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a b s t r a c t 

The ongoing COVID-19 has precipitated a major global crisis, with 968,117 total confirmed cases, 612,782 

total recovered cases and 24,915 deaths in India as of July 15, 2020. In absence of any effective thera- 

peutics or drugs and with an unknown epidemiological life cycle, predictive mathematical models can 

aid in understanding of both coronavirus disease control and management. In this study, we propose a 

compartmental mathematical model to predict and control the transmission dynamics of COVID-19 pan- 

demic in India with epidemic data up to April 30, 2020. We compute the basic reproduction number R 0 , 

which will be used further to study the model simulations and predictions. We perform local and global 

stability analysis for the infection free equilibrium point E 0 as well as an endemic equilibrium point E ∗

with respect to the basic reproduction number R 0 . Moreover, we showed the criteria of disease persis- 

tence for R 0 > 1. We conduct a sensitivity analysis in our coronavirus model to determine the relative 

importance of model parameters to disease transmission. We compute the sensitivity indices of the re- 

production number R 0 (which quantifies initial disease transmission) to the estimated parameter values. 

For the estimated model parameters, we obtained R 0 = 1 . 6632 , which shows the substantial outbreak of 

COVID-19 in India. Our model simulation demonstrates that the disease transmission rate βs is more ef- 

fective to mitigate the basic reproduction number R 0 . Based on estimated data, our model predict that 

about 60 days the peak will be higher for COVID-19 in India and after that the curve will plateau but the 

coronavirus diseases will persist for a long time. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The continuing novel coronavirus or SARS-CoV-2 epidemic has

een declared a pandemic by the World Health Organization

WHO) on March 11, 2020 [1] . According to Worldometer data

,401,394 total confirmed cases, 239,615 confirmed deaths and

,083,816 recovered throughout the world as of May 02, 2020

2] . Novel coronavirus has already exceeded the earlier records

f two life-threatening outbreaks, namely Severe Acute Respira-

ory Syndrome Coronavirus (SARS-CoV) and Middle East Respira-

ory Syndrome Coronavirus (MERS-CoV), posing the major warn-

ng to the global public health and economy after the 2nd world

ar [3] . COVID-19 are a group of enveloped non-segmented with a

ositive-sense, single-stranded RNA viruses that belongs to the or-

er of Nidovirales, family of Coronaviridae, and subfamily of Ortho-

oronavirinae and widely spread among the mammals and humans
∗ Corresponding author. 

E-mail address: subhaskhajanchi@gmail.com (S. Khajanchi). 
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4] . The novel coronavirus disease is an infectious disease caused

y SARS-CoV-2. 

A local epidemic of pneumonia was first identified in Decem-

er 2019 in Wuhan city of Hubei province China, and the main-

and China became the epicenter of COVID-19 [5] . Most of the

nitial stages were usually incorporated to the wholesale Huanan

eafood market, which also traded live animals. This communica-

le coronavirus disease has traits like fever, dry cough, sore throat,

reathlessness and fatigue [6] . With human migration through air,

he disease has now spread throughout the world as well as the

erritories of the world, making Europe and USA as new epi-

enters [7] . It is the third zoonotic human-to-human transmis-

ion COVID-19 that has arisen in the present century, after SARS-

oV, which spread around 37 countries and the MERS-CoV, which

pread around 27 countries. 

In India, the pandemic COVID-19 was first confirmed in the

tate Kerala on January 30, 2020 when a student returned back

rom Wuhan, the province of China [8] . The Govt. of India has in-

orporated social distancing as a precautionary measure to prevent

he possibility of a stage-3 human-to-human transmission that can

https://doi.org/10.1016/j.chaos.2020.110173
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110173&domain=pdf
mailto:subhaskhajanchi@gmail.com
https://doi.org/10.1016/j.chaos.2020.110173
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S  
stimulate the spread of the coronavirus diseases. India Govt. also

imposed a 14 hours voluntary public curfew (‘Janata Curfiew’) on

March 22, 2020 to make aware the people about the peculiar

epidemiological traits compared with previous two epidemics of

SERS-CoV and MERS-CoV. Moreover, the Govt. of India has declared

a 21 days nationwide lockdown from March 25, 2020 to April 14,

2020 to prevent the spread of coronavirus diseases among hu-

man, affecting India’s 1.3 billion population. In the second phase,

the lockdown has been extended up to May 03, 2020 to combat

against COVID-19 pandemic in India. In lack of any specific vac-

cine or therapeutics, social distancing has been recognized as the

most commonly utilized preventive measures to control the novel

coronavirus diseases [9] . The main aim of these initiatives are the

control of social interactive places, like schools, colleges, theaters,

cultural programme and other public spheres, except for essential

public services like hospitals, medicine shops, police and fire etc.

Indeed the outbreaks of COVID-19 has drastically altered the daily

life, health of the publics as well the economy. This is one of the

main interests for each and everyone how long this situation will

continue and when the disease will be under controlled and the

entire world will be returned back to its earlier situation. 

As identified by the World Health Organization (WHO), the

mathematical models, mainly those formulated in a timely man-

ner, can play a crucial role in allowing public health decision and

policy-makers with evidence-based statistics [10,11] . Mathemati-

cal modeling can aid in understanding; (i) how transmissible the

disease is, (ii) when does the infectivity become high during the

course of epidemic, (iii) how acute the disease is, and (iv) how ef-

fectual interventions has been and ought to be. It is not surpris-

ing that the researchers throughout the world have been trying to

successfully model the coronavirus diseases. The group of model-

ers throughout the global has accepted the challenge in delineating

mathematical models of the transmission dynamics of COVID-19 or

SARS-CoV-2 and has rapidly reacted to the ongoing novel coron-

avirus epidemic. The progression of any outbreak depends on the

infectivity of pathogens as well as the available uninfected individ-

uals. 

For a novel infection, when the transmission dynamics of an

epidemiological disease is unknown, mathematical models play a

key role to estimates the number of worst and best case scenarios.

It can also aid in estimating the effect of precautionary measures

adopted against novel coronavirus. With preventive techniques, the

main object is to preserve the basic reproduction number R 0 be-

low 1, to control further development of infection, whereas in a

mitigation policy, the main object is to indelicate the effect of out-

break [9] . Recently, some mathematical models have already been

investigated to understand the transmission dynamics of peculiar

epidemiological traits of COVID-19, and some of these are listed in

our references [12–21] . Modeling the dynamics of COVID-19 pan-

demic is not new and most of the authors focused on the effect of

lockdown due to absence of any effective therapeutics or licensed

vaccine. In this context A. Atangana [12] studied a mathematical

model to study the transmission dynamics of COVID-19 pandemic

by using a system of fractional differential equations by using the

effect of lockdown. Tang and colleagues [13] proposed a model for

COVID-19 by considering symptomatic individuals to get the pa-

tients’ epidemiological status and calculated the basic reproduc-

tion number 6.47, which is very high for the infectious diseases.

