
or multiplicative, that is, constant or proportionally
increasing across the scale (Aguilar et al., 2017).

MLDS is straightforward when the goal is to
characterize a single perceptual scale. However, more
often the goal is to characterize how the mapping
between a physical and a perceptual variable changes
when certain aspects of the viewing conditions are
varied, that is, across viewing contexts. In matching, this
has been identified as a problem in situations in which
the context renders target and match so different that
the best the observer can do is a minimum difference
“match” (see, e.g., Logvinenko and Maloney, 2006;
Ekroll et al., 2004). MLDS avoids the problem of
comparisons across contexts because all elements of
a triad are always shown in one context. Perceptual
scales are estimated from analogous triad comparisons
in all contexts the experimenter is interested in. This
raises the question of whether the scales measured
in different contexts can be meaningfully compared.
In this article, we evaluate whether MLDS allows for
cross-context comparisons between perceptual scales.
We also evaluate a second difference scaling procedure
called Maximum Likelihood Conjoint Measurement
(MLCM; Knoblauch and Maloney, 2012). We will
describe the details of the method below.

Experimental testbed for scaling
procedures

As a testbed for themethod comparison, we use scales
of perceived lightness for stimuli that do and do not
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Figure 2. Variegated checkerboards (A) and atmospheric transfer functions (B). The functions show the mapping between check’s
reflectance and luminance for the two transparency conditions (green and blue lines) and plain view (black line).

support lightness constancy (Wiebel et al., 2017; Zeiner
and Maertens, 2014; Maertens and Shapley, 2013).
Lightness constancy describes the phenomenon that
observers perceive surfaces of equal reflectance as
equally light despite strong variations in illumination
(e.g., indoors vs. outdoors) and hence strong variations
in the luminance that is reflected to the eye. Figure 2A
shows the stimulus that supports lightness constancy, a
variegated checkerboard in different viewing conditions.
Figure 2B shows how the mapping between check
reflectances and luminances differs between different
viewing conditions. A lightness constant observer
does not respond to the luminances but perceives
the lowest luminance as black and the highest as
white regardless of the absolute luminance values (see
Figure 4A).

Figure 3C and D shows the stimuli that do not
support lightness constancy. We chose a simple
center-surround display that is known to induce
lightness judgments that are either based on absolute
luminance or on contrast (e.g., Ekroll et al., 2004).2 The
putatively underlying perceptual scales are described in
more detail below (see section Simulation of perceptual
scales).

We measured perceptual scales with MLDS and with
MLCM. In MLDS, the observer judges which of two
checks, x1 or x3, is more different in lightness from
x2 (Figure 3A and C). The observer only compares
triads within the same context as indicated by the
two example stimuli in Figure 3A and C. In MLCM,
the observer judges which of two checks, x1 or x2,
is lighter (Figure 3B and D). As indicated in the
figure, in MLCM, the paired comparison can be done
within the same viewing condition (upper panel) or
between different viewing conditions (lower panel).
MLDS estimates independent scales for each viewing
condition. By default, each scale is anchored to zero at
the minimum stimulus value. The maximum is inversely

Figure 3. Stimuli and task for MLDS and MLCM experiments.

proportional to the noise estimated for each condition.
The noise is assumed to be additive. The estimated
scales are interval scales.

MLCM has been introduced as an extension of
MLDS to model the effect of more than one stimulus
dimension onto a single perceived dimension, for
example, perceived gloss (Ho et al., 2008; Hansmann-
Roth and Mamassian, 2017), color (Rogers et al.,
2016), or the watercolor effect (Gerardin et al., 2014,
2018). For the scale estimation, one context is defined
as “reference.” Here we use the checkerboard in plain
view or the center-surround analogue to plain view as
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Figure 4. (A, left panel) Lightness constant observer model represented as ground-truth functions that map luminance (x-axis) to the
internal lightness dimension �(x) (y-axis) for the three different viewing contexts (color legend). These functions were used to
simulate three different experiments: MLDS, MLCM, and asymmetric matching. The middle left and middle right panels show the
outcome of estimating perceptual scales by MLDS or MLCM from the simulated responses. The right panel depicts the outcome of a
simulated asymmetric matching experiment. (B) and (C) show the same simulation logic for the luminance-based and the
contrast-based observer model.

reference (see Methods). The reference scale’s minimum
is anchored to zero and the maximum is inversely
proportional to the estimated noise. Since perceptual
comparisons are made within and across viewing
conditions, the minimum and maximum anchors for all
non-reference scales can be estimated from the data and
expressed relative to the reference scale. The estimated
scales are also interval scales and the noise is assumed
to be additive and equal for all comparisons.

