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SUMMARY In recent decades, several new diseases have emerged in different geo-
graphical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and
coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City,
China, and initial genomic sequencing data of this virus do not match with previ-
ously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now
been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coro-
navirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoo-
notic origin) followed by human-to-human transmission, the possibility of other
routes should not be ruled out. Compared to diseases caused by previously known
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human CoVs, COVID-19 shows less severe pathogenesis but higher transmission
competence, as is evident from the continuously increasing number of confirmed
cases globally. Compared to other emerging viruses, such as Ebola virus, avian
H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV),
SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility.
Codon usage studies suggest that this novel virus has been transferred from an
animal source, such as bats. Early diagnosis by real-time PCR and next-
generation sequencing has facilitated the identification of the pathogen at an
early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-
CoV-2, potential therapeutic strategies that are currently being evaluated pre-
dominantly stem from previous experience with treating SARS-CoV, MERS-CoV,
and other emerging viral diseases. In this review, we address epidemiological, di-
agnostic, clinical, and therapeutic aspects, including perspectives of vaccines and
preventive measures that have already been globally recommended to counter
this pandemic virus.

KEYWORDS COVID-19, emerging coronavirus, SARS-CoV-2, diagnosis, One Health,
therapy, vaccines

INTRODUCTION

Over the past 2 decades, coronaviruses (CoVs) have been associated with significant
disease outbreaks in East Asia and the Middle East. The severe acute respiratory

syndrome (SARS) and the Middle East respiratory syndrome (MERS) began to emerge in
2002 and 2012, respectively. Recently, a novel coronavirus, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19),
emerged in late 2019, and it has posed a global health threat, causing an ongoing
pandemic in many countries and territories (1).

Health workers worldwide are currently making efforts to control further disease
outbreaks caused by the novel CoV (originally named 2019-nCoV), which was first
identified in Wuhan City, Hubei Province, China, on 12 December 2019. On 11 February
2020, the World Health Organization (WHO) announced the official designation for the
current CoV-associated disease to be COVID-19, caused by SARS-CoV-2. The primary
cluster of patients was found to be connected with the Huanan South China Seafood
Market in Wuhan (2). CoVs belong to the family Coronaviridae (subfamily Coronavirinae),
the members of which infect a broad range of hosts, producing symptoms and diseases
ranging from the common cold to severe and ultimately fatal illnesses, such as SARS,
MERS, and, presently, COVID-19. SARS-CoV-2 is considered one of the seven members
of the CoV family that infect humans (3), and it belongs to the same lineage of CoVs
that causes SARS; however, this novel virus is genetically distinct. Until 2020, six CoVs
were known to infect humans, including human CoV 229E (HCoV-229E), HCoV-NL63,
HCoV-OC43, HCoV-HKU1, SARS-CoV, and MERS-CoV. Although SARS-CoV and MERS-
CoV have resulted in outbreaks with high mortality, others remain associated with mild
upper-respiratory-tract illnesses (4).

Newly evolved CoVs pose a high threat to global public health. The current
emergence of COVID-19 is the third CoV outbreak in humans over the past 2 decades
(5). It is no coincidence that Fan et al. predicted potential SARS- or MERS-like CoV
outbreaks in China following pathogen transmission from bats (6). COVID-19 emerged
in China and spread rapidly throughout the country and, subsequently, to other
countries. Due to the severity of this outbreak and the potential of spreading on an
international scale, the WHO declared a global health emergency on 31 January 2020;
subsequently, on 11 March 2020, they declared it a pandemic situation. At present, we
are not in a position to effectively treat COVID-19, since neither approved vaccines nor
specific antiviral drugs for treating human CoV infections are available (7–9). Most
nations are currently making efforts to prevent the further spreading of this potentially
deadly virus by implementing preventive and control strategies.

In domestic animals, infections with CoVs are associated with a broad spectrum of
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pathological conditions. Apart from infectious bronchitis virus, canine respiratory CoV,
and mouse hepatitis virus, CoVs are predominantly associated with gastrointestinal
diseases (10). The emergence of novel CoVs may have become possible because of
multiple CoVs being maintained in their natural host, which could have favored the
probability of genetic recombination (10). High genetic diversity and the ability to
infect multiple host species are a result of high-frequency mutations in CoVs, which
occur due to the instability of RNA-dependent RNA polymerases along with higher
rates of homologous RNA recombination (10, 11). Identifying the origin of SARS-CoV-2
and the pathogen’s evolution will be helpful for disease surveillance (12), development
of new targeted drugs, and prevention of further epidemics (13). The most common
symptoms associated with COVID-19 are fever, cough, dyspnea, expectoration, head-
ache, and myalgia or fatigue.

In contrast, less common signs at the time of hospital admission include diarrhea,
hemoptysis, and shortness of breath (14). Recently, individuals with asymptomatic
infections were also suspected of transmitting infections, which further adds to the
complexity of disease transmission dynamics in COVID-19 infections (1). Such efficient
responses require in-depth knowledge regarding the virus, which currently is a novel
agent; consequently, further studies are required.

Comparing the genome of SARS-CoV-2 with that of the closely related SARS/SARS-
like CoV revealed that the sequence coding for the spike protein, with a total length of
1,273 amino acids, showed 27 amino acid substitutions. Six of these substitutions are
in the region of the receptor-binding domain (RBD), and another six substitutions are
in the underpinning subdomain (SD) (16). Phylogenetic analyses have revealed that
SARS-CoV-2 is closely related (88% similarity) to two SARS-like CoVs derived from bat
SARS-like CoVs (bat-SL-CoVZC45 and bat-SL-CoVZXC21) (Fig. 1). Furthermore, SARS-
CoV-2 is genetically distinct from SARS-CoV (79% similarity) and MERS-CoV (nearly 50%)
(17). COVID-19 is associated with afflictions of the lungs in all cases and generated
characteristic chest computer tomography findings, such as the presence of multiple
lesions in lung lobes that appear as dense, ground-glass opaque structures that
occasionally coexist with consolidation shadows (18).

Some therapeutic options for treating COVID-19 showed efficacy in in vitro studies;
however, to date, these treatments have not undergone any randomized animal or
human clinical trials, which limit their practical applicability in the current pandemic
(7, 9, 19–21).

The present comprehensive review describes the various features of SARS-CoV-2/
COVID-19 causing the current disease outbreaks and advances in diagnosis and devel-
oping vaccines and therapeutics. It also provides a brief comparison with the earlier
SARS and MERS CoVs, the veterinary perspective of CoVs and this emerging novel
pathogen, and an evaluation of the zoonotic potential of similar CoVs to provide
feasible One Health strategies for the management of this fatal virus (22–367).

THE VIRUS (SARS-CoV-2)

Coronaviruses are positive-sense RNA viruses having an extensive and promiscuous
range of natural hosts and affect multiple systems (23, 24). Coronaviruses can cause
clinical diseases in humans that may extend from the common cold to more severe
respiratory diseases like SARS and MERS (17, 279). The recently emerging SARS-CoV-2
has wrought havoc in China and caused a pandemic situation in the worldwide
population, leading to disease outbreaks that have not been controlled to date,
although extensive efforts are being put in place to counter this virus (25). This virus has
been proposed to be designated/named severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses (ICTV),
which determined the virus belongs to the Severe acute respiratory syndrome-related
coronavirus category and found this virus is related to SARS-CoVs (26). SARS-CoV-2 is a
member of the order Nidovirales, family Coronaviridae, subfamily Orthocoronavirinae,
which is subdivided into four genera, viz., Alphacoronavirus, Betacoronavirus, Gamma-
coronavirus, and Deltacoronavirus (3, 27). The genera Alphacoronavirus and Betacoro-
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FIG 1 S-gene SplitsTree analysis. Shown is the spike (S) glycoprotein gene-based phylogenetic analysis (SplitsTree 4.0) of SAR-CoV-2 isolates (39
isolates). The SARS-CoV-2 isolates were analyzed with related CoVs from past human outbreaks and of animal origin, including MERS-CoV, bovine
coronavirus, canine coronavirus, bat coronaviruses, bat-SL-SARS-CoV, and equine CoV. The analysis includes all five defined subgenera of Betacoro-
naviruses, namely, Sarbecovirus, Embecovirus, Merbecovirus, Nobecovirus, and Hibecovirus. The isolates in the gray area are from the current outbreak
of SARS-CoV-2 from around the world. The nearest neighbors of SARS-CoV-2 are the bat-SL-CoV, encircled in yellow.
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navirus originate from bats, while Gammacoronavirus and Deltacoronavirus have
evolved from bird and swine gene pools (24, 28, 29, 275).

Coronaviruses possess an unsegmented, single-stranded, positive-sense RNA ge-
nome of around 30 kb, enclosed by a 5=-cap and 3=-poly(A) tail (30). The genome of
SARS-CoV-2 is 29,891 bp long, with a G�C content of 38% (31). These viruses are
encircled with an envelope containing viral nucleocapsid. The nucleocapsids in CoVs
are arranged in helical symmetry, which reflects an atypical attribute in positive-sense
RNA viruses (30). The electron micrographs of SARS-CoV-2 revealed a diverging spher-
ical outline with some degree of pleomorphism, virion diameters varying from 60 to
140 nm, and distinct spikes of 9 to 12 nm, giving the virus the appearance of a solar
corona (3). The CoV genome is arranged linearly as 5=-leader-UTR-replicase-structural
genes (S-E-M-N)-3= UTR-poly(A) (32). Accessory genes, such as 3a/b, 4a/b, and the
hemagglutinin-esterase gene (HE), are also seen intermingled with the structural genes
(30). SARS-CoV-2 has also been found to be arranged similarly and encodes several
accessory proteins, although it lacks the HE, which is characteristic of some betacoro-
naviruses (31). The positive-sense genome of CoVs serves as the mRNA and is translated
to polyprotein 1a/1ab (pp1a/1ab) (33). A replication-transcription complex (RTC) is
formed in double-membrane vesicles (DMVs) by nonstructural proteins (nsps), encoded
by the polyprotein gene (34). Subsequently, the RTC synthesizes a nested set of
subgenomic RNAs (sgRNAs) via discontinuous transcription (35).