Giordano and colleagues [15] developed a new SIDARTHE model

for COVID-19 pandemic and predict that restrictive social distanc-

ing can reduce the widespread of coronavirus among the human.

Sarkar and Khajanchi [14,17] proposed and analyzed a mathemat-

ical model to study the transmission dynamics of COVID-19 or

SARS-CoV-2, where they performed the model validation with real

data from India and some provinces of India, respectively. Based

on the estimated model parameters, the authors performed the
hort-term prediction as well as long-term prediction. Liu and col-

eagues [19] developed a mathematical model by considering re-

orted and unreported cases to study the transmission dynamics

f novel coronavirus by using data from China. To study the inter-

ention strategies of infectious diseases in an extended version of

he classical SEIR (susceptible-exposed-infected-recovered) model

hat incorporates the fact that asymptomatic and pre-symptomatic

nfected individuals are believed to play a key role in the transmis-

ion dynamics of COVID-19 outbreak [16] . 

Our aim of this paper is to propose a compartmental math-

matical model by introducing reported and unreported symp-

omatic individuals based on the data from the Republic of India.

e address the following important issues regarding the outbreak

f COVID-19: how does the outbreak develop in India with respect

o the number of reported and unreported cases ? When the epi-

emic will end from India ? How the basic reproduction number

 0 influence disease outbreak ? 

The organization of this manuscript is as follows: in the

ection 2 we propose the SAIU mathematical model and its

chematic representation. The qualitative properties of the SAIU

odel is discussed in the Section 3 . In the same section, we per-

orm local and global stability analysis of the disease free and en-

emic equilibrium point in terms of R 0 . Also, we establish the

riteria for the disease persistence with respect to R 0 . In the

ection 4 , we conduct a sensitivity analysis for the basic reproduc-

ion number R 0 . Numerical simulations based on the estimated pa-

ameter values are presented in the Section 5 , and a discussion in

he Section 6 concludes our manuscript. 

. Model formulation 

Mathematical modeling of transmission dynamics of infectious

iseases are now ubiquitous. A series of mathematical models has

een investigated by many researchers to describe the interac-

ive dynamics of infectious diseases [22–24] . We proposed here

 deterministic ordinary differential equation model that can rep-

esent the overall dynamics of novel coronavirus or SARS-CoV-2.

e stratified the total human population into four compartments,

amely susceptible individuals (uninfected), asymptomatic individ-

als (pauci-symptomatic or clinically undetected), reported symp-

omatic infected individuals (symptomatic infectious individuals

re reported by the public heath service) and unreported symp-

omatic infected individuals (clinically ill but not reported) to for-

ulate the SAIU (susceptible or uninfected ( S ) → asymptomatic

 A ) → reported symptomatic infectious ( I ) → unreported symp-

omatic infectious ( U )) model. The total size of the population is

(t) = S(t) + A (t) + I(t) + U(t) . We assume that the reported in-

ected individuals will no-longer associate into the infections as

hey are isolated and move to the hospital or Intensive Care Units

ICU). Thus, only infectious individuals belonging to I(t) or U(t) -

pread or transmit the diseases. The COVID-19 transmission is il-

ustrated in the Fig. 1 . The model consists of the following set of

onlinear differential equations: 

dS(t) 

dt 
= �s − βs S(t) 

N(t) 
(αa A (t) + αu U(t)) − μS(t) , 

dA (t) 

dt 
= 

βs S(t) 

N(t) 
(αa A (t) + αu U(t)) − γa A (t) − μA (t) , 

dI(t) 

dt 
= q i γa A (t) − ηi I(t) − μI(t) , (1)

dU(t) 

dt 
= γa (1 − q i ) A (t) − ηu U(t) − μU(t) , 

ith the positive initial conditions: 

(t 0 ) = S 0 , A (t 0 ) = A 0 , I(t 0 ) = I 0 and U(t 0 ) = U 0 . (2)
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Fig. 1. The schematic flow diagram represents the susceptible or uninfected ( S ), asymptomatic ( A ), reported symptomatic infectious ( I ) and unreported symptomatic infec- 

tious ( U ) individuals for novel coronavirus disease that persuades the formulation of the SAIU model (1) . 
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Here t ≥ t 0 represents the time in days, t 0 is the starting

ate for the model system (1) of the epidemic. Some of the pa-

ameters may alter in time as control measures are implemented

r changed. We performed the theoretical analysis for the model

ith constant parameters. In our model, we introduce some de-

ographic effects by considering a proportional natural decay rate

> 0 in each of the four individuals. In addition, our model in- 

ludes a net inflow of susceptible or uninfected population at a

ate �s per unit time. The uninfected individuals can be decreased

ollowing infection, acquired by contact between an uninfected

nd an infected individual, who may be asymptomatic or unre-

orted infected individuals. The transmission coefficients for these

wo compartments of infected populations are βs αa and βs αu , re-

pectively. Here, we consider the disease transmission coefficient

s (which models both the contact rates and the infectiousness

f novel coronavirus), with adjustment factors for asymptomatic

ndividuals ( αa ) and unreported symptomatic infected individu-

ls ( αu ). The effect of the parameters βs αa and βs αu are explic-

tly associated with the measures like lockdown, social distancing,

estriction of movement and shaking hand etc., that actually de-

rease the number of contacts. Asymptomatic infectious popula-

ions develop to reported symptomatic infectious and unreported

ymptomatic infectious classes at a rate γ a with a fraction q i and

(1 − q i ) respectively, that is, 0 < q i < 1. Thus, the average time

pent in the asymptomatic infectious individuals is 1 
γa 

days. The

eported symptomatic infected populations ( I ) and the unreported

ymptomatic individuals ( U ) are infectious for an average period

f 1 
ηi + μ days and 

1 
ηu + μ days, respectively. In our model formu-

ation, we assume that the reported symptomatic infectious indi-

iduals ( I ) are reported and hospitalized or isolated immediately,

nd thus no further infections. The asymptomatic infected class

 A ) can also be considered as having a lower-level symptomatic

tate. 