Simulation of perceptual scales

To better understand the differences between
methods, we adopt a simulation approach. We define
three observer models of lightness perception as ground
truth. We then use each of the models to generate
response data for an MLDS and MLCM experiment
(Figure 4). We use a lightness constant observer,
a luminance-based observer, and a contrast-based
observer. The lightness constant observer maps the
reduced luminance range of surfaces seen through

a transparency (x-axis) to a full range of perceived
lightness values (�(x), Figure 4A, left). This is an
inversion of the mapping from reflectance to luminance
shown in Figure 2. Both methods, MLDS and MLCM,
recover the ground-truth model.

A luminance-based observer (Figure 4B, left)
responds directly to the luminances. The mapping
between stimulus input and perceived lightness, �(x),
is thus a one-to-one mapping with luminance values
in different transparent media covering different parts
of the luminance range. MLCM is able to recover the
luminance-based observer model when plain view is
specified as the reference scale. MLDS anchoring policy
erroneously shifts the luminance range of the light
transparent medium from its actual value to zero and
hence does not recover the ground-truth model.

A contrast-based observer (Figure 4C, left) responds
to the relative luminance within a local region. The
mean luminance of the surround is subtracted from the
luminance of the target, and the difference between
target and surround luminance is divided by their sum
(Michelson contrast). To make the computation only
dependent on the target luminance, the same mean
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luminance was used in all contrast computations.
Again, MLCM recovered the ground-truth model and
correctly anchored the minimum of the scale for the
light transparency. MLDS imposed the “minimum
at zero” constraint and relative to ground truth, it
erroneously anchored the scale at zero. This led to a
qualitative differentiation in the predicted result pattern
for the light transparent medium. In MLDS, the scale
would be below the plain-view scale, and in MLCM it
would be above it.

Outline

WemeasuredMLDS andMLCM scales in variegated
checkerboards and center-surround stimuli, presumably
supporting and not supporting lightness constancy,
respectively. We repeated the measurements in the
same observers to maximally differentiate between the
methods. We also simulated and collected data for a
matching experiment (see Figure 4, right column). The
simulated matching data do not allow recovering the
ground-truth observer models, but the method is so
prevalent that we included it for the sake of comparison.
Given the results from the simulation, we expect both
MLDS and MLCM to estimate perceptual scales
for the variegated checkerboard that are consistent
with each other and consistent with a lightness
constant observer model (Figure 4, top row). For the
center-surround stimulus, we expect MLCM to estimate
perceptual scales consistent with a contrast-based or a
luminance-based observer model (Figure 4, middle and
bottom rows). We do not expect MLDS to estimate the
scales in this condition consistently with MLCM.

Methods

Observers

Eight observers participated in the study; two were
the authors (O1/GA, O2/MM), one was an experienced
observer (O4/MK), and the rest were volunteers naïve
to the purpose of the experiment. All observers had
normal or corrected to normal visual ability, and naïve
observers were reimbursed for participation. Informed
written consent was given by all observers except
the authors prior to the experiment. All experiments
adhered to the Declaration of Helsinki.

Stimuli

Variegated checkerboards
The stimuli were images of variegated checkerboards

composed of 10 × 10 checks (Figure 2A; see also
Wiebel et al., 2017). The images were rendered using
povray (Persistence of Vision Raytracer Pty. Ltd.,
Williamstown, Victoria, Australia, 2004). The position
of the checkerboard, the light source, and the camera
were kept constant across all images. Checks were
assigned 1 of 13 surface reflectance values according to
the experimental design (see below). In plain view, the
luminances ranged from 15 to 415 cd/m2. To keep the
local contrast of each target check in the checkerboard
comparable, we used the same eight reflectances for
the surround checks but shuffled their positions. The
mean luminance of the surround was equal to the mean
luminance of all 13 reflectance values (Suppl. Table
S3). The remaining checks in the checkerboard (73 in
MLDS and 82 in MLCM) were randomly assigned 1
of the 13 reflectance values. The only constraint was
that no two adjacent checks had the same reflectance.
A different checkerboard was rendered for each trial in
each of the procedures and for each observer.