Based on molecular characterization, SARS-CoV-2 is considered a new Betacorona-
virus belonging to the subgenus Sarbecovirus (3). A few other critical zoonotic viruses
(MERS-related CoV and SARS-related CoV) belong to the same genus. However, SARS-
CoV-2 was identified as a distinct virus based on the percent identity with other
Betacoronavirus; conserved open reading frame 1a/b (ORF1a/b) is below 90% identity
(3). An overall 80% nucleotide identity was observed between SARS-CoV-2 and the
original SARS-CoV, along with 89% identity with ZC45 and ZXC21 SARS-related CoVs of
bats (2, 31, 36). In addition, 82% identity has been observed between SARS-CoV-2 and
human SARS-CoV Tor2 and human SARS-CoV BJ01 2003 (31). A sequence identity of
only 51.8% was observed between MERS-related CoV and the recently emerged
SARS-CoV-2 (37). Phylogenetic analysis of the structural genes also revealed that
SARS-CoV-2 is closer to bat SARS-related CoV. Therefore, SARS-CoV-2 might have
originated from bats, while other amplifier hosts might have played a role in disease
transmission to humans (31). Of note, the other two zoonotic CoVs (MERS-related CoV
and SARS-related CoV) also originated from bats (38, 39). Nevertheless, for SARS and
MERS, civet cat and camels, respectively, act as amplifier hosts (40, 41).

Coronavirus genomes and subgenomes encode six ORFs (31). The majority of the 5=
end is occupied by ORF1a/b, which produces 16 nsps. The two polyproteins, pp1a and
pp1ab, are initially produced from ORF1a/b by a �1 frameshift between ORF1a and
ORF1b (32). The virus-encoded proteases cleave polyproteins into individual nsps (main
protease [Mpro], chymotrypsin-like protease [3CLpro], and papain-like proteases [PLPs])
(42). SARS-CoV-2 also encodes these nsps, and their functions have been elucidated
recently (31). Remarkably, a difference between SARS-CoV-2 and other CoVs is the
identification of a novel short putative protein within the ORF3 band, a secreted protein
with an alpha helix and beta-sheet with six strands encoded by ORF8 (31).

Coronaviruses encode four major structural proteins, namely, spike (S), membrane
(M), envelope (E), and nucleocapsid (N), which are described in detail below.

S Glycoprotein

Coronavirus S protein is a large, multifunctional class I viral transmembrane protein.
The size of this abundant S protein varies from 1,160 amino acids (IBV, infectious
bronchitis virus, in poultry) to 1,400 amino acids (FCoV, feline coronavirus) (43). It lies
in a trimer on the virion surface, giving the virion a corona or crown-like appearance.
Functionally it is required for the entry of the infectious virion particles into the cell
through interaction with various host cellular receptors (44).
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Furthermore, it acts as a critical factor for tissue tropism and the determination of
host range (45). Notably, S protein is one of the vital immunodominant proteins of CoVs
capable of inducing host immune responses (45). The ectodomains in all CoVs S
proteins have similar domain organizations, divided into two subunits, S1 and S2 (43).
The first one, S1, helps in host receptor binding, while the second one, S2, accounts for
fusion. The former (S1) is further divided into two subdomains, namely, the N-terminal
domain (NTD) and C-terminal domain (CTD). Both of these subdomains act as receptor-
binding domains, interacting efficiently with various host receptors (45). The S1 CTD
contains the receptor-binding motif (RBM). In each coronavirus spike protein, the
trimeric S1 locates itself on top of the trimeric S2 stalk (45). Recently, structural analyses
of the S proteins of COVID-19 have revealed 27 amino acid substitutions within a
1,273-amino-acid stretch (16). Six substitutions are located in the RBD (amino acids 357
to 528), while four substitutions are in the RBM at the CTD of the S1 domain (16). Of
note, no amino acid change is seen in the RBM, which binds directly to the angiotensin-
converting enzyme-2 (ACE2) receptor in SARS-CoV (16, 46). At present, the main
emphasis is knowing how many differences would be required to change the host
tropism. Sequence comparison revealed 17 nonsynonymous changes between the
early sequence of SARS-CoV-2 and the later isolates of SARS-CoV. The changes were
found scattered over the genome of the virus, with nine substitutions in ORF1ab, ORF8
(4 substitutions), the spike gene (3 substitutions), and ORF7a (single substitution) (4).
Notably, the same nonsynonymous changes were found in a familial cluster, indicating
that the viral evolution happened during person-to-person transmission (4, 47). Such
adaptive evolution events are frequent and constitute a constantly ongoing process
once the virus spreads among new hosts (47). Even though no functional changes
occur in the virus associated with this adaptive evolution, close monitoring of the viral
mutations that occur during subsequent human-to-human transmission is warranted.

M Protein

The M protein is the most abundant viral protein present in the virion particle, giving a
definite shape to the viral envelope (48). It binds to the nucleocapsid and acts as a central
organizer of coronavirus assembly (49). Coronavirus M proteins are highly diverse in amino
acid contents but maintain overall structural similarity within different genera (50). The M
protein has three transmembrane domains, flanked by a short amino terminus outside the
virion and a long carboxy terminus inside the virion (50). Overall, the viral scaffold is
maintained by M-M interaction. Of note, the M protein of SARS-CoV-2 does not have an
amino acid substitution compared to that of SARS-CoV (16).

E Protein

The coronavirus E protein is the most enigmatic and smallest of the major structural
proteins (51). It plays a multifunctional role in the pathogenesis, assembly, and release of
the virus (52). It is a small integral membrane polypeptide that acts as a viroporin (ion
channel) (53). The inactivation or absence of this protein is related to the altered virulence
of coronaviruses due to changes in morphology and tropism (54). The E protein consists of
three domains, namely, a short hydrophilic amino terminal, a large hydrophobic transmem-
brane domain, and an efficient C-terminal domain (51). The SARS-CoV-2 E protein reveals
a similar amino acid constitution without any substitution (16).

N Protein

The N protein of coronavirus is multipurpose. Among several functions, it plays a
role in complex formation with the viral genome, facilitates M protein interaction
needed during virion assembly, and enhances the transcription efficiency of the virus
(55, 56). It contains three highly conserved and distinct domains, namely, an NTD, an
RNA-binding domain or a linker region (LKR), and a CTD (57). The NTD binds with the
3= end of the viral genome, perhaps via electrostatic interactions, and is highly diverged
both in length and sequence (58). The charged LKR is serine and arginine rich and is
also known as the SR (serine and arginine) domain (59). The LKR is capable of direct
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interaction with in vitro RNA interaction and is responsible for cell signaling (60, 61). It
also modulates the antiviral response of the host by working as an antagonist for
interferon (IFN) and RNA interference (62). Compared to that of SARS-CoV, the N protein
of SARS-CoV-2 possess five amino acid mutations, where two are in the intrinsically
dispersed region (IDR; positions 25 and 26), one each in the NTD (position 103), LKR
(position 217), and CTD (position 334) (16).

nsps and Accessory Proteins

Besides the important structural proteins, the SARS-CoV-2 genome contains 15 nsps,
nsp1 to nsp10 and nsp12 to nsp16, and 8 accessory proteins (3a, 3b, p6, 7a, 7b, 8b, 9b,
and ORF14) (16). All these proteins play a specific role in viral replication (27). Unlike the
accessory proteins of SARS-CoV, SARS-CoV-2 does not contain 8a protein and has a
longer 8b and shorter 3b protein (16). The nsp7, nsp13, envelope, matrix, and p6 and
8b accessory proteins have not been detected with any amino acid substitutions
compared to the sequences of other coronaviruses (16).

The virus structure of SARS-CoV-2 is depicted in Fig. 2.

SARS-CoV-2 Spike Glycoprotein Gene Analysis
Sequence percent similarity analysis. We assessed the nucleotide percent similarity

using the MegAlign software program, where the similarity between the novel SARS-
CoV-2 isolates was in the range of 99.4% to 100%. Among the other Serbecovirus CoV
sequences, the novel SARS-CoV-2 sequences revealed the highest similarity to bat-SL-
CoV, with nucleotide percent identity ranges between 88.12 and 89.65%. Meanwhile,
earlier reported SARS-CoVs showed 70.6 to 74.9% similarity to SARS-CoV-2 at the
nucleotide level. Further, the nucleotide percent similarity was 55.4%, 45.5% to 47.9%,
46.2% to 46.6%, and 45.0% to 46.3% to the other four subgenera, namely, Hibecovirus,
Nobecovirus, Merbecovirus, and Embecovirus, respectively. The percent similarity index
of current outbreak isolates indicates a close relationship between SARS-CoV-2 isolates
and bat-SL-CoV, indicating a common origin. However, particular pieces of evidence
based on further complete genomic analysis of current isolates are necessary to draw
any conclusions, although it was ascertained that the current novel SARS-CoV-2 isolates
belong to the subgenus Sarbecovirus in the diverse range of betacoronaviruses. Their
possible ancestor was hypothesized to be from bat CoV strains, wherein bats might
have played a crucial role in harboring this class of viruses.

SplitsTree phylogeny analysis. In the unrooted phylogenetic tree of different
betacoronaviruses based on the S protein, virus sequences from different subgenera
grouped into separate clusters. SARS-CoV-2 sequences from Wuhan and other coun-
tries exhibited a close relationship and appeared in a single cluster (Fig. 1). The CoVs
from the subgenus Sarbecovirus appeared jointly in SplitsTree and divided into three
subclusters, namely, SARS-CoV-2, bat-SARS-like-CoV (bat-SL-CoV), and SARS-CoV
(Fig. 1). In the case of other subgenera, like Merbecovirus, all of the sequences grouped

FIG 2 SARS-CoV-2 virus structure.
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in a single cluster, whereas in Embecovirus, different species, comprised of canine
respiratory CoVs, bovine CoVs, equine CoVs, and human CoV strain (OC43), grouped in
a common cluster. Isolates in the subgenera Nobecovorus and Hibecovirus were found
to be placed separately away from other reported SARS-CoVs but shared a bat origin.

CURRENT WORLDWIDE SCENARIO OF SARS-CoV-2

This novel virus, SARS-CoV-2, comes under the subgenus Sarbecovirus of the Ortho-
coronavirinae subfamily and is entirely different from the viruses responsible for MERS-
CoV and SARS-CoV (3). The newly emerged SARS-CoV-2 is a group 2B coronavirus (2).
The genome sequences of SARS-CoV-2 obtained from patients share 79.5% sequence
similarity to the sequence of SARS-CoV (63).

As of 13 May 2020, a total of 4,170,424 confirmed cases of COVID-19 (with 287,399
deaths) have been reported in more than 210 affected countries worldwide (WHO
Situation Report 114 [25]) (Fig. 3).