Albeit, COVID-19 is supposed to be transmitted exclusively by

eported symptomatic infectious individuals, a very low rate of

ransmission by asymptomatic populations cannot yet be ruled

ut. The SAIU model take into accounts for this probability by

tilizing the adjustment parameter αa , where 0 < αa < 1.

he adjustment parameter αu > 0 accounts for varying lev-

ls of hygiene safeguards during quarantine. Because the quar-

ntine and isolation or hospitalization programmes and hy-

iene safeguards during quarantine and isolation or hospital-

zation were implemented and increased continuously after an

pidemic. All the infections are obtained from either asymp-

omatic ( A ) or unreported symptomatic infectious ( U ) individuals.

he model parameters and their description are provided in the

able 1 and a schematic diagram for the SAIU model is given in the

ig. 1 . 
. Qualitative properties of the model 

.1. Positive invariance 

Here, we shall investigate that all the state variables of the

ystem (1) are non-negative for all time t with initial conditions

(S(0) , A (0) , I(0) , U(0)) ∈ R 

4 + . In order to prove the positivity, we

tate the following theorem. 

heorem 3.1. All the solutions (S(t), A(t), I(t), U(t)) of the system

1) with the initial values (2) satisfy S ( t ) > 0, A ( t ) > 0, I ( t ) > 0 and

 ( t ) > 0 for all t > 0, then the system (1) is positively invariant and

ttracting within R 

4 + . 

roof. The first equation of the system (1) , can be written as 

dS(t) 

dt 
= �s − βs S(t) 

N(t) 
(αa A (t) + αu U(t)) − μS(t) 

= �s − ψ 1 (t) S(t) , 

here 

 1 (t) = 

βs 

N(t) 
(αa A (t) + αu U(t)) + μ. 

Thereafter by integration, we obtain the following expression 

(t) = S 0 exp 

(
−

∫ t 

0 

ψ 1 (s ) ds 

)
+ �s exp 

(
−

∫ t 

0 

ψ 1 (s ) d s 
)∫ t 

0 

e 
∫ s 

0 ψ 1 (u ) du d s > 0 . 

This shows that S ( t ) is nonnegative for all t . Further from the

econd equation of the system (1) , we have 

dA (t) 

dt 
≥ −(γa + μ) A (t) , 

hich gives 

 (t) = A 0 exp 

(
−

∫ t 

0 

(γa + μ) ds 

)
> 0 . 

Similarly, from the third equation of the system (1) , we get 

dI(t) 

dt 
≥ −(ηi + μ) I(t) , 

nd this inequality implies 

(t) = I 0 exp 

(
−

∫ t 

0 

(ηi + μ) ds 

)
> 0 . 

In the similar way, the last equation of the system (1) gives 

dU(t) ≥ −(ηu − μ) U(t) , 

dt 
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which leads to 

(t) = U 0 exp 

(
−

∫ t 

0 

(ηu + μ) ds 

)
> 0 . 

From the above analysis, we can conclude that all the solution

trajectories of the system (1) remain positive for all t > 0. Hence

the proof. �

3.2. Boundedness 

Now we start with the theorem which assure that the solutions

of the system (1) is bounded with nonnegative initial values. 

Theorem 3.2. The solutions of the system (1) with the initial condi-

tions (2) which initiate in R 

4 + are uniformly bounded in the positively

invariant set �. 

Proof. Here, we will show that all the feasible solutions are uni-

formly bounded in �. From the positivity of solutions, we get 

dS(t) 

dt 
≤ �s − μS(t) , 

which implies that 

lim sup 

t→∞ 

S(t) ≤ �s 

μ
. 

Taking μ = min { μ, ηi + μ, ηu + μ} , we obtain 

dN(t) 

dt 
≤ �s − μN(t) , 

which gives 

lim sup 

t→∞ 

N(t) ≤ �s 

μ
. 

Accordingly, we obtain the following positively invariant

bounded region 

� = 

{ 
(S(t) , A (t) , I(t) , U(t)) ∈ R 

4 
+ | S(t) + A (t) + I(t) + U(t) ≤ �s 

μ

} 
. (3)

Therefore, all the solution trajectories initiating in R 

4 + will en-

ter � with finite time. In the region �, the existence, unique-

ness and continuity results hold the dynamics of our SAIU model

system [25,26] . Hence the system is well-posed and biologically

realistic. �

3.3. Basic reproduction number 

The basic reproduction number for the SAIU model can be de-

termined by using the next generation matrix introduced by van

den Driessche and Watmough [27] . In order to do this, we con-

sider the nonnegative matrix F and the non-singular M-matrix V
expressing the production of new-infection and transition part, re-

spectively. Our SAIU model system (1) is defined as follows: 

F = 

⎡ ⎣ 

βs 
S(t) 
N(t) 

(αa A (t) + αu U(t)) 

0 

0 

⎤ ⎦ 

and V = 

[ 

(γa + μ) A (t) 
−q i γa A (t) + (ηi + μ) I(t) 

−(1 − q i ) γa A (t) + (ηu + μ) U(t) 

] 

. 

Now, F and V can be written as 

F = 

( 

βs αa 0 βs αu 

0 0 0 

0 0 0 

) 

and V = 

( 

γa + μ 0 0 

−q i γa ηi + μ 0 

−(1 − q i ) γa 0 ηu + μ

)
The basic reproduction number denoted by R 0 is the spectral

radius of the next generation matrix: 

R 0 = ρ(F V 

−1 ) = 

βs αa + 

βs αu γa (1 − q i ) 
. 
γa + μ ( γa + μ)( ηu + μ) 
.4. Stability analysis of disease-free equilibrium (DFE) 

heorem 3.3. The disease-free equilibrium point E 0 ( �s / μ, 0, 0, 0)

xists and is locally asymptotically stable for R 0 < 1, otherwise unsta-

le. 

roof. To determine the local stability of E 0 ( �s / μ, 0, 0, 0), we

ompute the Jacobian matrix of the system (1) around the DFE E 0 
s given by 

 E 0 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−μ −βs αa 0 −βs αu 

0 βs αa − (γa + μ) 0 βs αu 

0 q i γa −(ηi + μ) 0 

0 (1 − q i ) γa 0 −(ηu + μ) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

The characteristic equation of J E 0 corresponding to the eigen-

alue λ is det(J E 0 − λI 4 ) = 0 . From the characteristics equation,

wo eigenvalues of J E 0 are real and negative, that is, −μ and

(ηi + μ) (since all parameters are positive) and the other two

igenvalues can be obtained form the following equation 

2 + ρ1 λ + ρ2 = 0 , (4)

here 

1 = 2 μ + γa + γu − βs αa , 

2 = (ηu + μ)(γa + μ)(1 − R 0 ) . 