In the transparency conditions, a transparent layer
was placed between the checkerboard and the camera
(Figure 2). The transparency is simulated using alpha
blending (i.e., an episcotister model), where the resulting
luminance of a region in transparency l′ is obtained
by linearly combining the luminance of the check
in plain view l and the luminance of the foreground
transparency when rendered opaque lτ , weighted by the
transparency’s transmittance α:

l ′ = α · l + (1 − α) · lτ

We used two different transparencies: a dark
transparency that had a reflectance value of 0.35 in
povray (arbitrary) reflectance units (lτ = 19 cd/m2)
and a light transparency that had a reflectance value
of 2 (lτ = 110 cd/m2). The transmittance for both
transparencies was α = 0.4. Supplementary Table S3
provides the luminance values for each reflectance in
each viewing condition.

Center-surround stimuli
The stimulus was a center-surround display consisting

of the target squares, two or three, depending on the
task and the background (Figure 3). For within-context
comparisons, targets were presented on a homogeneous
surround region. For the between-contexts comparisons
in MLCM, the background was divided into two
luminance plateaus that were connected by a linear
luminance gradient (Shapley and Reid, 1985; Maertens
et al., 2015). Target luminances were identical to those
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used in the variegated checkerboards. Background
luminances were matched to the mean luminance of the
checks in the variegated checkerboard that were viewed
through a transparent medium or to the mean of the
checks seen in plain view, respectively.

External matching field
In the matching experiment, a test field was presented

above the stimulus to assess observers’ lightness
matches. The test field was embedded in a coplanar
surround checkerboard that was composed of 5 × 5
checks of different luminance. The mean luminance of
this surround was 178 cd/m2, which was identical to
the mean luminance of the checkerboard seen in plain
view. To keep the luminance and geometric structure
of the surround with respect to the match comparable
between trials, we used the same surround checkerboard
but presented it in different orientations, rotated from
the original in steps of 90 deg.

Apparatus

Stimuli were presented on a linearized 21-inch
Siemens SMM2106LS monitor (400 × 300 mm,
1,024 × 768 px, 130 Hz). Observers were seated
130 cm away from the screen in a dark experimental
cabin. Presentation was controlled by a DataPixx
toolbox (Vpixx Technologies, Inc., Saint-Bruno,
QC, Canada) and custom presentation software
(http://github.com/computational-psychology/hrl).
Observers’ responses were registered with a
ResponsePixx button-box (VPixxTechnologies, Inc.).

Design and procedure

We measured perceptual scales using MLDS,
MLCM, and asymmetric matching.

MLDS experiment
We used MLDS with the method of triads

(Knoblauch and Maloney, 2012). In each trial, three
target reflectances (x1, x2, x3) are drawn from the set of
possible reflectance values and presented in descending
or ascending order at the target positions (see Figure 3).
Observers judged which of the extremes (x1 or x3) was
more different in perceived lightness from the central
one (x2; see Figure 3). To indicate their judgment, they
pressed the left or right button on the response box,
respectively.

We used 13 different reflectances for the checks in
the checkerboard and 10 of these reflectances were
used to measure the scales (p = 10). For 10 stimulus
intensities, the set of possible triads is 120 (n = p!/((p

− 3)! · 3!)) in each viewing condition. Each unique set
of triads was repeated 10 times, resulting in a total
of 3,600 trials for each observer (120 unique triads
× 3 viewing conditions × 10 repeats). Trial sequence
was randomized across conditons and repeats, and it
was also randomized whether a triad was presented
in ascending or descending order. We divided the
total number of trials into 10 blocks of 360 trials,
which took observers between 40 and 50 minutes to
complete.

MLCM experiment
We used MLCM with the method of paired

comparisons. Two targets were presented at the
positions of targets x1 and x3 in the MLDS experiment
(see Figure 3). Observers were asked to judge which of
the targets was lighter (Figure 3) and they indicated
their choice by pressing the left or right key in the
response box. No time limit was imposed.

Again we measured scales for 10 reflectances in three
viewing conditions, resulting in 30 different stimulus
values. With 30 stimuli, there are 435 (30 · (30 − 1)/2)
possible pairs of stimuli to be compared. We only
included pairs seen in the same viewing conditions and
pairs in which one of the viewing conditions was plain
view (i.e., comparisons between checks seen through
light and dark transparency were excluded). This was
legitimate because we only wanted to anchor the scales
relative to plain view, and it reduced the number of
comparisons to 335. This unique set of comparisons
was repeated 10 times, resulting in a total of 3,350 trials
per observer. Trials were presented in random order and
divided into 10 blocks of 335 trials, which lasted about
25 min each.