Initially, the epicenter of the SARS-CoV-2 pandemic was China, which reported a
significant number of deaths associated with COVID-19, with 84,458 laboratory-
confirmed cases and 4,644 deaths as of 13 May 2020 (Fig. 4). As of 13 May 2020,
SARS-CoV-2 confirmed cases have been reported in more than 210 countries apart from
China (Fig. 3 and 4) (WHO Situation Report 114) (25, 64). COVID-19 has been reported
on all continents except Antarctica. For many weeks, Italy was the focus of concerns
regarding the large number of cases, with 221,216 cases and 30,911 deaths, but now,
the United States is the country with the largest number of cases, 1,322,054, and 79,634
deaths. Now, the United Kingdom has even more cases (226,4671) and deaths (32,692)

FIG 3 World map depicting the current scenario of COVID-19. Shown are countries, territories, or regions with reported confirmed cases of SARS-CoV-2 as of
13 May 2020. Different colors indicate different WHO designated geographical regions with the number of confirmed cases. The WHO region-wise total number
of confirmed cases is depicted in different color strips. The leading information on the confirmed cases and deaths from all six WHO designated regions are
depicted in circled balloons. The numbers of COVID-19 cases and fatalities on three major cruise ships are also depicted. (Based on data from the WHO
at https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200513-covid-19-sitrep-114.pdf?sfvrsn�17ebbbe_4; updated numbers of cases,
deaths, and patients recovered can be found at https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6.)
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than Italy. A John Hopkins University web platform has provided daily updates on the
basic epidemiology of the COVID-19 outbreak (https://gisanddata.maps.arcgis.com/
apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6) (238).

COVID-19 has also been confirmed on a cruise ship, named Diamond Princess,
quarantined in Japanese waters (Port of Yokohama), as well as on other cruise ships
around the world (239) (Fig. 3). The significant events of the SARS-CoV-2/COVID-19 virus
outbreak occurring since 8 December 2019 are presented as a timeline in Fig. 5.

At the beginning, China experienced the majority of the burden associated with
COVID-19 in the form of disease morbidity and mortality (65), but over time the
COVID-19 menace moved to Europe, particularly Italy and Spain, and now the United
States has the highest number of confirmed cases and deaths. The COVID-19 outbreak
has also been associated with severe economic impacts globally due to the sudden
interruption of global trade and supply chains that forced multinational companies to
make decisions that led to significant economic losses (66). The recent increase in the
number of confirmed critically ill patients with COVID-19 has already surpassed the
intensive care supplies, limiting intensive care services to only a small portion of
critically ill patients (67). This might also have contributed to the increased case fatality
rate observed in the COVID-19 outbreak.

Viewpoint on SARS-CoV-2 Transmission, Spread, and Emergence

The novel coronavirus was identified within 1 month (28 days) of the outbreak. This
is impressively fast compared to the time taken to identify SARS-CoV reported in
Foshan, Guangdong Province, China (125 days) (68). Immediately after the confirmation

FIG 4 Bar graph and pie chart for cases and deaths. Shown are laboratory-confirmed cases and deaths in China and the rest of the world
due to SARS-CoV-2. (A) SARS-CoV-2 confirmed cases in the top five affected countries from each WHO designated region, where maximum
casualties were reported to WHO until 13 May 2020. (B) Total numbers of deaths and cases in China only. (C) Total number of cases
worldwide by region.
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of viral etiology, the Chinese virologists rapidly released the genomic sequence of
SARS-CoV-2, which played a crucial role in controlling the spread of this newly emerged
novel coronavirus to other parts of the world (69). The possible origin of SARS-CoV-2
and the first mode of disease transmission are not yet identified (70). Analysis of the
initial cluster of infections suggests that the infected individuals had a common
exposure point, a seafood market in Wuhan, Hubei Province, China (Fig. 6). The
restaurants of this market are well-known for providing different types of wild animals
for human consumption (71). The Huanan South China Seafood Market also sells live
animals, such as poultry, bats, snakes, and marmots (72). This might be the point where
zoonotic (animal-to-human) transmission occurred (71). Although SARS-CoV-2 is al-
leged to have originated from an animal host (zoonotic origin) with further human-
to-human transmission (Fig. 6), the likelihood of foodborne transmission should be
ruled out with further investigations, since it is a latent possibility (1). Additionally, other

FIG 5 Timeline depicting the significant events that occurred during the SARS-CoV-2/COVID-19 virus outbreak. The timeline describes the significant events
during the current SARS-CoV-2 outbreak, from 8 December 2019 to 13 May 2020.

FIG 6 Potential transmission routes for SARS-CoV-2.

Dhama et al. Clinical Microbiology Reviews

October 2020 Volume 33 Issue 4 e00028-20 cmr.asm.org 10

https://cmr.asm.org


potential and expected routes would be associated with transmission, as in other
respiratory viruses, by direct contact, such as shaking contaminated hands, or by direct
contact with contaminated surfaces (Fig. 6). Still, whether blood transfusion and organ
transplantation (276), as well as transplacental and perinatal routes, are possible routes
for SARS-CoV-2 transmission needs to be determined (Fig. 6).

From experience with several outbreaks associated with known emerging viruses,
higher pathogenicity of a virus is often associated with lower transmissibility. Com-
pared to emerging viruses like Ebola virus, avian H7N9, SARS-CoV, and MERS-CoV,
SARS-CoV-2 has relatively lower pathogenicity and moderate transmissibility (15). The
risk of death among individuals infected with COVID-19 was calculated using the
infection fatality risk (IFR). The IFR was found to be in the range of 0.3% to 0.6%, which
is comparable to that of a previous Asian influenza pandemic (1957 to 1958) (73, 277).

Notably, the reanalysis of the COVID-19 pandemic curve from the initial cluster of
cases pointed to considerable human-to-human transmission. It is opined that the
exposure history of SARS-CoV-2 at the Wuhan seafood market originated from human-
to-human transmission rather than animal-to-human transmission (74); however, in
light of the zoonotic spillover in COVID-19, is too early to fully endorse this idea (1).
Following the initial infection, human-to-human transmission has been observed with
a preliminary reproduction number (R0) estimate of 1.4 to 2.5 (70, 75), and recently it
is estimated to be 2.24 to 3.58 (76). In another study, the average reproductive number
of COVID-19 was found to be 3.28, which is significantly higher than the initial WHO
estimate of 1.4 to 2.5 (77). It is too early to obtain the exact R0 value, since there is a
possibility of bias due to insufficient data. The higher R0 value is indicative of the more
significant potential of SARS-CoV-2 transmission in a susceptible population. This is not
the first time where the culinary practices of China have been blamed for the origin of
novel coronavirus infection in humans. Previously, the animals present in the live-
animal market were identified to be the intermediate hosts of the SARS outbreak in
China (78). Several wildlife species were found to harbor potentially evolving corona-
virus strains that can overcome the species barrier (79). One of the main principles of
Chinese food culture is that live-slaughtered animals are considered more nutritious (5).

After 4 months of struggle that lasted from December 2019 to March 2020, the
COVID-19 situation now seems under control in China. The wet animal markets have
reopened, and people have started buying bats, dogs, cats, birds, scorpions, badgers,
rabbits, pangolins (scaly anteaters), minks, soup from palm civet, ostriches, hamsters,
snapping turtles, ducks, fish, Siamese crocodiles, and other animal meats without any
fear of COVID-19. The Chinese government is encouraging people to feel they can
return to normalcy. However, this could be a risk, as it has been mentioned in advisories
that people should avoid contact with live-dead animals as much as possible, as
SARS-CoV-2 has shown zoonotic spillover. Additionally, we cannot rule out the possi-
bility of new mutations in the same virus being closely related to contact with both
animals and humans at the market (284). In January 2020, China imposed a temporary
ban on the sale of live-dead animals in wet markets. However, now hundreds of such
wet markets have been reopened without optimizing standard food safety and sani-
tation practices (286).

With China being the most populated country in the world and due to its domestic
and international food exportation policies, the whole world is now facing the menace
of COVID-19, including China itself. Wet markets of live-dead animals do not maintain
strict food hygienic practices. Fresh blood splashes are present everywhere, on the floor
and tabletops, and such food customs could encourage many pathogens to adapt,
mutate, and jump the species barrier. As a result, the whole world is suffering from
novel SARS-CoV-2, with more than 4,170,424 cases and 287,399 deaths across the
globe. There is an urgent need for a rational international campaign against the
unhealthy food practices of China to encourage the sellers to increase hygienic food
practices or close the crude live-dead animal wet markets. There is a need to modify
food policies at national and international levels to avoid further life threats and
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economic consequences from any emerging or reemerging pandemic due to close
animal-human interaction (285).

Even though individuals of all ages and sexes are susceptible to COVID-19, older
people with an underlying chronic disease are more likely to become severely infected
(80). Recently, individuals with asymptomatic infection were also found to act as a
source of infection to susceptible individuals (81). Both the asymptomatic and symp-
tomatic patients secrete similar viral loads, which indicates that the transmission
capacity of asymptomatic or minimally symptomatic patients is very high. Thus, SARS-
CoV-2 transmission can happen early in the course of infection (82). Atypical clinical
manifestations have also been reported in COVID-19 in which the only reporting
symptom was fatigue. Such patients may lack respiratory signs, such as fever, cough,
and sputum (83). Hence, the clinicians must be on the look-out for the possible
occurrence of atypical clinical manifestations to avoid the possibility of missed diag-
nosis. The early transmission ability of SARS-CoV-2 was found to be similar to or slightly
higher than that of SARS-CoV, reflecting that it could be controlled despite moderate
to high transmissibility (84).

Increasing reports of SARS-CoV-2 in sewage and wastewater warrants the need for
further investigation due to the possibility of fecal-oral transmission. SARS-CoV-2
present in environmental compartments such as soil and water will finally end up in the
wastewater and sewage sludge of treatment plants (328). Therefore, we have to
reevaluate the current wastewater and sewage sludge treatment procedures and
introduce advanced techniques that are specific and effective against SARS-CoV-2.
Since there is active shedding of SARS-CoV-2 in the stool, the prevalence of infections
in a large population can be studied using wastewater-based epidemiology. Recently,
reverse transcription-quantitative PCR (RT-qPCR) was used to enumerate the copies of
SARS-CoV-2 RNA concentrated from wastewater collected from a wastewater treatment
plant (327). The calculated viral RNA copy numbers determine the number of infected
individuals. The increasing reports of virus shedding via the fecal route warrants the
introduction of negative fecal viral nucleic acid test results as one of the additional
discharge criteria in laboratory-confirmed cases of COVID-19 (326).