Here, we observe that ρ2 > 0, this implies ρ1 > 0. Therefore,

he quadratic Eq. (4) has two strictly negative real roots or neg-

tive real parts if ρ2 > 0, that is, if R 0 < 1 . Hence, disease-free

quilibrium point (DFE) is locally asymptotically stable if R 0 < 1

nd unstable for R 0 > 1. �

.5. Global stability analysis of disease-free equilibrium (DFE) 

In this subsection, we study the global stability of the unique

isease-free equilibrium point E 0 with the condition R 0 < 1. In or-

er to do this, we use a Lyapunov function similar to those are

ery classic and used by Korobeinikov & Maini [28] , Mcclusky [29] ,

nd Khajanchi & Banerjee [30] . Such Lyapunov function take an ad-

antages of all the properties of the function: 

(m ) = m − 1 − ln (m ) . (5)

hich is nonnegative in R 

4 + except at m = 1 , where it become zero.

ow, we prove the global stability for E 0 by using the following

heorem. 

heorem 3.4. The disease-free equilibrium E 0 of the SAIU system

1) is globally asymptotically stable if R 0 < 1 and βs αu < ηi + μ <

s αu (1 − q i ) . 

roof. Consider the following Lyapunov function 

 E 0 (S(t) , A (t) , I(t) , U(t)) = S 0 r 

(
S(t) 

S 0 

)
+ A (t) + I(t) + U(t) . 

Here V E 0 is always nonnegative in the region � and attains zero

t E 0 . We want to show that ˙ V E 0 is negative definite. Differentiate

 E 0 
along the solution trajectory is given by 

˙ 
 E 0 = 

(
1 − S 0 

S(t) 

)
˙ S (t) + 

˙ A (t) + 

˙ I (t) + 

˙ U (t) 

= 

(
1 − S 0 

S(t) 

)(
�s − βs S(t) 

N 

(
αa A (t) + αu U(t) 

)
− μS(t) 

)
+ 

βs S(t) 

N 

(
αa A (t) 

+ αu U(t) 
)

− (γa + μ) A (t) + q i γa A (t) − (ηi + μ) I(t) + γa (1 − q i ) A (t) 

−(ηu + μ) U(t) , 
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a 0 
= �s − βs S(t) 

N 
(αa A (t) + αu U(t)) − μS(t) − �s 

S 0 
S(t) 

+ βs αa 
S 0 A (t) 

N 

+ βs αu 
S 0 U(t) 

N 
+ μS 0 + 

βs S(t) 

N 

(
αa A (t) + αu U(t) 

)
−(γa + μ) A (t) + q i γa A (t) − (ηi + μ) I(t) + γa (1 − q i ) A (t) − (ηu + μ) U(t) , 

= μS 0 − μS − S 0 
S(t) 

(μS 0 ) + βs αa 
S 0 A (t) 

N 
+ βs αu 

S 0 U(t) 

N 
+ μS 0 − (γa + μ) A (t)

+ q i γa A (t) − (ηi + μ) I(t) + γa (1 − q i ) A (t) − (ηu + μ) U(t) , 

= μS 0 

(
2 − S 0 

S(t) 
− S(t) 

S 0 

)
+ (γa + μ) A (t)(R 0 − 1) + (βs αu − (ηu + μ)) U(t) 

+ γa 

(
1 − (1 − q i ) βs αu 

ηu + μ

)
A (t) − (ηu + μ) I(t) . 

˙ V E 0 < 0 if (i) R 0 < 1 and (ii) βs αu < ηi + μ < βs αu (1 − q i ) , with

he aid of the relation between the arithmetic means and geomet-

ic means, we ensure that ˙ V E 0 ≤ 0 and the equality holds only at

 0 . Hence, the disease-free equilibrium point E 0 is globally asymp-

otically stable if R 0 < 1. �

.6. Persistence of the coronavirus disease 

In the Theorem 3.3 , we proved that while basic reproduction

umber R 0 < 1, the coronavirus disease dies out irrespective of

he initial size of the epidemic. If R 0 > 1 the disease-free equilib-

ium E 0 become unstable. Usually it is considered that the infected

ndividuals A ( t ), I ( t ) and U ( t ) will remain persistent for this event.

ow, we prove the following theorem to verify the persistence of

he coronavirus diseases. 

heorem 3.5. Assume that R 0 > 1 . The disease will be uniformly per-

istent in the sense that there exists an ϱ > 0, such that for every

ositive solution of the system (1) , holds the following 

im inf t→∞ 

A (t) > �, lim inf t→∞ 

I(t) > � and lim inf t→∞ 

U(t) > �. 

Also, there exists an endemic equilibrium point in this case. 

roof. According to the theorem by Thieme [31] , we prove the

niform persistance. In order to prove this, we consider that 

Q = 

(
S(t) , A (t) , I(t) , U(t) 

)
, Q = 

(
A (t) , I(t) , U(t) 

)
, 

G = 

{ 
Q j ∈ R 

4 
+ | Q j ≥ 0 , j = 1 , ..., 4 , where Q j is the j ′ th component of Q 

} 
, 

 0 = 

{ 
Q ∈ G | Q j > 0 , j = 2 , 3 , 4 

} 
, 

H = G/G 0 = 

{ 
Q ∈ G | Q j = 0 , for some j = 2 , 3 , 4 

} 
. 

Now, we want to show that the system (1) is uniformly persis-

ent with respect to ( G 0 , H ). Since H contains a unique equilibrium

 0 , it is sufficient to show that W 

s (E 0 ) 
⋂ 

G 0 = φ, where W 

s ( E 0 ) de-

otes the stable manifold of the disease-free equilibrium E 0 . 

Suppose this is not true. Then there is a solution ( S ( t ), A ( t ),

 ( t ), U ( t )) ∈ G 0 of the system (1) , such that 

lim 

→∞ 

(S(t) , A (t) , I(t) , U(t)) → (�s /μ, 0 , 0 , 0) . 

Then for any ε > 0, we obtain 

�s 

μ
− ε ≤ S(t) ≤ �s 

μ
+ ε, 0 ≤ Q j ≤ ε, j = 2 , 3 , 4 , 

or sufficiently large value of t . From the following the system (1) ,

e have 
 

 

dA (t) 
dt 

dI(t) 
dt 

dU(t) 
dt 

⎞ ⎠ = 

⎛ ⎝ 

βs 
S(t) 
N(t) 

(αa A (t) + αu U(t)) 

0 

0 

⎞ ⎠ 

 

( −(γa + μ) 0 0 

q i γa −(ηi + μ) 0 

(1 − q i ) γa 0 −(ηu + μ) 

) ( 

A (t) 
I(t) 
U(t) 

) 
( 

βs αa ̃
 S (ε) − (γa + μ) 0 βs αu ̃

 S (ε) 
q i γa −(ηi + μ) 0 

(1 − q i ) γa 0 −(ηu + μ) 

) ( 

A (t) 
I(t) 
U(t) 

) 

≡ ˜ J (ε) Q , 

here 

 

 (ε) = 

�s /μ − ε 

�s /μ + ε 
, 

nd 

 

 (0) = 

( 

βs αa − (γa + μ) 0 βs αu 

q i γa −(ηi + μ) 0 

(1 − q i ) γa 0 −(ηu + μ) 

) 

. 