Matching experiment
Target reflectances were identical to those used

in MLDS and MLCM. The target position was the
position of target x2 in MLDS. Observers adjusted the
external test field so as to match the target in perceived
lightness. There were two buttons for coarse and two
buttons for fine adjustments. A fifth button was used
to indicate a match. This triggered the presentation
of the next trial. No time limit was imposed. Each
judgment was repeated 10 times, resulting in a total of
300 matching trials (10 reflectance values × 3 viewing
conditions × 10 repeats).

Experiment order
Observers completed the whole experiment in

multiple sessions of about 1 to 2 hours (including
breaks) over several days. They were free to chose
how many blocks they wanted to do in each session
(maximum was 5). The order of experiments was fixed:

http://github.com/computational-psychology/hrl
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MLDS, MLCM, and matching for the variegated
checkerboard and MLDS, MLCM, and matching for
the center-surround stimulus.

Scale estimation
Perceptual scales were estimated using the software

packages MLDS (Knoblauch and Maloney, 2008)
and MLCM (Knoblauch and Maloney, 2014) in the
R programming language (R Core Team, 2017). For
both methods, scales are estimated via maximizing
the likelihood of a generalized linear model (GLM),
derived in detail in Knoblauch and Maloney (2012).
Confidence intervals for the scale values were obtained
using bootstrap techniques. The goodness of fit for the
scales was also evaluated using bootstrap techniques
(see Knoblauch and Maloney, 2012; Wood, 2006). In
the supplementary material, we describe the details of
the goodness-of-fit evaluation for our data set.

Results

Variegated checkerboards

Figure 5A shows MLDS scales, MLCM scales, and
matching data for each of the eight observers. Visual
inspection of the figure shows that the data of five
observers (O1–O5) are consistent among each other and
qualitatively more consistent with a lightness constant
than with the other two observer models (compare
Figure 4). The critical features we are looking for are
(a) a parallel shift of the scales in transparencies and (b)
a crossing of the plain view and the light transparent
scale at an x value of 110 cd/m2 (this corresponds to
the luminance of the light transparent medium when
rendered as an opaque surface; see Methods). The
MLDS scales for the remaining observers are also
indicative of a lightness constant observer model,
whereas the MLCM scales indicate a mixture between a
lightness constant and a contrast or luminance-based
observer.

To quantitatively compare the similarity between
MLDS andMLCM results, we normalize the individual
scales derived with each method with respect to their
maximum in plain view. We then plot the normalized
scales against each other (Figure 6A). If both methods
produced identical scales, all scales values would line
up on the main diagonal. The amount of disagreement
can be read from the magnitude of the deviation from
the main diagonal. We quantify the agreement by
calculating the sum of the squared differences (SSD)
between each scale value and the unity line along the x
and the y dimension. The SSD measure ranged from
0.24 (O1) to 4.28 (O8, average 1.21) as seen in the inset
annotations in Figure 6. To put this into perspective, we

computed the SSD measure for scale values that were
randomly sampled between 0 and 1. The resulting SSD
measure had an average value of 10 and a standard
deviation of 2.2.

Center-surround stimuli

Panel B in Figures 5 and 6 shows the analogous data
and analyses as in panel A but for the center-surround
stimulus. For all observers, the MLDS procedure yields
a different pattern of perceptual scales than the MLCM
procedure. The MLDS scales are mostly consistent with
a lightness constant observer, whereas theMLCM scales
are more consistent with a luminance-based observer
(see Figure 4 for comparison). This observation is
quantitatively confirmed by a higher SSD measure
for all of our observers (average 2.58 vs. 1.21 in the
variegated checkerboards). The disagreement is mostly
due to the perceptual scale in the light transparent
medium (blue in Figure 5B), because in MLDS, that
scale is anchored to zero (by default), whereas in
MLCM, it is anchored to an intermediate value relative
to plain view (estimated from the comparisons).

Asymmetric matching

Figure 5 also shows the results of the asymmetric
matching task. For the variegated checkerboards
(Figure 5A), we obtained matches that are consistent
with lightness constancy in agreement with the
perceptual scales and with previous work (Wiebel et al.,
2017). The matching functions are roughly linear,
which, according to our matching logic (see Figure 1;
Maertens and Shapley, 2013), is a consequence of
underlying scales that have a similar non linearity. For
the center-surround stimuli (Figure 5B), we obtained
matching functions consistent with a luminance-based
observer, that is, the matching functions mostly overlap
on the main diagonal (Figure 4B).