The COVID-19 pandemic does not have any novel factors, other than the genetically
unique pathogen and a further possible reservoir. The cause and the likely future
outcome are just repetitions of our previous interactions with fatal coronaviruses. The
only difference is the time of occurrence and the genetic distinctness of the pathogen
involved. Mutations on the RBD of CoVs facilitated their capability of infecting newer
hosts, thereby expanding their reach to all corners of the world (85). This is a potential
threat to the health of both animals and humans. Advanced studies using Bayesian
phylogeographic reconstruction identified the most probable origin of SARS-CoV-2 as
the bat SARS-like coronavirus, circulating in the Rhinolophus bat family (86).

Phylogenetic analysis of 10 whole-genome sequences of SARS-CoV-2 showed that
they are related to two CoVs of bat origin, namely, bat-SL-CoVZC45 and bat-SL-
CoVZXC21, which were reported during 2018 in China (17). It was reported that
SARS-CoV-2 had been confirmed to use ACE2 as an entry receptor while exhibiting an
RBD similar to that of SARS-CoV (17, 87, 254, 255). Several countries have provided
recommendations to their people traveling to China (88, 89). Compared to the previous
coronavirus outbreaks caused by SARS-CoV and MERS-CoV, the efficiency of SARS-
CoV-2 human-to-human transmission was thought to be less. This assumption was
based on the finding that health workers were affected less than they were in previous
outbreaks of fatal coronaviruses (2). Superspreading events are considered the main
culprit for the extensive transmission of SARS and MERS (90, 91). Almost half of the
MERS-CoV cases reported in Saudi Arabia are of secondary origin that occurred through
contact with infected asymptomatic or symptomatic individuals through human-to-
human transmission (92). The occurrence of superspreading events in the COVID-19
outbreak cannot be ruled out until its possibility is evaluated. Like SARS and MERS,
COVID-19 can also infect the lower respiratory tract, with milder symptoms (27). The
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basic reproduction number of COVID-19 has been found to be in the range of 2.8 to 3.3
based on real-time reports and 3.2 to 3.9 based on predicted infected cases (84).

Coronaviruses in Humans—SARS, MERS, and COVID-19

Coronavirus infection in humans is commonly associated with mild to severe
respiratory diseases, with high fever, severe inflammation, cough, and internal organ
dysfunction that can even lead to death (92). Most of the identified coronaviruses cause
the common cold in humans. However, this changed when SARS-CoV was identified,
paving the way for severe forms of the disease in humans (22). Our previous experience
with the outbreaks of other coronaviruses, like SARS and MERS, suggests that the mode
of transmission in COVID-19 as mainly human-to-human transmission via direct contact,
droplets, and fomites (25). Recent studies have demonstrated that the virus could
remain viable for hours in aerosols and up to days on surfaces; thus, aerosol and fomite
contamination could play potent roles in the transmission of SARS-CoV-2 (257).

The immune response against coronavirus is vital to control and get rid of the
infection. However, maladjusted immune responses may contribute to the immuno-
pathology of the disease, resulting in impairment of pulmonary gas exchange. Under-
standing the interaction between CoVs and host innate immune systems could en-
lighten our understanding of the lung inflammation associated with this infection (24).

SARS is a viral respiratory disease caused by a formerly unrecognized animal CoV
that originated from the wet markets in southern China after adapting to the human
host, thereby enabling transmission between humans (90). The SARS outbreak reported
in 2002 to 2003 had 8,098 confirmed cases with 774 total deaths (9.6%) (93). The
outbreak severely affected the Asia Pacific region, especially mainland China (94). Even
though the case fatality rate (CFR) of SARS-CoV-2 (COVID-19) is lower than that of
SARS-CoV, there exists a severe concern linked to this outbreak due to its epidemio-
logical similarity to influenza viruses (95, 279). This can fail the public health system,
resulting in a pandemic (96).

MERS is another respiratory disease that was first reported in Saudi Arabia during
the year 2012. The disease was found to have a CFR of around 35% (97). The analysis
of available data sets suggests that the incubation period of SARS-CoV-2, SARS-CoV,
and MERS-CoV is in almost the same range. The longest predicted incubation time of
SARS-CoV-2 is 14 days. Hence, suspected individuals are isolated for 14 days to avoid
the risk of further spread (98). Even though a high similarity has been reported between
the genome sequence of the new coronavirus (SARS-CoV-2) and SARS-like CoVs, the
comparative analysis recognized a furin-like cleavage site in the SARS-CoV-2 S protein
that is missing from other SARS-like CoVs (99). The furin-like cleavage site is expected
to play a role in the life cycle of the virus and disease pathogenicity and might even act
as a therapeutic target for furin inhibitors. The highly contagious nature of SARS-CoV-2
compared to that of its predecessors might be the result of a stabilizing mutation that
occurred in the endosome-associated-protein-like domain of nsp2 protein.

Similarly, the destabilizing mutation near the phosphatase domain of nsp3 proteins
in SARS-CoV-2 could indicate a potential mechanism that differentiates it from other
CoVs (100). Even though the CFR reported for COVID-19 is meager compared to those
of the previous SARS and MERS outbreaks, it has caused more deaths than SARS and
MERS combined (101). Possibly related to the viral pathogenesis is the recent finding of
an 832-nucleotide (nt) deletion in ORF8, which appears to reduce the replicative fitness
of the virus and leads to attenuated phenotypes of SARS-CoV-2 (256).

Coronavirus is the most prominent example of a virus that has crossed the species
barrier twice from wild animals to humans during SARS and MERS outbreaks (79, 102).
The possibility of crossing the species barrier for the third time has also been suspected
in the case of SARS-CoV-2 (COVID-19). Bats are recognized as a possible natural
reservoir host of both SARS-CoV and MERS-CoV infection. In contrast, the possible
intermediary host is the palm civet for SARS-CoV and the dromedary camel for
MERS-CoV infection (102). Bats are considered the ancestral hosts for both SARS and
MERS (103). Bats are also considered the reservoir host of human coronaviruses like

COVID-19 Clinical Microbiology Reviews

October 2020 Volume 33 Issue 4 e00028-20 cmr.asm.org 13

https://cmr.asm.org


HCoV-229E and HCoV-NL63 (104). In the case of COVID-19, there are two possibilities for
primary transmission: it can be transmitted either through intermediate hosts, similar to
that of SARS and MERS, or directly from bats (103). The emergence paradigm put
forward in the SARS outbreak suggests that SARS-CoV originated from bats (reservoir
host) and later jumped to civets (intermediate host) and incorporated changes within
the receptor-binding domain (RBD) to improve binding to civet ACE2. This civet-
adapted virus, during their subsequent exposure to humans at live markets, promoted
further adaptations that resulted in the epidemic strain (104). Transmission can also
occur directly from the reservoir host to humans without RBD adaptations. The bat
coronavirus that is currently in circulation maintains specific “poised” spike proteins
that facilitate human infection without the requirement of any mutations or adapta-
tions (105). Altogether, different species of bats carry a massive number of coronavi-
ruses around the world (106).

The high plasticity in receptor usage, along with the feasibility of adaptive mutation
and recombination, may result in frequent interspecies transmission of coronavirus
from bats to animals and humans (106). The pathogenesis of most bat coronaviruses is
unknown, as most of these viruses are not isolated and studied (4). Hedgehog coro-
navirus HKU31, a Betacoronavirus, has been identified from amur hedgehogs in China.
Studies show that hedgehogs are the reservoir of Betacoronavirus, and there is evidence
of recombination (107).

The current scientific evidence available on MERS infection suggests that the
significant reservoir host, as well as the animal source of MERS infection in humans, is
the dromedary camels (97). The infected dromedary camels may not show any visible
signs of infection, making it challenging to identify animals actively excreting MERS-
CoV that has the potential to infect humans. However, they may shed MERS-CoV
through milk, urine, feces, and nasal and eye discharge and can also be found in the
raw organs (108). In a study conducted to evaluate the susceptibility of animal species
to MERS-CoV infection, llamas and pigs were found to be susceptible, indicating the
possibility of MERS-CoV circulation in animal species other than dromedary camels
(109).

Following the outbreak of SARS in China, SARS-CoV-like viruses were isolated from
Himalayan palm civets (Paguma larvata) and raccoon dogs (Nyctereutes procyonoides)
found in a live-animal market in Guangdong, China. The animal isolates obtained from
the live-animal market retained a 29-nucleotide sequence that was not present in most
of the human isolates (78). These findings were critical in identifying the possibility of
interspecies transmission in SARS-CoV. The higher diversity and prevalence of bat
coronaviruses in this region compared to those in previous reports indicate a host/
pathogen coevolution. SARS-like coronaviruses also have been found circulating in the
Chinese horseshoe bat (Rhinolophus sinicus) populations. The in vitro and in vivo studies
carried out on the isolated virus confirmed that there is a potential risk for the
reemergence of SARS-CoV infection from the viruses that are currently circulating in the
bat population (105).

CLINICAL PATHOLOGY OF SARS-CoV-2 (COVID-19)

The disease caused by SARS-CoV-2 is also named severe specific contagious pneu-
monia (SSCP), Wuhan pneumonia, and, recently, COVID-19 (110). Compared to SARS-
CoV, SARS-CoV-2 has less severe pathogenesis but has superior transmission capability,
as evidenced by the rapidly increasing number of COVID-19 cases (111). The incubation
period of SARS-CoV-2 in familial clusters was found to be 3 to 6 days (112). The mean
incubation period of COVID-19 was found to be 6.4 days, ranging from 2.1 to 11.1 days
(113). Among an early affected group of 425 patients, 59 years was the median age, of
which more males were affected (114). Similar to SARS and MERS, the severity of this
nCoV is high in age groups above 50 years (2, 115). Symptoms of COVID-19 include
fever, cough, myalgia or fatigue, and, less commonly, headache, hemoptysis, and
diarrhea (116, 282). Compared to the SARS-CoV-2-infected patients in Wuhan during
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the initial stages of the outbreak, only mild symptoms were noticed in those patients
that are infected by human-to-human transmission (14).

The initial trends suggested that the mortality associated with COVID-19 was less
than that of previous outbreaks of SARS (101). The updates obtained from countries like
China, Japan, Thailand, and South Korea indicated that the COVID-19 patients had
relatively mild manifestations compared to those with SARS and MERS (4). Regardless
of the coronavirus type, immune cells, like mast cells, that are present in the submucosa
of the respiratory tract and nasal cavity are considered the primary barrier against this
virus (92). Advanced in-depth analysis of the genome has identified 380 amino acid
substitutions between the amino acid sequences of SARS-CoV-2 and the SARS/SARS-
like coronaviruses. These differences in the amino acid sequences might have contrib-
uted to the difference in the pathogenic divergence of SARS-CoV-2 (16). Further
research is required to evaluate the possible differences in tropism, pathogenesis, and
transmission of this novel agent associated with this change in the amino acid
sequence. With the current outbreak of COVID-19, there is an expectancy of a signifi-
cant increase in the number of published studies about this emerging coronavirus, as
occurred with SARS and MERS (117).