Note that, ˜ J (0) is equal to (F − V ) , has at least one eigenvalue

ith positive real part when R 0 > 1. Therefore, ε > 0 is arbitrary,

ne can make ε small enough so that x ( ̃  J (ε)) is positive, where

 ( B ) is the largest real part of the eigenvalue of B. So there exist

olutions of the linear system 

d Q 

dt 
= 

˜ J (ε) Q , 

hich can grow exponentially. By comparison, the solutions Q be-

ome unbounded as t → ∞ . This gives a contradiction to our

ssumption that the solutions of the model (1) are uniformly

ounded. Hence, W 

s (E 0 ) 
⋂ 

G 0 = φ. By using the Theorem 4.6 in

31] , it can be concluded that the system (1) is uniformly persis-

ent with respect to ( G 0 , H ). 

Therefore, the system of Eqs. (1) are dissipative (showed in the

heorem 2) and thus by using the Theorem 3.3 in [32] indicates

hat the model system (1) has an interior equilibrium point (that

s, all components are positive). This completes the proof of this

heorem. �

.7. Existence of an endemic equilibrium point 

The SAIU model system (1) has an endemic equilibrium point

 

∗( S ∗, A 

∗, I ∗, U 

∗) with positive components provided R 0 > 1. Equat-

ng the derivatives of the model system (1) to zero and solving the

esulting equations. First, we define 

∗ = 

βs 

N 

∗(t) 

[ 
αa A 

∗(t) + αu U 

∗(t) 
] 
. (6) 

By solving the equations in the system (1) at endemic steady

tate, we obtain that 

S ∗ = 

�s 

(κ∗ + μ) 
, I ∗ = 

�s q i γa κ∗

(γa + μ)(ηi + μ)(κ∗ + μ) 
, 

 

∗ = 

�s κ∗

(γa + μ)(κ∗ + μ) 
, U 

∗ = 

(1 − q i )�s γa κ∗

(γa + μ)(ηu + μ)(κ∗ + μ) 
. (7) 

Plugging the above expression (7) into the Eq. (6) , we obtain

he nonzero equilibrium of the system (1) satisfying the linear

quation, in terms of κ∗ as follows: 

1 κ
∗ + ϒ2 = 0 , (8) 

here 

1 = (ηi + μ)(ηu + μ) + q i γa (ηu + μ) + (1 − q i ) γa (ηi + μ) , 

2 = (γa + μ)(ηi + μ)(ηu + μ)(1 − R 0 ) . 

Clearly, ϒ1 > 0 as γa + μ > 0, ηi + μ > 0, and ηu + μ
 0, hence we can say that the system (1) has a unique positive

ndemic equilibrium point whenever R 0 > 1 and no positive equi-

ibrium point whenever R 0 < 1. 

heorem 3.6. The endemic equilibrium E ∗ of the system (1) is locally

symptotically stable if R > 1 . 
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Proof. Introducing x 1 = S(t) , x 2 = A (t) , x 3 = I(t) and x 4 = U(t) ,

then the system (1) becomes 

dx 1 
dt 

= �s − βs x 1 
N 

(αa x 2 + αu x 4 ) − μx 1 ≡ q 1 , 

dx 2 
dt 

= 

βs x 1 
N 

(αa x 2 + αu x 4 ) − γa x 2 − μx 2 ≡ q 2 , 

dx 3 
dt 

= q i γa x 2 − ηi x 3 − μx 3 ≡ q 3 , (9)

dx 4 
dt 

= (1 − q i ) γa x 2 − ηu x 4 − μx 4 ≡ q 4 , 

with R 0 = 1 , and choosing the bifurcation parameter βs . 

The Jacobian matrix of the system (9) around the disease free

equilibrium E 0 at the threshold point βs = β∗
s = 

(γa + μ)(ηu + μ) 
(ηu + μ) αa + αu (1 −q i ) γa 

is given by 

J ∗E 0 = 

⎛ ⎜ ⎝ 

−μ −β∗
s αa 0 −β∗

s αu 

0 β∗
s αa − (γa + μ) 0 β∗

s αu 

0 q i γa −(ηi + μ) 0 

0 (1 − q i ) γa 0 −(ηu + μ) 

⎞ ⎟ ⎠ 

. 

The eigenvalues of the J ∗
E 0 

are −μ, −(ηu + μ) , (2 μ + γa + γu −
β∗

s αa ) and 0. Here 0 is the simple eigenvalue of J ∗
E 0 

and the others

eigenvalues have negative real parts. Hence, the Center Manifold

Theorem can be applied and we get a right eigenvector and a left

eigenvector corresponding to the zero-eigenvalue is given by 

v = 

[ 
− R 0 

(
1 + 

γa 

μ

)
1 

q i γa 

ηi + μ

(1 − q i ) γa 

ηu + μ

] 
T v 2 , 

and 

u = 

[ 
0 1 0 

β∗
s αu 

ηu + μ

] 
u 2 .s 

Hence, we have 

a = 

4 ∑ 

k,i, j=1 

u k v i v j 
[ 

∂ 2 q k 
∂x i ∂x j 

(E 0 ) 
] 

and b = 

4 ∑ 

k,i =1 

u k v i 
[ 

∂ 2 q k 
∂x i ∂β∗

s 

(E 0 ) 
] 
, 

whose sign determined the local stability criteria of the endemic

equilibrium point E ∗. Substituting the values of all second-order

derivatives measured at DFE, E 0 is given by 

a = 2 

[ 
v 1 v 2 

∂ 2 q 2 
∂x 1 ∂x 2 

+ v 1 v 4 
∂ 2 q 2 

∂x 1 ∂x 4 

] 
u 2 , 

= −2 R 0 

(
1 + 

γa 

μ

)[ 
β∗

s αa + 

γa (1 − q i ) 

ηu + μ

] 
u 2 v 2 < 0 , 

and 

b = 

[ 
v 2 

∂ 2 q 2 
∂ x 2 ∂ β∗

s 

+ v 4 
∂ 2 q 2 

∂ x 4 ∂ β∗
s 

] 
u 2 , 

= 

R 0 (γa + μ) 

β∗
s 

x 1 u 2 v 2 > 0 . 

Therefore, a < 0 and b > 0 at βs = β∗
s , a transcritical bifurcation

occurs at R 0 = 1 and unique endemic equilibrium is locally asymp-

totically stable for R 0 > 1. �

3.8. Global stability of endemic equilibrium point 

This subsection is dealing with the global stability of an unique

endemic equilibrium point E ∗ with the condition R 0 > 1. In or-

der to show that, we use the Lyapunov functional similar to the

Eq. (5) and such Lyapunov functional take advantages of all the

properties of the function. Now, we prove the following result. 