For the center-surround stimulus, we observed what
has been referred to as “crispening effect,” an abrupt
change in lightness for targets that are closely above
or below the luminance of the surround (e.g., Whittle,
1994; Ekroll et al., 2004). In Figure 5B, the effect is
seen as a “push away” of the data points from a linear
function near the background luminance (vertical
dashed lines). The effect is more visible in the matching
data (e.g., see observer O2/MM in plain view) than
in the perceptual scales. The effect was absent in the
variegated checkerboards.
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Figure 5. Results from MLDS, MLCM, and matching experiments for observers judging (A) variegated checkerboards and (B)
center-surround stimuli. Observers were sorted according to the similarity between MLDS and MLCM scales for the variegated
checkerboards. Errorbars are 95% CI for MLDS and MLCM scales, and ± 2 SD for matching. Color legend as in Figure 4. Scales’ maxima
relate inversely to the noise in the judgments estimated by MLDS or MLCM (see Noise estimation section).
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Figure 6. Comparison between perceptual scales estimated by
MLDS and MLCM for the (A) variegated and (B) center-surround
stimuli. Errorbars are 95% CI Color legend as in Figure 4.

Figure 7. Consistency between matching data and prediction
from perceptual scales aggregated for all observers. Data points
represent mean ± SD Color legend as in Figure 4.

Consistency between scales and matching

We explained in the Introduction (see Figure 1)
how asymmetric matches are a reflection of the
internal perceptual scales that relate physical stimulus
intensity and perceived intensity at the target and the
match positions. Following this logic, we can use the
estimated scales to predict the data of an observer in
an asymmetric matching task (Wiebel et al., 2017).
For each luminance value in transparency, xT, we
find its corresponding value on the perceptual axis,
�T(xT), using the perceptual scale measured in this
condition (�T). We then find the numerically identical
value �P(xM) on the perceptual axis of the plain-view
scale, �P, and use that scale to find the corresponding
luminance value, xM. In this way, xM and xT are the
luminance values that produce equal values on the
perceptual dimension, that is, �T(xT) = �P(xM).

We used this readout procedure to predict asymmet-
ric matching data from MLCM and from MLDS scales
for variegated checkerboards and for center-surround
stimuli. We compared the predicted with the actual
match luminances that observers set in the asymmetric
matching task. The average of that comparison across
observers is shown in Figure 7 (individual observer
data can be found in the Suppl. Figures S3–S6). If the
prediction and the data would be in agreement, then the
data points would fall on the main diagonal. To quantify
the agreement between the prediction and data, we cal-
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culate Pearson’s correlation coefficient (inset values r in
Figure 7). InMLCM, predicted and actual matches were
correlated with coefficients of r = 0.997 and r = 0.996
for the variegated checkerboard and the center-surround
stimulus, respectively. In MLDS, the correlation coef-
ficients were r = 0.95 for the variegated checkerboards
and r = 0.889 for the center-surround stimuli.

Goodness of fit

We evaluated goodness of fit for MLDS and MLCM
scales using the routines provided in the respective
software packages and as suggested in Knoblauch
and Maloney (2012). In variegated checkerboards,
goodness of fit was appropriate in 29 out of 32 cases
(91%, 23 out of 24 for MLDS and 6 out of 8 for
MLCM). In center-surround stimuli, goodness of fit
was appropriate in 13 out of 32 cases (41%, 12 out
of 24 for MLDS and 2 out of 8 for MLCM). For the
scales that did not have a satisfactory goodness of fit on
a first pass, we employed a suggested outlier removal
and checked goodness of fit again (see supplementary
material). The procedure removed the trials that had
a high deviance residual. After outlier removal, all the
scales measured with variegated checkerboards passed
the goodness-of-fit test. For center-surround stimuli, 30
out of 32 cases (94%, 22 out of 24 for MLDS and 8 out
of 8 for MLCM) passed the goodness of fit.

Discussion

We compared two scaling methods, MLDS and
MLCM, with respect to their ability to estimate
perceptual scales in the domain of lightness perception.
In simulations, we adopted three different observer
models that are consistent with a different pattern of
perceptual scales under different viewing conditions.
MLDS and MLCM were differently able to recover
the underlying observer models from simulated data.
MLCM was able to correctly recover the lightness
constant, the luminance-based observer, and the
contrast-based observer. MLDS correctly recovered the
lightness constant observer but incorrectly anchored
the scales for the other two observer models.