SARS-CoV-2 invades the lung parenchyma, resulting in severe interstitial inflamma-
tion of the lungs. This is evident on computed tomography (CT) images as ground-glass
opacity in the lungs. This lesion initially involves a single lobe but later expands to
multiple lung lobes (118). The histological assessment of lung biopsy samples obtained
from COVID-19-infected patients revealed diffuse alveolar damage, cellular fibromyxoid
exudates, hyaline membrane formation, and desquamation of pneumocytes, indicative
of acute respiratory distress syndrome (119). It was also found that the SARS-CoV-2-
infected patients often have lymphocytopenia with or without leukocyte abnormalities.
The degree of lymphocytopenia gives an idea about disease prognosis, as it is found to
be positively correlated with disease severity (118). Pregnant women are considered to
have a higher risk of getting infected by COVID-19. The coronaviruses can cause
adverse outcomes for the fetus, such as intrauterine growth restriction, spontaneous
abortion, preterm delivery, and perinatal death.

Nevertheless, the possibility of intrauterine maternal-fetal transmission (vertical
transmission) of CoVs is low and was not seen during either the SARS- or MERS-CoV
outbreak (120). However, there has been concern regarding the impact of SARS-CoV-
2/COVID-19 on pregnancy. Researchers have mentioned the probability of in utero
transmission of novel SARS-CoV-2 from COVID-19-infected mothers to their neonates in
China based upon the rise in IgM and IgG antibody levels and cytokine values in the
blood obtained from newborn infants immediately postbirth; however, RT-PCR failed to
confirm the presence of SARS-CoV-2 genetic material in the infants (283). Recent
studies show that at least in some cases, preterm delivery and its consequences are
associated with the virus. Nonetheless, some cases have raised doubts for the likelihood
of vertical transmission (240–243).

COVID-19 infection was associated with pneumonia, and some developed acute
respiratory distress syndrome (ARDS). The blood biochemistry indexes, such as albumin,
lactate dehydrogenase, C-reactive protein, lymphocytes (percent), and neutrophils
(percent) give an idea about the disease severity in COVID-19 infection (121). During
COVID-19, patients may present leukocytosis, leukopenia with lymphopenia (244),
hypoalbuminemia, and an increase of lactate dehydrogenase, aspartate transaminase,
alanine aminotransferase, bilirubin, and, especially, D-dimer (244). Middle-aged and
elderly patients with primary chronic diseases, especially high blood pressure and
diabetes, were found to be more susceptible to respiratory failure and, therefore, had
poorer prognoses. Providing respiratory support at early stages improved the disease
prognosis and facilitated recovery (18). The ARDS in COVID-19 is due to the occurrence
of cytokine storms that results in exaggerated immune response, immune regulatory
network imbalance, and, finally, multiple-organ failure (122). In addition to the exag-
gerated inflammatory response seen in patients with COVID-19 pneumonia, the bile
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duct epithelial cell-derived hepatocytes upregulate ACE2 expression in liver tissue by
compensatory proliferation that might result in hepatic tissue injury (123).

CORONAVIRUSES IN ANIMALS AND ZOONOTIC LINKS—A BRIEF VIEWPOINT

Coronavirus can cause disease in several species of domestic and wild animals, as
well as humans (23). The different animal species that are infected with CoV include
horses, camels, cattle, swine, dogs, cats, rodents, birds, ferrets, minks, bats, rabbits,
snakes, and various other wild animals (20, 30, 79, 93, 124, 125, 287). Coronavirus
infection is linked to different kinds of clinical manifestations, varying from enteritis in
cows and pigs, upper respiratory disease in chickens, and fatal respiratory infections in
humans (30).

Among the CoV genera, Alphacoronavirus and Betacoronavirus infect mammals,
while Gammacoronavirus and Deltacoronavirus mainly infect birds, fishes, and, some-
times, mammals (27, 29, 106). Several novel coronaviruses that come under the genus
Deltacoronavirus have been discovered in the past from birds, like Wigeon coronavirus
HKU20, Bulbul coronavirus HKU11, Munia coronavirus HKU13, white-eye coronavirus
HKU16, night-heron coronavirus HKU19, and common moorhen coronavirus HKU21, as
well as from pigs (porcine coronavirus HKU15) (6, 29). Transmissible gastroenteritis virus
(TGEV), porcine epidemic diarrhea virus (PEDV), and porcine hemagglutinating enceph-
alomyelitis virus (PHEV) are some of the coronaviruses of swine. Among them, TGEV and
PEDV are responsible for causing severe gastroenteritis in young piglets with notewor-
thy morbidity and mortality. Infection with PHEV also causes enteric infection but can
cause encephalitis due to its ability to infect the nervous system (30).

Bovine coronaviruses (BoCoVs) are known to infect several domestic and wild
ruminants (126). BoCoV inflicts neonatal calf diarrhea in adult cattle, leading to bloody
diarrhea (winter dysentery) and respiratory disease complex (shipping fever) in cattle of
all age groups (126). BoCoV-like viruses have been noted in humans, suggesting its
zoonotic potential as well (127). Feline enteric and feline infectious peritonitis (FIP)
viruses are the two major feline CoVs (128), where feline CoVs can affect the gastro-
intestinal tract, abdominal cavity (peritonitis), respiratory tract, and central nervous
system (128). Canines are also affected by CoVs that fall under different genera, namely,
canine enteric coronavirus in Alphacoronavirus and canine respiratory coronavirus in
Betacoronavirus, affecting the enteric and respiratory tract, respectively (129, 130). IBV,
under Gammacoronavirus, causes diseases of respiratory, urinary, and reproductive
systems, with substantial economic losses in chickens (131, 132). In small laboratory
animals, mouse hepatitis virus, rat sialodacryoadenitis coronavirus, and guinea pig and
rabbit coronaviruses are the major CoVs associated with disease manifestations like
enteritis, hepatitis, and respiratory infections (10, 133).

Swine acute diarrhea syndrome coronavirus (SADS-CoV) was first identified in
suckling piglets having severe enteritis and belongs to the genus Alphacoronavirus
(106). The outbreak was associated with considerable scale mortality of piglets (24,693
deaths) across four farms in China (134). The virus isolated from the piglets was almost
identical to and had 95% genomic similarity with horseshoe bat (Rhinolophus species)
coronavirus HKU2, suggesting a bat origin of the pig virus (106, 134, 135). It is also
imperative to note that the SADS-CoV outbreak started in Guangdong province, near
the location of the SARS pandemic origin (134). Before this outbreak, pigs were not
known to be infected with bat-origin coronaviruses. This indicates that the bat-origin
coronavirus jumped to pig by breaking the species barrier. The next step of this jump
might not end well, since pigs are considered the mixing vessel for influenza A viruses
due to their ability to be infected by both human and avian influenza A viruses (136).

Similarly, they may act as the mixing vessel for coronaviruses, since they are in
frequent contact with both humans and multiple wildlife species. Additionally, pigs are
also found to be susceptible to infection with human SARS-CoV and MERS-CoV, making
this scenario a nightmare (109, 137). It is only a matter of time before another zoonotic
coronavirus results in an epidemic by jumping the so-called species barrier (287).

The host spectrum of coronavirus increased when a novel coronavirus, namely, SW1,
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was recognized in the liver tissue of a captive beluga whale (Delphinapterus leucas)
(138). In recent decades, several novel coronaviruses were identified from different
animal species. Bats can harbor these viruses without manifesting any clinical disease
but are persistently infected (30). They are the only mammals with the capacity for
self-powered flight, which enables them to migrate long distances, unlike land mam-
mals. Bats are distributed worldwide and also account for about a fifth of all mammalian
species (6). This makes them the ideal reservoir host for many viral agents and also the
source of novel coronaviruses that have yet to be identified. It has become a necessity
to study the diversity of coronavirus in the bat population to prevent future outbreaks
that could jeopardize livestock and public health. The repeated outbreaks caused by
bat-origin coronaviruses calls for the development of efficient molecular surveillance
strategies for studying Betacoronavirus among animals (12), especially in the Rhinolo-
phus bat family (86). Chinese bats have high commercial value, since they are used in
traditional Chinese medicine (TCM). Therefore, the handling of bats for trading pur-
poses poses a considerable risk of transmitting zoonotic CoV epidemics (139).

Due to the possible role played by farm and wild animals in SARS-CoV-2 infection,
the WHO, in their novel coronavirus (COVID-19) situation report, recommended the
avoidance of unprotected contact with both farm and wild animals (25). The live-animal
markets, like the one in Guangdong, China, provides a setting for animal coronaviruses
to amplify and to be transmitted to new hosts, like humans (78). Such markets can be
considered a critical place for the origin of novel zoonotic diseases and have enormous
public health significance in the event of an outbreak. Bats are the reservoirs for several
viruses; hence, the role of bats in the present outbreak cannot be ruled out (140). In a
qualitative study conducted for evaluating the zoonotic risk factors among rural
communities of southern China, the frequent human-animal interactions along with the
low levels of environmental biosecurity were identified as significant risks for the
emergence of zoonotic disease in local communities (141, 142).

The comprehensive sequence analysis of the SARS-CoV-2 RNA genome identified
that the CoV from Wuhan is a recombinant virus of the bat coronavirus and another
coronavirus of unknown origin. The recombination was found to have happened within
the viral spike glycoprotein, which recognizes the cell surface receptor. Further analysis
of the genome based on codon usage identified the snake as the most probable animal
reservoir of SARS-CoV-2 (143). Contrary to these findings, another genome analysis
proposed that the genome of SARS-CoV-2 is 96% identical to bat coronavirus, reflecting
its origin from bats (63). The involvement of bat-derived materials in causing the
current outbreak cannot be ruled out. High risk is involved in the production of
bat-derived materials for TCM practices involving the handling of wild bats. The use of
bats for TCM practices will remain a severe risk for the occurrence of zoonotic
coronavirus epidemics in the future (139).

Furthermore, the pangolins are an endangered species of animals that harbor a
wide variety of viruses, including coronaviruses (144). The coronavirus isolated from
Malayan pangolins (Manis javanica) showed a very high amino acid identity with
COVID-19 at E (100%), M (98.2%), N (96.7%), and S genes (90.4%). The RBD of S protein
in CoV isolated from pangolin was almost identical (one amino acid difference) to that
of SARS-CoV-2. A comparison of the genomes suggests recombination between
pangolin-CoV-like viruses with the bat-CoV-RaTG13-like virus. All this suggests the
potential of pangolins to act as the intermediate host of SARS-CoV-2 (145).