Theorem 3.7. The endemic equilibrium point E ∗ of the system (1) is

exists and globally asymptotically stable if R > 1 . 
0 
roof. Let us assume that E ∗ exists and the following function is

ell defined in R 

4 + . Now, we consider the following Lyapunov func-

ional [33] as 

 E ∗ (S, A, I, U) = S ∗r 

(
S 

S ∗

)
+ A 

∗r 

(
A 

A 

∗

)
+ I ∗r 

(
I 

I ∗

)
+ U 

∗r 

(
U 

U 

∗

)
. 

We need to show that ˙ V E ∗ is negative definite. Differentiating

 E ∗ along the solution trajectories of the system (1) , we get 

˙ 
 E ∗ = 

(
1 − S ∗

S 

)
˙ S + 

(
1 − A ∗

A 

)
˙ A + 

(
1 − I ∗

I 

)
˙ I + 

(
1 − U ∗

U 

)
˙ U 

= 

(
1 − S ∗

S 

)(
�s − βs S 

N 

(αa A + αu U) − μS 

)
+ 

(
1 − A ∗

A 

)(
βs S 

N 

(αa A + αu U) 

−(γa + μ) A 
)

+ 

(
1 − I ∗

I 

)(
q i γa A − (ηi + μ) I 

)
+ 

(
1 − U ∗

U 

)(
γa (1 − q i ) A − (ηu + μ) U 

)
, 

= �s − βs S 

N 

(αa A + αu U) − μS − �s 
S ∗

S 
+ βs αa 

S ∗A 

N 

+ βs αu 
S ∗U 

N 

+ μS ∗

+ 

βs S 

N 

(αa A + αu U) − (γa + μ) A − βs αa 
SA ∗

N 

− βs αu 
SA ∗U 

NA 
+ (γa + μ) A ∗

+ q i γa A − (ηi + μ) I − q i γa 
AI ∗

I 
+ (ηi + μ) I ∗ + (1 − q i ) γa A − (ηu + μ) U 

−(1 − q i ) γa 
AU ∗

U 
+ (ηu + μ) U ∗, 

= βs αa 
S ∗A ∗

N 

+ βs αu 
S ∗U ∗

N 

+ μS ∗ − βs S 

N 

(αa A + αu U) − μS 

− S ∗

S 

(
βs αa 

S ∗A ∗

N 

+ βs αu 
S ∗U ∗

N 

+ μS ∗
)

+ βs αa 
S ∗A 

N 

+ βs αu 
S ∗U 

N 

+ μS ∗

+ 

βs S 

N 

(αa A + αu U) − (γa + μ) A − βs αa 
SA ∗

N 

− βs αu 
SA ∗U 

N 

+ (γa + μ) A ∗

+ q i γa A − q i γa 
I 

I ∗
− q i γa 

A ∗I 

I ∗
+ q i γa A 

∗ + (1 − q i ) γa A − (1 − q i ) γa 
A ∗U 

U ∗

−(1 − q i ) γa 
AU ∗

U 
+ (1 − q i ) γa A 

∗, 

= 2 βs αa 
S ∗A ∗

N 

+ 2 βs αu 
S ∗U 

∗

N 

+ 2 μS ∗ − S ∗

S 

(
βs αa 

S ∗A ∗

N 

+ βs αu 
S ∗U 

∗

N 

+ μS ∗
)

+ βs αa 
S ∗A 

N 

+ βs αu 
S ∗U 

N 

− (γa + μ) A − βs αa 
SA ∗

N 

− βs αu 
SUA ∗

NA 
+ γa 

+ γa A 
∗ − q i γa 

I 

I ∗
− q i γa 

A ∗I 

I ∗
− (1 − q i ) γa 

A ∗U 

U 

∗ − (1 − q i ) γa 
AU 

∗

U 

, 

= 

(
μS ∗ + βs αa 

S ∗A ∗

N 

)(
2 − S ∗

S 
− S 

S ∗

)
+ 

(
βs αu 

S ∗U 

∗

N 

)(
2 − S ∗

S 
− SU 

S ∗U 

∗

)
+ βs αa 

S ∗A 

N 

+ βs αu 
S ∗U 

N 

− γa A − q i γa 
I 

I ∗
− q i γa 

A ∗I 

I ∗
− (1 − q i ) γa 

A ∗U 

U 

∗

−(1 − q i ) γa 
AU 

∗

U 

. 

Considering the relation of arithmetic means and geometric

eans, we ensure that ˙ V E ∗ ≤ 0 and holds the equality only at E ∗.

ence, the endemic equilibrium point E ∗ is globally asymptotically

table. �

. Sensitivity analysis 

To determine how best to decrease human impermanence and

orbidity due to COVID-19, it is essential to understand the rela-

ive importance of the various factors responsible for its transmis-

ion. Initial disease transmission is directly associated to the ba-

ic reproduction number R 0 . We compute the sensitivity indices of

he basic reproductive number R 0 to the parameters in the model.

hese indices allow us how - important each parameter is to dis-

ase transmission. Sensitivity analysis is mainly utilized to describe

he robustness of model forecasting to the parameter values (since
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here are usually errors in the collection of data and presumed

odel parameter values) [34] . Here, we perform a sensitivity anal-

sis of the basic reproductive number R 0 to quantify the fluctua-

ions in the SAIU model parameters. Now from this, we can iden-

ify the parameters that have a high impact on the basic repro-

uction number as well as on the disease transmission. Sensitivity

ndices permit us to quantify the relative change in a state variable

hen a parameter alters. The normalized forward sensitivity index

f a variable to a parameter is the ratio of the relative change in

he variable to the relative change in the parameter. The normal-

zed forward sensitivity index of R 0 with a parameter αu is defined

s follows: 

R 0 
αu 

= 

∂ R 0 

∂ αu 
× αu 

R 0 

. 

Similarly, for other parameter values we can calculate the sen-

itivity indices of R 0 for the explicit expression for the basic repro-

uction number. As for example, the sensitivity indices of R 0 with

espect to βs is given by 

R 0 
βs 

= 

∂ R 0 

∂ βs 
× βs 

R 0 

= 1 . 

It can be noted that sensitivity indices may depend on several

arameters for the SAIU system, but also can be constant, inde-

endent of any parameters. As for example, �
R 0 
βs 

= +1 describes

hat increasing (decreasing) βs by a given percentage increases

decreases) always R 0 by that same percentage. We perform the

ensitivity analysis for the parameters with effective care, since a

mall perturbation in such parameter leads to relevant quantitative

hanges. On the other hand, the estimation of a parameter with a

ather small value for the sensitivity indices does not require much

ttention to estimate, because a small perturbation in that param-

ter leads to small changes. 