In order to empirically probe different observer
models, we used two types of stimuli. Variegated
checkerboards have been shown to support lightness
constancy (e.g., Wiebel et al., 2017; Zeiner and
Maertens, 2014), whereas center-surround stimuli do
not support lightness constancy, and their lightness is
judged rather on the basis of luminance or contrast
(Ekroll et al., 2004). For the variegated checkerboards,
we thus expected both MLCM and MLDS to produce
similar scales that would be indicative of lightness

constancy. The experimental data confirmed this
expectation. Contrarily, with center-surround stimuli,
we expected luminance- or contrast-based judgments
that would produce different scales from MLDS and
MLCM. In the experiments, MLDS still produced
perceptual scales indicative of lightness constancy.
MLCM produced perceptual scales that were consistent
with a luminance-based judgment.

Our empirical data corroborated the simulation
results. Thus, taking both of them together, we
conclude that MLCM is more apt to provide a valid
estimate of the perceptual scales putatively underlying
judgments of perceived lightness. At least for the
current scenario, in which the underlying perceptual
scales vary in particular ways between different viewing
conditions, the simulations indicated that MLDS’s
default anchoring to zero is erroneous relative to
ground truth, because the numerical equality at zero
cannot be interpreted as perceptual equality (Figure 4).

We also measured asymmetric matches with both
stimuli. We used the perceptual scales derived with
MLDS and MLCM to predict asymmetric matches and
compared the predictions with the actual matching data.
Scales from MLCM accurately predicted asymmetric
matches for both types of stimuli, whereas MLDS
accurately predicted the matches in the variegated
checkerboard but not in the center-surround stimulus.
The failure to predict matches from MLDS scales for
the center-surround stimulus is consistent with our
above reasoning that the MLDS scales in this condition
are not valid estimates of the true underlying scales.

Comparing MLCM and MLDS

Scaling methods carry the prospect of revealing the
mapping between variations on a perceptual dimension
and variations in some physical variable, that is, the
perceptual scale. It would be particularly insightful
to characterize how a perceptual scale might change
with changes in viewing conditions, because these
viewing conditions change the input to the visual
system. However, measuring perceptual scales in
different contexts has turned out to be a challenge in
psychophysical research (Gescheider, 1997). Commonly
the appearance of stimuli in different contexts is
assessed with asymmetric matching, but, as we outlined
in the Introduction, the context might render target
and match so different that observers resort to a
minimum difference match, which invalidates the
method (Logvinenko and Maloney, 2006).

Here, we compared MLDS and MLCM with respect
to their ability to measure scales in different contexts
and in the following, we summarize the differences
in experimental procedures and in the assumptions
underlying scale estimation (see Table 1).
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Asymmetric matching MLDS MLCM

Procedure
Comparison Across-context Within-context Within- and across-context
Judgment Equality Difference between intervals Simple difference
Task Adjust until equal Triad comparison Paired comparison
Outcome Matches in unit of interest Perceptual scales Perceptual scales

Assumptions
Noise – Additive noise, separate for each scale Single additive noise for all scales
Scale minimum – Each scale at zero Reference scale at zero, others estimated

from data relative to reference
Scale maximum – Inverse of estimated noise for each

scale
Inverse of estimated noise for reference
scale, others estimated from data
relative to reference

Table 1. Comparison of the methods with respect to their required procedures and the assumptions underlying scale estimation in
MLDS and MLCM.

Cross-context comparisons and perceived differences
MLDS and MLCM both avoid the problem of

matching by asking observers to report differences
about the test stimuli in a forced-choice setting. MLDS
avoids the problem of cross-context comparisons,
because the stimuli belonging to one triad are all shown
in the same context. In MLCM, observers do not have
to produce equality but judge which of the stimuli
is higher on some perceptual dimension. Thus, even
though in MLCM, sometimes stimuli are compared
across contexts, this comparison is not as problematic
as producing perceptual equality as in asymmetric
matching (see below).

Task
MLCM and MLDS both ask observers to judge

perceived differences between stimuli. MLCM uses the
method of paired comparisons where observers judge
which of the two stimuli is higher along some perceptual
attribute of interest, that is, higher in lightness. In
MLDS, the observer compares two perceptual intervals
and judges which one is bigger, that is, which two
stimuli are more different in lightness. Observers
unanimously reported that the paired comparison
in MLCM was easier than the triad comparison
in MLDS. However, both comparisons were easier
than asymmetric matching, which was reported to
be sometimes difficult and even frustrating. Also
theoretically, paired comparisons are the easier task as
they involve the comparison of two values compared
to three in the triad comparison. Taken together, from
a procedural point of view of the observer, MLCM
is the preferred task, followed by MLDS and then
asymmetric matching.