Human-wildlife interactions, which are increasing in the context of climate change
(142), are further considered high risk and responsible for the emergence of SARS-CoV.
COVID-19 is also suspected of having a similar mode of origin. Hence, to prevent the
occurrence of another zoonotic spillover (1), exhaustive coordinated efforts are needed
to identify the high-risk pathogens harbored by wild animal populations, conducting
surveillance among the people who are susceptible to zoonotic spillover events (12),
and to improve the biosecurity measures associated with the wildlife trade (146). The
serological surveillance studies conducted in people living in proximity to bat caves had
earlier identified the serological confirmation of SARS-related CoVs in humans. People
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living at the wildlife-human interface, mainly in rural China, are regularly exposed to
SARS-related CoVs (147). These findings will not have any significance until a significant
outbreak occurs due to a virus-like SARS-CoV-2.

There is a steady increase in the reports of COVID-19 in companion and wild animals
around the world. Further studies are required to evaluate the potential of animals
(especially companion animals) to serve as an efficient reservoir host that can further
alter the dynamics of human-to-human transmission (330). To date, two pet dogs
(Hong Kong) and four pet cats (one each from Belgium and Hong Kong, two from the
United States) have tested positive for SARS-CoV-2 (335). The World Organization for
Animal Health (OIE) has confirmed the diagnosis of COVID-19 in both dogs and cats due
to human-to-animal transmission (331). The similarity observed in the gene sequence
of SARS-CoV-2 from an infected pet owner and his dog further confirms the occurrence
of human-to-animal transmission (333). Even though asymptomatic, feline species
should be considered a potential transmission route from animals to humans (326).
However, currently, there are no reports of SARS-CoV-2 transmission from felines to
human beings. Based on the current evidence, we can conclude that cats are suscep-
tible to SARS-CoV-2 and can get infected by human beings. However, evidence of
cat-to-human transmission is lacking and requires further studies (332). Rather than
waiting for firmer evidence on animal-to-human transmission, necessary preventive
measures are advised, as well as following social distancing practices among compan-
ion animals of different households (331). One of the leading veterinary diagnostic
companies, IDEXX, has conducted large-scale testing for COVID-19 in specimens col-
lected from dogs and cats. However, none of the tests turned out to be positive (334).

In a study conducted to investigate the potential of different animal species to act
as the intermediate host of SARS-CoV-2, it was found that both ferrets and cats can be
infected via experimental inoculation of the virus. In addition, infected cats efficiently
transmitted the disease to naive cats (329). SARS-CoV-2 infection and subsequent
transmission in ferrets were found to recapitulate the clinical aspects of COVID-19 in
humans. The infected ferrets also shed virus via multiple routes, such as saliva, nasal
washes, feces, and urine, postinfection, making them an ideal animal model for
studying disease transmission (337). Experimental inoculation was also done in other
animal species and found that the dogs have low susceptibility, while the chickens,
ducks, and pigs are not at all susceptible to SARS-CoV-2 (329).

Similarly, the National Veterinary Services Laboratories of the USDA have reported
COVID-19 in tigers and lions that exhibited respiratory signs like dry cough and
wheezing. The zoo animals are suspected to have been infected by an asymptomatic
zookeeper (335). The total number of COVID-19-positive cases in human beings is
increasing at a high rate, thereby creating ideal conditions for viral spillover to other
species, such as pigs. The evidence obtained from SARS-CoV suggests that pigs can get
infected with SARS-CoV-2 (336). However, experimental inoculation with SARS-CoV-2
failed to infect pigs (329).

Further studies are required to identify the possible animal reservoirs of SARS-CoV-2
and the seasonal variation in the circulation of these viruses in the animal population.
Research collaboration between human and animal health sectors is becoming a
necessity to evaluate and identify the possible risk factors of transmission between
animals and humans. Such cooperation will help to devise efficient strategies for the
management of emerging zoonotic diseases (12).

DIAGNOSIS OF SARS-CoV-2 (COVID-19)

RNA tests can confirm the diagnosis of SARS-CoV-2 (COVID-19) cases with real-time
RT-PCR or next-generation sequencing (148, 149, 245, 246). At present, nucleic acid
detection techniques, like RT-PCR, are considered an effective method for confirming
the diagnosis in clinical cases of COVID-19 (148). Several companies across the world
are currently focusing on developing and marketing SARS-CoV-2-specific nucleic acid
detection kits. Multiple laboratories are also developing their own in-house RT-PCR.
One of them is the SARS-CoV-2 nucleic acid detection kit produced by Shuoshi
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Biotechnology (double fluorescence PCR method) (150). Up to 30 March 2020, the U.S.
Food and Drug Administration (FDA) had granted 22 in vitro diagnostics Emergency
Use Authorizations (EUAs), including for the RT-PCR diagnostic panel for the universal
detection of SARS-like betacoronaviruses and specific detection of SARS-CoV-2, devel-
oped by the U.S. CDC (Table 1) (258, 259).

Recently, 95 full-length genomic sequences of SARAS-CoV-2 strains available in the
National Center for Biotechnology Information and GISAID databases were subjected to
multiple-sequence alignment and phylogenetic analyses for studying variations in the
viral genome (260). All the viral strains revealed high homology of 99.99% (99.91% to
100%) at the nucleotide level and 99.99% (99.79% to 100%) at the amino acid level.
Overall variation was found to be low in ORF regions, with 13 variation sites recognized
in 1a, 1b, S, 3a, M, 8, and N regions. Mutation rates of 30.53% (29/95) and 29.47% (28/95)
were observed at nt 28144 (ORF8) and nt 8782 (ORF1a) positions, respectively. Owing
to such selective mutations, a few specific regions of SARS-CoV-2 should not be
considered for designing primers and probes. The SARS-CoV-2 reference sequence
could pave the way to study molecular biology and pathobiology, along with devel-
oping diagnostics and appropriate prevention and control strategies for countering
SARS-CoV-2 (260).

Nucleic acids of SARS-CoV-2 can be detected from samples (64) such as bronchoal-
veolar lavage fluid, sputum, nasal swabs, fiber bronchoscope brush biopsy specimen,
pharyngeal swabs, feces, blood, and urine, with different levels of diagnostic perfor-
mance (Table 2) (80, 245, 246). The viral loads of SARS-CoV-2 were measured using
N-gene-specific quantitative RT-PCR in throat swab and sputum samples collected from
COVID-19-infected individuals. The results indicated that the viral load peaked at
around 5 to 6 days following the onset of symptoms, and it ranged from 104 to 107

copies/ml during this time (151). In another study, the viral load was found to be higher
in the nasal swabs than the throat swabs obtained from COVID-19 symptomatic
patients (82). Although initially it was thought that viral load would be associated with
poor outcomes, some case reports have shown asymptomatic individuals with high
viral loads (247). Recently, the viral load in nasal and throat swabs of 17 symptomatic
patients was determined, and higher viral loads were recorded soon after the onset of
symptoms, particularly in the nose compared to the throat. The pattern of viral nucleic

TABLE 1 FDA-approved in vitro Emergency Use Authorization diagnostics available for SARS-CoV-2 as of 30 March 2020a

Developer Diagnostic platform

Centers for Disease Control and Prevention (CDC) CDC 2019-nCoV real-time RT-PCR diagnostic panel
Wadsworth Center, New York State Department

of Public Health (CDC)
New York SARS-CoV-2 real-time reverse transcriptase

(RT)-PCR diagnostic panel
Roche Molecular Systems, Inc. (RMS) cobas SARS-CoV-2
Thermo Fisher Scientific, Inc. TaqPath COVID-19 combo kit
Laboratory Corporation of America (LabCorp) COVID-19 RT-PCR test
Hologic, Inc. Panther fusion SARS-CoV-2
Quest Diagnostics Infectious Disease, Inc. Quest SARS-CoV-2 rRT-PCR
Quidel Corporation Lyra SARS-CoV-2 assay
Abbott Molecular Abbott RealTime SARS-CoV-2 assay
GenMark Diagnostics, Inc. ePlex SARS-CoV-2 test
DiaSorin Molecular, LLC Simplexa COVID-19 direct assay
Cepheid Xpert Xpress SARS-CoV-2 test
Primerdesign, Ltd. COVID-19 Genesig real-time PCR assay
Mesa Biotech, Inc. Accula SARS-Cov-2 test
BioFire Defense, LLC BioFire COVID-19 test
PerkinElmer, Inc. PerkinElmer new coronavirus nucleic acid detection kit
Avellino Lab USA, Inc. AvellinoCoV2 test
BGI Genomics, Co. Ltd. Real-time fluorescent RT-PCR kit for detecting SARS-2019-nCoV
Luminex Molecular Diagnostics, Inc. NxTAG CoV extended panel assay
Abbott Diagnostics Scarborough, Inc. ID Now COVID-19
Qiagen GmbH QIAstat-Dx respiratory SARS-CoV-2 panel
NeuMoDx Molecular, Inc. NeuMoDx SARS-CoV-2 assay
aData are from references 258 and 259.
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acid shedding of SARS-CoV-2-infected patients was similar to that of influenza patients
but seemed to be different from that of SARS-CoV patients. The viral load detected in
asymptomatic patients resembled that of symptomatic patients as studied in China,
which reflects the transmission perspective of asymptomatic or symptomatic patients
having minimum signs and symptoms (82). Another study, conducted in South Korea,
related to SARS-CoV-2 viral load, opined that SARS-CoV-2 kinetics were significantly
different from those of earlier reported CoV infections, including SARS-CoV (253).
SARS-CoV-2 transmission can occur early in the viral infection phase; thus, diagnosing
cases and isolation attempts for this virus warrant different strategies than those
needed to counter SARS-CoV. Studies are required to establish any correlation between
SARS-CoV-2 viral load and cultivable virus. Recognizing patients with fewer or no
symptoms, along with having modest detectable viral RNA in the oropharynx for 5
days, indicates the requirement of data for assessing SARS-CoV-2 transmission dynam-
ics and updating the screening procedures in the clinics (82).