From the Table 2 and the Fig. 5 , we can observe that the most

ensitive parameters to the basic reproduction number R 0 for the

AIU model system (1) are βs , μ and αu . More precisely, an in-

rease of the value of αu will increase the basic reproduction num-

er R 0 by 77.65% and this happens, in a similar way, for the param-

ter αa . In contrast, an increase of the value of μ will decrease the

asic reproduction number R 0 by 60.60%. 

. Numerical simulations 

We have calibrated our SAIU model system (1) for the novel

oronavirus diseases to the daily new infected cases for the Re-

ublic of India. The data are collected from daily new infected

ases and confirmed cumulative cases for India for the time pe-

iod January 30, 2020 to April 30, 2020 from the WHO website

36] . In order to fit the data we use ODE45 in MATLAB and es-

imate the parameter values that give the best fit for our SAIU

odel. The proposed SAIU model system (1) has 9 nonnegative

arameter values among which, we have estimated 6 parameters,

amely βs (probability rate of disease transmission), αa (adjust-

ent factor for asymptomatic individuals), αu (adjustment factor

or reported symptomatic infected individuals), γ a (transition rate

rom asymptomatic to symptomatic infected individuals), ηi (aver-

ge time reported symptomatic infectious have symptoms) and ηu 

average time unreported symptomatic infectious have symptoms)

ased on the sensitivity analysis [35] . To minimize the errors we

t the curve for daily confirmed cases and cumulative confirmed

ases, which has been shown in the Fig. 2 and the initial popu-

ation sizes are given in the figure caption. The parameter values

or our SAIU model (1) corresponding to the best fit curve for In-

ia are listed in the Table 1 , which can be used further to make

redictions and simulations of our model. 
For the set of parameter values listed in the Table 1 , we draw

 surface plot for the basic reproduction number R 0 with respect

o the disease transmission coefficient βs and the transition rate

a from asymptotic individuals to symptomatic individuals. For the

asic reproduction number R 0 = 

βs 
γa + μ

(
αa + 

αu γa (1 −q i ) 
ηu + μ

)
, we com-

ute the followings: 

dR 0 

dβs 
= 

1 

γa + μ

(
αa + 

αu γa (1 − q i ) 

ηu + μ

)
, 

dR 0 

dγa 
= 

βs (αu μ(1 − q i ) − αa (μ + ηu )) 

(γa + μ) 2 (ηu + μ) 
. 

From the above expressions, we note that 
dR 0 
dβs 

is always posi-

ive and 

dR 0 
dγa 

becomes negative if 
αu (1 −q i ) 

αa 
< 1 + 

ηu 
μ . For the listed

arameters in the Table 1 , we have seen that 
dR 0 
dγa 

is negative. As

he transmission coefficient βs increases, R 0 will increase and cross

he threshold R 0 = 1 , thus leading to the outbreak of the coron-

virus diseases. In the Fig. 3 , the red surface indicates the thresh-

ld R 0 = 1 . Moreover, when the transition rate γ a of asymptotic

ndividuals to symptomatic individuals increases, R 0 will decrease

nd if R 0 goes below 1, the coronavirus will die out and the pop-

lation will be free from COVID-19 or SARS-CoV-2. In the Fig. 3 ,

he magenta surface indicates the threshold R 0 = 2 . Therefore, our

odel simulation reveals that the transition rate γ a aid in helping

o eradicate the coronavirus diseases by reducing the basic repro-

uction number R 0 . Also, we can control the reproduction R 0 by

educing the transmission coefficient βs . The parameter values ob-

ained from data fit for India as are listed in the Table 1 , we com-

ute R 0 = 1 . 6632 , which indicates that the coronavirus diseases

pread throughout the India, if we not take preventive measures

ike social distancing, frequently wash hand by sanitizer etc. 

For the estimated parameter values in the Table 1 , our model

redicts that there will be a high peak for the coronavirus diseases

round 60 days and after that the peak will be decreased and the

urve become plateau (see the Fig. 4 for model prediction). But, the

ovel coronavirus will persists among the people for a long days.

t is extremely difficult to predict the end date of the coronavirus

iseases. Thus, we always have to maintain social distancing like

ockdown, extension of closing schools and colleges, stop cultural

vents, bar and shopping mall etc. The SAIU model is concise in

ramework, and it fortunately captures the course of the COVID-

9 or SARS-CoV-2 epidemic, and thus sheds light in understanding

he trends of the epidemic. 

In order to control the COVID-19, we must have to control the

hreshold level of R 0 . Thus, we plot the sensitivity indices in the

ig. 5 to understand the most sensitive parameters with respect to

 0 . From the Fig. 5 and the Table 2 , we can see that the parame-

ers βs (disease transmission coefficient), αa (adjustment factor for

symptomatic individuals), and αu (adjustment factor for reported

ymptomatic infected individuals) have positively correlated sensi-

ivity indices and the parameters μ (natural mortality rate of en-

ire individuals due to COVID-19 deaths), γ a (transition rate from

symptomatic individuals to symptomatic individuals), ηu (average

ime for the unreported individuals have symptoms) and q i (frac-

ion of asymptomatic infected individuals become reported symp-

omatic individuals) have negatively correlated sensitivity indices.

herefore, the sensitivity graph is very useful to control the basic

eproduction number R 0 . 

In addition, we draw the contour plots for the basic reproduc-

ion number R 0 with respect to the parameters βs versus αu , αa ,

a and q i for the SAIU model (1) to study the influence of the con-

rol parameters in controlling the reproduction number R 0 . From

he Fig. 6 ((a), (b)), it can be observed that R 0 increases remark-

bly for increasing the value of αa , αu and βs . We can notice from

he Fig. 6 (c), that R increases for increasing the value of βs and
0 
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Fig. 2. The figures shows the model fitting of daily reported symptomatic infectious individuals (upper panel) and the reported cumulated symptomatic infectious individuals 

(lower panel) for the SARS-CoV-2 or COVID-19 pandemic in India. The epidemic turning point of the daily reported symptomatic and cumulated cases data from January 30, 

2020 to April 30, 2020 (day 1 = January 30, 2020). The observed data points are shown in the red circle and the solid blue line portrays the model simulations. We use the 

initial size of the population S 0 = 100 , A 0 = 10 , I 0 = 1 , U 0 = 5 and t 0 = 1 . 0 . 

Fig. 3. The figure shows the basic reproduction number R 0 when βs (probability of disease transmission rate) and γ a (rate of transition from asymptomatic to symptomatic 

infectious class) varies. The other parameter values are listed in the Table 1 . 

Table 1 

Table of biologically relevant parameter values and their interpretation for the SAIU model (1) of COVID-19. 