Model assumptions
In MLDS, by default, the scale minimum is anchored

to zero. The scale maximum is inversely related to the
magnitude of the estimated noise on the perceptual
dimension (the “unconstrained” parametrization;
see Knoblauch and Maloney, 2012). When MLDS
is used to estimate scales in different contexts, the
maxima might differ, because the noise in different
context might differ. The minima will all be set to
zero, but that does not mean that the lowest value
will actually appear identical across contexts. For a
lightness constant observer (see Figure 4A), the true
perceptual minima and maxima are in fact identical
across contexts, and hence MLDS’s anchoring policy
leads to successful scale estimations. For a luminance-
or a contrast-based observer, the true minima and
maxima are different in different contexts (see Figure 4B
and C). MLDS will still anchor the minimum of all
scales at zero, but this results in scale estimates that
cannot be meaningfully compared across contexts.
Thus, whether or not MLDS can be reasonably used for
cross-context comparisons of perceptual scales depends
on the perceptual dimension under study. We did this
in a previous study on lightness perception (Wiebel
et al., 2017) and our scales were in good agreement
with data from asymmetric matching. But, as our
current simulations show, this was the case because
our variegated checkerboard stimuli happened to
support lightness constancy. The adequacy of MLDS’s
anchoring rules needs to be scrutinized for each and
every case, and it is up to the experimenter to check
their validity. This is an aspect of the method that
has not yet been discussed explicitly in the MLDS
literature, and we think it is of extreme relevance for
experimenters to be aware of this anchoring policy
when they use MLDS.

The second scaling method that we tested was
conjoint measurement. Conjoint measurement was
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designed to measure the combined effect of multiple
physical dimensions on one perceptual dimension
of interest (Luce and Tukey, 1964; Krantz et al.,
1971). The maximum likelihood version of conjoint
measurement—MLCM—arose as a natural extension
of MLDS to more than one physical dimension
(Knoblauch and Maloney, 2012).

So far, MLCM has been used, for example, to
evaluate the relative effects of physical gloss and
roughness on the respective perceptual attributes (Ho
et al., 2008), the effect of physical gloss and albedo
on perceived gloss and lightness (Hansmann-Roth
and Mamassian, 2017), or stimulus’ frequency and
amplitude on perceived saturation in the watercolor
effect (Gerardin et al., 2014, 2018). In these cases, the
stimulus dimensions were continuous variables, and
the conjoint measurement is evaluated with an additive
model, in which the perceptual judgments are explained
by the sum of the effects of each individual stimulus
dimension (Knoblauch and Maloney, 2012).

However, the method can also be applied differently
in order to measure scales in multiple viewing contexts,
and this is what we used it for. Instead of testing
several continuous stimulus dimensions, we tested one
continuous stimulus dimension (luminance) and a
second categorical stimulus dimension (three contexts).
For our scenario, the usual additive model is insufficient
to recover the scaling functions, because it cannot
capture full affine transformations among scales.
Specifically, it only captures models with an (additive)
offset but not with an offset and a multiplicative factor
as it was the case for the scales in the transparency
condition (Figure 4; see supplementary material and
Suppl. Fig. S2 that illustrate this point). Consequently,
we used the alternative and more general saturated
model provided by MLCM. This model includes almost
as many parameters (29) as combinations of stimuli (30,
10 test reflectances × 3 contexts). We collected sufficient
data to fit the saturated model and used the nested
likelihood ratio test to check whether the saturated
model provided a better fit to the data than the additive
model (Knoblauch and Maloney, 2012).3 This was the
case for all experimental data.

In MLCM, only the minimum of the reference scale
(plain view) is anchored to zero, whereas the minima
and maxima of all other scales are estimated from
the data. This means that MLCM provides a way to
empirically recover the “ground-truth” functions for the
observer models that we evaluated here (Figure 4).

Noise estimation
Both MLDS and MLCM take into account that

human observers’ judgments are inherently stochastic,
or noisy. Both methods model the source of noise at
the decision stage and they provide an estimate of that
noise σ̂ , which is equal to the inverse of the scale’s

maximum (in MLCM the maximum of the reference
scale). The decision variable in MLDS is

�MLDS = [
� i(x3) − � i(x2)

] − [
� i(x2) − � i(x1)

] + ε (1)

where � i(x) is the perceptual scale in the ith context.
The observer perceives the pair (x2, x3) as being more
different from (x2, x1) when �MLDS > 0.