The results of the studies related to SARS-CoV-2 viral loads reflect active replication
of this virus in the upper respiratory tract and prolonged viral shedding after symptoms
disappear, including via stool. Thus, the current case definition needs to be updated
along with a reassessment of the strategies to be adopted for restraining the SARS-
CoV-2 outbreak spread (248). In some cases, the viral load studies of SARS-CoV-2 have
also been useful to recommend precautionary measures when handling specific sam-
ples, e.g., feces. In a recent survey from 17 confirmed cases of SARS-CoV-2 infection
with available data (representing days 0 to 13 after onset), stool samples from nine
cases (53%; days 0 to 11 after onset) were positive on RT-PCR analysis. Although the
viral loads were lower than those of respiratory samples (range, 550 copies per ml to
1.21 � 105 copies per ml), this has essential biosafety implications (151).

The samples from 18 SARS-CoV-2-positive patients in Singapore who had traveled
from Wuhan to Singapore showed the presence of viral RNA in stool and whole blood
but not in urine by real-time RT-PCR (288). Further, novel SARS-CoV-2 infections have
been detected in a variety of clinical specimens, like bronchoalveolar lavage fluid,
sputum, nasal swabs, fibrobronchoscope brush biopsy specimens, pharyngeal swabs,
feces, and blood (246).

The presence of SARS-CoV-2 in fecal samples has posed grave public health con-
cerns. In addition to the direct transmission mainly occurring via droplets of sneezing
and coughing, other routes, such as fecal excretion and environmental and fomite
contamination, are contributing to SARS-CoV-2 transmission and spread (249–252).
Fecal excretion has also been documented for SARS-CoV and MERS-CoV, along with the
potential to stay viable in situations aiding fecal-oral transmission. Thus, SARS-CoV-2
has every possibility to be transmitted through this mode. Fecal-oral transmission of
SARS-CoV-2, particularly in regions having low standards of hygiene and poor sanita-
tion, may have grave consequences with regard to the high spread of this virus. Ethanol
and disinfectants containing chlorine or bleach are effective against coronaviruses
(249–252). Appropriate precautions need to be followed strictly while handling the
stools of patients infected with SARS-CoV-2. Biowaste materials and sewage from
hospitals must be adequately disinfected, treated, and disposed of properly. The

TABLE 2 Clinical specimens for detection of SARS CoV-2

Sample Recommendationa

Bronchoalveolar lavage fluid ���
Sputum ���
Nasal swabs ���
Fibrobronchoscope brush biopsy ��
Pharyngeal swabs ��
Feces �
Blood �
Urine �

aRecommendations are based on references 245 and 246. ���, strong; ��, moderate; �, weak.
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significance of frequent and good hand hygiene and sanitation practices needs to be
given due emphasis (249–252). Future explorative research needs to be conducted with
regard to the fecal-oral transmission of SARS-CoV-2, along with focusing on environ-
mental investigations to find out if this virus could stay viable in situations and
atmospheres facilitating such potent routes of transmission. The correlation of fecal
concentrations of viral RNA with disease severity needs to be determined, along with
assessing the gastrointestinal symptoms and the possibility of fecal SARS-CoV-2 RNA
detection during the COVID-19 incubation period or convalescence phases of the
disease (249–252).

The lower respiratory tract sampling techniques, like bronchoalveolar lavage fluid
aspirate, are considered the ideal clinical materials, rather than the throat swab, due to
their higher positive rate on the nucleic acid test (148). The diagnosis of COVID-19 can
be made by using upper-respiratory-tract specimens collected using nasopharyngeal
and oropharyngeal swabs. However, these techniques are associated with unnecessary
risks to health care workers due to close contact with patients (152). Similarly, a single
patient with a high viral load was reported to contaminate an entire endoscopy room
by shedding the virus, which may remain viable for at least 3 days and is considered a
great risk for uninfected patients and health care workers (289). Recently, it was found
that the anal swabs gave more positive results than oral swabs in the later stages of
infection (153). Hence, clinicians have to be cautious while discharging any COVID-19-
infected patient based on negative oral swab test results due to the possibility of
fecal-oral transmission. Even though the viral loads in stool samples were found to be
less than those of respiratory samples, strict precautionary measures have to be
followed while handling stool samples of COVID-19 suspected or infected patients
(151). Children infected with SARS-CoV-2 experience only a mild form of illness and
recover immediately after treatment. It was recently found that stool samples of
SARS-CoV-2-infected children that gave negative throat swab results were positive
within ten days of negative results. This could result in the fecal-oral transmission of
SARS-CoV-2 infections, especially in children (290). Hence, to prevent the fecal-oral
transmission of SARS-CoV-2, infected COVID-19 patients should only be considered
negative when they test negative for SARS-CoV-2 in the stool sample.

A suspected case of COVID-19 infection is said to be confirmed if the respiratory
tract aspirate or blood samples test positive for SARS-CoV-2 nucleic acid using RT-PCR
or by the identification of SARS-CoV-2 genetic sequence in respiratory tract aspirate or
blood samples (80). The patient will be confirmed as cured when two subsequent oral
swab results are negative (153). Recently, the live virus was detected in the self-
collected saliva of patients infected with COVID-19. These findings were confirmative of
using saliva as a noninvasive specimen for the diagnosis of COVID-19 infection in
suspected individuals (152). It has also been observed that the initial screening of
COVID-19 patients infected with RT-PCR may give negative results even if they have
chest CT findings that are suggestive of infection. Hence, for the accurate diagnosis of
COVID-19, a combination of repeated swab tests using RT-PCR and CT scanning is
required to prevent the possibility of false-negative results during disease screening
(154). RT-PCR is the most widely used test for diagnosing COVID-19. However, it has
some significant limitations from the clinical perspective, since it will not give any
clarity regarding disease progression. Droplet digital PCR (ddPCR) can be used for the
quantification of viral load in the samples obtained from lower respiratory tracts. Hence,
based on the viral load, we can quickly evaluate the progression of infection (291). In
addition to all of the above findings, sequencing and phylogenetics are critical in the
correct identification and confirmation of the causative viral agent and useful to
establish relationships with previous isolates and sequences, as well as to know,
especially during an epidemic, the nucleotide and amino acid mutations and the
molecular divergence. The rapid development and implementation of diagnostic tests
against emerging novel diseases like COVID-19 pose significant challenges due to the
lack of resources and logistical limitations associated with an outbreak (155).

SARS-CoV-2 infection can also be confirmed by isolation and culturing. The
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human airway epithelial cell culture was found to be useful in isolating SARS-CoV-2
(3). The efficient control of an outbreak depends on the rapid diagnosis of the
disease. Recently, in response to the COVID-19 outbreak, 1-step quantitative real-
time reverse transcription-PCR assays were developed that detect the ORF1b and N
regions of the SARS-CoV-2 genome (156). That assay was found to achieve the rapid
detection of SARS-CoV-2. Nucleic acid-based assays offer high accuracy in the diagnosis
of SARS-CoV-2, but the current rate of spread limits its use due to the lack of diagnostic
assay kits. This will further result in the extensive transmission of COVID-19, since only
a portion of suspected cases can be diagnosed. In such situations, conventional
serological assays, like enzyme-linked immunosorbent assay (ELISA), that are specific to
COVID-19 IgM and IgG antibodies can be used as a high-throughput alternative (149).
At present, there is no diagnostic kit available for detecting the SARS-CoV-2 antibody
(150). The specific antibody profiles of COVID-19 patients were analyzed, and it was
found that the IgM level lasted more than 1 month, indicating a prolonged stage of
virus replication in SARS-CoV-2-infected patients. The IgG levels were found to increase
only in the later stages of the disease. These findings indicate that the specific antibody
profiles of SARS-CoV-2 and SARS-CoV were similar (325). These findings can be utilized
for the development of specific diagnostic tests against COVID-19 and can be used for
rapid screening. Even though diagnostic test kits are already available that can detect
the genetic sequences of SARS-CoV-2 (95), their availability is a concern, as the number
of COVID-19 cases is skyrocketing (155, 157). A major problem associated with this
diagnostic kit is that it works only when the test subject has an active infection, limiting
its use to the earlier stages of infection. Several laboratories around the world are
currently developing antibody-based diagnostic tests against SARS-CoV-2 (157).

Chest CT is an ideal diagnostic tool for identifying viral pneumonia. The sensitivity
of chest CT is far superior to that of X-ray screening. The chest CT findings associated
with COVID-19-infected patients include characteristic patchy infiltration that later
progresses to ground-glass opacities (158). Early manifestations of COVID-19 pneumo-
nia might not be evident in X-ray chest radiography. In such situations, a chest CT
examination can be performed, as it is considered highly specific for COVID-19 pneu-
monia (118). Those patients having COVID-19 pneumonia will exhibit the typical
ground-glass opacity in their chest CT images (154). The patients infected with
COVID-19 had elevated plasma angiotensin 2 levels. The level of angiotensin 2 was
found to be linearly associated with viral load and lung injury, indicating its potential
as a diagnostic biomarker (121). The chest CT imaging abnormalities associated with
COVID-19 pneumonia have also been observed even in asymptomatic patients. These
abnormalities progress from the initial focal unilateral to diffuse bilateral ground-glass
opacities and will further progress to or coexist with lung consolidation changes within
1 to 3 weeks (159). The role played by radiologists in the current scenario is very
important. Radiologists can help in the early diagnosis of lung abnormalities associated
with COVID-19 pneumonia. They can also help in the evaluation of disease severity,
identifying its progression to acute respiratory distress syndrome and the presence of
secondary bacterial infections (160). Even though chest CT is considered an essential
diagnostic tool for COVID-19, the extensive use of CT for screening purposes in the
suspected individuals might be associated with a disproportionate risk-benefit ratio
due to increased radiation exposure as well as increased risk of cross-infection. Hence,
the use of CT for early diagnosis of SARS-CoV-2 infection in high-risk groups should be
done with great caution (292).

More recently, other advanced diagnostics have been designed and developed for
the detection of SARS-CoV-2 (345, 347, 350–352). A reverse transcriptional loop-
mediated isothermal amplification (RT-LAMP), namely, iLACO, has been developed for
rapid and colorimetric detection of this virus (354). RT-LAMP serves as a simple, rapid,
and sensitive diagnostic method that does not require sophisticated equipment or
skilled personnel (349). An interactive web-based dashboard for tracking SARS-CoV-2 in
a real-time mode has been designed (238). A smartphone-integrated home-based
point-of-care testing (POCT) tool, a paper-based POCT combined with LAMP, is a useful
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point-of-care diagnostic (353). An Abbott ID Now COVID-19 molecular POCT-based test,
using isothermal nucleic acid amplification technology, has been designed as a point-
of-care test for very rapid detection of SARS-CoV-2 in just 5 min (344). A CRISPR-based
SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) diagnostic for rapid
detection of SARS-CoV-2 without the requirement of specialized instrumentation has
been reported to be very useful in the clinical diagnosis of COVID-19 (360). A CRISPR-
Cas12-based lateral flow assay also has been developed for rapid detection of SARS-
CoV-2 (346). Artificial intelligence, by means of a three-dimensional deep-learning
model, has been developed for sensitive and specific diagnosis of COVID-19 via CT
images (332).