Symbol Interpretation Values (Unit) Source 

�s = μ × N(0) net inflow of susceptible individuals − −
β s probability of disease transmission rate 0.274 day −1 Estimated 

αa modification factor for asymptomatic individuals 0.4775 Estimated 

αu modification factor for reported symptomatic class 0.695 Estimated 

μ natural death rate for all the individuals 0.062 day −1 [20] 

γ a rate of transition from asymptomatic to symptomatic class 0.29 day −1 Estimated 

q i fraction of asymptomatic infectious become reported symptomatic infectious 0.078 Assumed 
1 
ηi 

average time reported symptomatic individuals have symptoms 0.009 day −1 Estimated 
1 
ηu 

average time unreported symptomatic individuals have symptoms 0.05 day −1 Estimated 

N total number of individuals 1,352,642,280 [37] 
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Table 2 

Sensitivity indices of the basic reproduction number R 0 to parameters for the SAIU COVID-19 model, 

evaluated at the baseline parameter values listed in the Table 1 . 

Parameters βs μ γ a αa ηu αu q i 

Values 1.000 − 0.6060 −0.18464 0.22348 −0.34666 0.77652 −0.06474 

Fig. 4. The figures shows the prediction of our SAIU model (1) for the Republic of India. Here, �s = 2500 , q i = 0 . 58 and the initial values are S 0 = 40 0 0 , A 0 = 30 0 0 , I 0 = 10 , 

U 0 = 10 0 0 rest of the parameter values are listed in the Table 1 . The model simulation demonstrates that about 60 days the peak will be higher for the COVID-19 in India 

and after that the curve will be flatten but the coronavirus diseases will be continued for a long-time with lesser magnitude. 

Fig. 5. The figure shows the sensitivity indices of the basic reproduction number 

R 0 with respect to the each of the system parameters related to R 0 for the SAIU 

model system (1) . The baseline parameter values are taken from the Table 1 . The 

simulation exhibits that the most influential parameter is the probability of disease 

transmission rate ( βs ), and the least influential parameter is the fraction of asymp- 

tomatic infected individuals become reported symptomatic infected individuals at 

the rate q i . The list of sensitivity indices are given in the Table 2 . 
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a but not like Fig. 6 ((a), (b)). Interestingly, the value of R 0 can be

ontrolled by increasing the value of q i (see the Fig. 6 (d)). Thus,

e may conclude that the threshold parameter R 0 is highly effec-

ive with respect to the parameters who have highly negatively

orrelated sensitivity indices. For all the sub-plots of the Fig. 6 ,

t can be noticed that the reproduction number R 0 is always in-

reased for increasing values for βs . Thus, to eliminate the coron-

virus diseases we must reduce the disease transmission rate and

he disease transmission rate can be reduced by controlling βs .
ow, we may conclude that the social distancing is the main non-

harmaceutical measure to end the novel coronavirus. 

. Discussion 

The reported cases of COVID-19 are rising throughout the world

nd the human-to-human transmission of coronavirus diseases is

lready established, thus predicting is the highest priority for the

ontrol and management the diseases with limited resource. In our

tudy, we proposed and analyzed the SAIU model to study the

ransmission dynamics of COVID-19 based on the accessible data

36] for India during the time period January 30, 2020 to April

0, 2020. Based on the estimated data our SAIU model predict the

utbreak of COVID-19 or SARS-CoV-2 virus. We compute the ba-

ic reproduction number R 0 , which can be used further for model

imulation and predictions. 

We studied the SAIU model for COVID-19 assessing the sensi-

ivity indices of the basic reproductive number R 0 , as R 0 quantifies

he initial disease transmission and the sensitivity indices allow us

o describe the relative importance of various parameters in coro-

avirus transmission. We perform the local and global asymptotic

tability analysis for the infection free equilibrium point E 0 in case

f R 0 < 1. Furthermore, the SAIU model showed the persistence of

iseases for R 0 > 1. The endemic equilibrium point E ∗ is locally

symptotically stable for R 0 > 1. Constructing suitable Lyapunov

unction followed by Korobeinikov & Maini [28] , we showed that

he our SAIU model is globally asymptotically stable for R 0 > 1.

heoretically, we showed that at R 0 = 1 , our SAIU model under-

oes transcritical bifurcation. 

We calibrated our proposed SAIU model to fit with daily and

umulative confirmed cases of India. For the estimated parame-

er values, we obtained R = 1 . 6632 , which shows the substantial
0 
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Fig. 6. Contour plots for the SAIU model system (1) . Contour plots of basic reproduction number R 0 with respect to the most effective parameters, βs (probability of disease 

transmission) versus (a) modification factor for the reported symptomatic infected individuals ( αu ), (b) modification factor for the asymptomatic infected individuals ( αa ), 

(c) transition rate ( γ a ) from asymptomatic individuals to symptomatic infected individuals, and (d) a portion of pre-symptomatic infected individuals become symptomatic 

infected individuals at the rate q i . All the parameter values are listed in the Table 1 except the varied parameters. 
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outbreak of novel coronavirus in India. The reproduction number

R 0 can be controlled by reducing the disease transmission rate βs 

and by increasing the quantity q i also by increasing the adjust-

ment factors αa and αu , which has been shown by contour plot

in the Fig. 6 . This indicates that the elimination of COVID-19 is

possible by maintaining the social distances like contact tracing,

lockdown and use precautionary measures. Also, the policymakers

as well as the health care agencies should concentrate on success-

ful implementation of control mechanisms to minimize the bur-

den of the coronavirus diseases. Our model simulations nicely cap-

ture the increasing trend of the course of the COVID-19 epidemic

(see the Fig. 2 ). Sensitivity indices reveal that the disease transmis-

sion rate βs is positively correlated and the proportion rate q i of

asymptomatic infected population reported symptomatic infected

individuals negatively correlated with respect to the reproduction

number R 0 . This implies that increasing q i and decreasing the dis-

ease transmission rate βs will decrease the reproduction number

R 0 and consequently will reduce the disease burden. While inves-

tigating the contour plots (see Fig. 6 ), it can be seen that effective

management of disease transmission rate βs is more influential to

mitigate the reproduction number R 0 below 1. 

Based on the estimated data, our SAIU model predict that there

will be a highest peak around 60 days if human-to-human trans-

mission and the personal preventive measures continue with the

existing rates. Around 60 days later the peak will be decreased but

the CODIV-19 disease will persist for a long time. In absence of any

pharmaceutical measures, the public must have to obey the gov-

ernment rules or public health care policies to mitigate the spread

of novel coronavirus. It is really difficult to predict the outbreak

of COVID-19 in India and throughout the world. In order to get

more accurate prediction, we need to get more accurate data. It

is worthy to mention that the researchers are working for thera-
 1
eutics or vaccine to eliminate novel coronavirus and the presence

f such pharmaceutical interventions will remarkably change the

utcomes. 
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