The decision variable in MLCM is

�MLCM = [
� j (x2) − � i(x1)

] + ε (2)

where the perceptual scales can be from the same or
different contexts (i could be different from j), and the
observer perceives x2 as lighter than x1 when �MLCM
> 0. In both cases, the decision variable is corrupted
by additive Gaussian noise with variance σ 2 (ε ∼ N(0,
σ 2)). The scale maximum of either method equals the
inverse of the estimated variability, that is, 1/σ̂MLDS
and 1/σ̂MLCM. If the noise is additive and Gaussian
and if both methods are probing the same underlying
dimension, �(x), then the noise estimates from both
methods should be related in the following way:

σ̂MLCM =
√
2
2

σ̂MLDS (3)

where σ̂MLCM and σ̂MLDS are the noise estimates by
MLCM and MLDS, respectively (see supplementary
material for the derivation).

Injecting the above assumptions into the lightness
constant observer model, we obtained the above
relationship between the noise estimates in MLDS
and MLCM. It is meaningful to compare the noise
estimates in this way when the maxima of the ground
truth functions are equal across conditions, as it is the
case for the lightness constant observer (Figure 4). For
the other two observer models, this was not the case,
but we can still use the scales estimated in “plain view”
for a cross-method comparison of the noise estimates.

Figure 8 shows the respective noise estimates for
the “plain-view” scale for MLDS (x-axis) and MLCM
(y-axis) for our experimental data. The diagonal line
indicates the theoretical relationship as described in
Equation 3. All data points fall below the diagonal, but
for the variegated checkerboards, the noise estimates
that five out of eight observers are close to the expected
theoretical relationship. For the center-surround
stimuli, the relationship is less clear. In general, the
noise estimates in MLCM were smaller than those in
MLDS. One possible explanation for this is that there
might be other sources of noise, in addition to decision
noise, which may have a smaller effect on responses in
MLCM than in MLDS. This would be in agreement
with our own impression and informal reports of
observers that the paired comparison task in MLCM is
easier than the triad comparison in MLDS.
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Figure 8. Noise estimated by both scaling methods for
variegated checkerboards (A) and for the center-surround
stimuli (B). The black line indicates the expected relationship
between the two estimates (

√
2/2; see text).

A general issue associated with scaling methods
is to what extent the method can recover the shape
of the function irrespective of the type of noise.
For convenience, it is often assumed that the noise
is additive. Discrimination scales constructed from
summation of JNDs are sensitive to differences in
noise type (Kingdom and Prins, 2010; Kingdom,
2016). Scales constructed from judgments of interval
differences (“difference scaling”), on the other hand,
have been shown to be insensitive to whether the noise
is additive or multiplicative. This applies to all partition
scaling methods and hence to MLDS (Kingdom
and Prins, 2010; Aguilar et al., 2017). Furthermore,
MLDS has been shown to provide robust estimates also
for non-Gaussian noise distributions (e.g., Chauchy,
Uniform, or Laplace; Maloney and Yang, 2003). These
are clear advantages of MLDS compared to other
scaling methods when perceptual scales are measured
in a single viewing context. It needs to be tested in the
future to what extent MLCM scales might be affected
by different types or distributions of noise.

Conclusions

We compared MLDS and MLCM as methods to
estimate lightness scales using variegated checkerboards
and center-surround stimuli. In simulations, we
showed that MLCM and not MLDS could recover
the underlying functions of three different observer
models. In experiments, we found that MLCM scales
were consistent with the expected lightness functions
and quantitatively predicted asymmetric matches.
We conclude that MLCM is better suited to measure
perceptual scales across different viewing conditions,
because its experimental and estimation procedures
involve comparisons across conditions and hence
allow for meaningful anchoring of the scales. However,
MLCM makes a strong assumption about a single

additive noise source that needs to be scrutinized by
experimental tests in the future.

Keywords: perceptual scales, MLDS, MLCM,
asymmetric matching, lightness, transducer function,
linking assumptions
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Footnotes
1Alternatively, in the “method of quadruples,” the observer judges the
difference between two differences, a less intuitive task and hence more
prone to bias.
2We thank David Brainard, who suggested this manipulation to us.
3The test considers the trade-off between deviance reduction and the
number of parameters added to the model
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