Tracking and mapping of the rising incidence rates, disease outbreaks, community
spread, clustered transmission events, hot spots, and superspreader potential of SARS-
CoV-2/COVID warrant full exploitation of real-time disease mapping by employing
geographical information systems (GIS), such as the GIS software Kosmo 3.1, web-based
real-time tools and dashboards, apps, and advances in information technology (356–
359). Researchers have also developed a few prediction tools/models, such as the
prediction model risk of bias assessment tool (PROBAST) and critical appraisal and data
extraction for systematic reviews of prediction modeling studies (CHARMS), which
could aid in assessing the possibility of getting infection and estimating the prognosis
in patients; however, such models may suffer from bias issues and, hence, cannot be
considered completely trustworthy, which necessitates the development of new and
reliable predictors (360).

VACCINES, THERAPEUTICS, AND DRUGS

Recently emerged viruses, such as Zika, Ebola, and Nipah viruses, and their grave
threats to humans have begun a race in exploring the designing and developing of
advanced vaccines, prophylactics, therapeutics, and drug regimens to counter emerg-
ing viruses (161–163, 280). Several attempts are being made to design and develop
vaccines for CoV infection, mostly by targeting the spike glycoprotein. Nevertheless,
owing to extensive diversity in antigenic variants, cross-protection rendered by the
vaccines is significantly limited, even within the strains of a phylogenetic subcluster
(104). Due to the lack of effective antiviral therapy and vaccines in the present scenario,
we need to depend solely on implementing effective infection control measures to
lessen the risk of possible nosocomial transmission (68). Recently, the receptor for
SARS-CoV-2 was established as the human angiotensin-converting enzyme 2 (hACE2),
and the virus was found to enter the host cell mainly through endocytosis. It was also
found that the major components that have a critical role in viral entry include PIKfyve,
TPC2, and cathepsin L. These findings are critical, since the components described
above might act as candidates for vaccines or therapeutic drugs against SARS-CoV-2
(293).

The majority of the treatment options and strategies that are being evaluated for
SARS-CoV-2 (COVID-19) have been taken from our previous experiences in treating
SARS-CoV, MERS-CoV, and other emerging viral diseases. Several therapeutic and
preventive strategies, including vaccines, immunotherapeutics, and antiviral drugs,
have been exploited against the previous CoV outbreaks (SARS-CoV and MERS-CoV) (8,
104, 164–167). These valuable options have already been evaluated for their potency,
efficacy, and safety, along with several other types of current research that will fuel our
search for ideal therapeutic agents against COVID-19 (7, 9, 19, 21, 36). The primary
cause of the unavailability of approved and commercial vaccines, drugs, and therapeu-
tics to counter the earlier SARS-CoV and MERS-CoV seems to owe to the lesser attention
of the biomedicine and pharmaceutical companies, as these two CoVs did not cause
much havoc, global threat, and panic like those posed by the SARS-CoV-2 pandemic
(19). Moreover, for such outbreak situations, the requirement for vaccines and thera-
peutics/drugs exists only for a limited period, until the outbreak is controlled. The
proportion of the human population infected with SARS-CoV and MERS-CoV was also
much lower across the globe, failing to attract drug and vaccine manufacturers and
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producers. Therefore, by the time an effective drug or vaccine is designed against such
disease outbreaks, the virus would have been controlled by adopting appropriate and
strict prevention and control measures, and patients for clinical trials will not be
available. The newly developed drugs cannot be marketed due to the lack of end users.

Vaccines

The S protein plays a significant role in the induction of protective immunity against
SARS-CoV by mediating T-cell responses and neutralizing antibody production (168). In
the past few decades, we have seen several attempts to develop a vaccine against
human coronaviruses by using S protein as the target (168, 169). However, the
developed vaccines have minimal application, even among closely related strains of the
virus, due to a lack of cross-protection. That is mainly because of the extensive diversity
existing among the different antigenic variants of the virus (104). The contributions of
the structural proteins, like spike (S), matrix (M), small envelope (E), and nucleocapsid
(N) proteins, of SARS-CoV to induce protective immunity has been evaluated by
expressing them in a recombinant parainfluenza virus type 3 vector (BHPIV3). Of note,
the result was conclusive that the expression of M, E, or N proteins without the
presence of S protein would not confer any noticeable protection, with the absence of
detectable serum SARS-CoV-neutralizing antibodies (170). Antigenic determinant sites
present over S and N structural proteins of SARS-CoV-2 can be explored as suitable
vaccine candidates (294). In the Asian population, S, E, M, and N proteins of SARS-CoV-2
are being targeted for developing subunit vaccines against COVID-19 (295).

The identification of the immunodominant region among the subunits and domains
of S protein is critical for developing an effective vaccine against the coronavirus. The
C-terminal domain of the S1 subunit is considered the immunodominant region of the
porcine deltacoronavirus S protein (171). Similarly, further investigations are needed to
determine the immunodominant regions of SARS-CoV-2 for facilitating vaccine devel-
opment.

However, our previous attempts to develop a universal vaccine that is effective for
both SARS-CoV and MERS-CoV based on T-cell epitope similarity pointed out the
possibility of cross-reactivity among coronaviruses (172). That can be made possible by
selected potential vaccine targets that are common to both viruses. SARS-CoV-2 has
been reported to be closely related to SARS-CoV (173, 174). Hence, knowledge and
understanding of S protein-based vaccine development in SARS-CoV will help to
identify potential S protein vaccine candidates in SARS-CoV-2. Therefore, vaccine
strategies based on the whole S protein, S protein subunits, or specific potential
epitopes of S protein appear to be the most promising vaccine candidates against
coronaviruses. The RBD of the S1 subunit of S protein has a superior capacity to induce
neutralizing antibodies. This property of the RBD can be utilized for designing potential
SARS-CoV vaccines either by using RBD-containing recombinant proteins or recombi-
nant vectors that encode RBD (175). Hence, the superior genetic similarity existing
between SARS-CoV-2 and SARS-CoV can be utilized to repurpose vaccines that have
proven in vitro efficacy against SARS-CoV to be utilized for SARS-CoV-2. The possibility
of cross-protection in COVID-19 was evaluated by comparing the S protein sequences
of SARS-CoV-2 with that of SARS-CoV. The comparative analysis confirmed that the
variable residues were found concentrated on the S1 subunit of S protein, an important
vaccine target of the virus (150). Hence, the possibility of SARS-CoV-specific neutralizing
antibodies providing cross-protection to COVID-19 might be lower. Further genetic
analysis is required between SARS-CoV-2 and different strains of SARS-CoV and SARS-
like (SL) CoVs to evaluate the possibility of repurposed vaccines against COVID-19. This
strategy will be helpful in the scenario of an outbreak, since much time can be saved,
because preliminary evaluation, including in vitro studies, already would be completed
for such vaccine candidates.

Multiepitope subunit vaccines can be considered a promising preventive strategy
against the ongoing COVID-19 pandemic. In silico and advanced immunoinformatic
tools can be used to develop multiepitope subunit vaccines. The vaccines that are
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engineered by this technique can be further evaluated using docking studies and, if
found effective, then can be further evaluated in animal models (365). Identifying
epitopes that have the potential to become a vaccine candidate is critical to developing
an effective vaccine against COVID-19. The immunoinformatics approach has been
used for recognizing essential epitopes of cytotoxic T lymphocytes and B cells from the
surface glycoprotein of SARS-CoV-2. Recently, a few epitopes have been recognized
from the SARS-CoV-2 surface glycoprotein. The selected epitopes explored targeting
molecular dynamic simulations, evaluating their interaction with corresponding major
histocompatibility complex class I molecules. They potentially induce immune re-
sponses (176). The recombinant vaccine can be designed by using rabies virus (RV) as
a viral vector. RV can be made to express MERS-CoV S1 protein on its surface so that
an immune response is induced against MERS-CoV. The RV vector-based vaccines
against MERS-CoV can induce faster antibody response as well as higher degrees of
cellular immunity than the Gram-positive enhancer matrix (GEM) particle vector-based
vaccine. However, the latter can induce a very high antibody response at lower doses
(167). Hence, the degree of humoral and cellular immune responses produced by such
vaccines depends upon the vector used.

Dual vaccines have been getting more popular recently. Among them, the rabies
virus-based vectored vaccine platform is used to develop vaccines against emerging
infectious diseases. The dual vaccine developed from inactivated rabies virus particles
that express the MERS-CoV S1 domain of S protein was found to induce immune
responses for both MERS-CoV and rabies virus. The vaccinated mice were found to be
completely protected from challenge with MERS-CoV (169). The intranasal administra-
tion of the recombinant adenovirus-based vaccine in BALB/c mice was found to induce
long-lasting neutralizing immunity against MERS spike pseudotyped virus, character-
ized by the induction of systemic IgG, secretory IgA, and lung-resident memory T-cell
responses (177). Immunoinformatics methods have been employed for the genome-
wide screening of potential vaccine targets among the different immunogens of
MERS-CoV (178). The N protein and the potential B-cell epitopes of MERS-CoV E protein
have been suggested as immunoprotective targets inducing both T-cell and neutral-
izing antibody responses (178, 179).

The collaborative effort of the researchers of Rocky Mountain Laboratories and
Oxford University is designing a chimpanzee adenovirus-vectored vaccine to counter
COVID-19 (180). The Coalition for Epidemic Preparedness Innovations (CEPI) has initi-
ated three programs to design SARS-CoV-2 vaccines (181). CEPI has a collaborative
project with Inovio for designing a MERS-CoV DNA vaccine that could potentiate
effective immunity. CEPI and the University of Queensland are designing a molecular
clamp vaccine platform for MERS-CoV and other pathogens, which could assist in the
easier identification of antigens by the immune system (181). CEPI has also funded
Moderna to develop a vaccine for COVID-19 in partnership with the Vaccine Research
Center (VRC) of the National Institute of Allergy and Infectious Diseases (NIAID), part of
the National Institutes of Health (NIH) (182). By employing mRNA vaccine platform
technology, a vaccine candidate expressing SARS-CoV-2 spike protein is likely to go
through clinical testing in the coming months (180). On 16 March 2020, Jennifer Haller
became the first person outside China to receive an experimental vaccine, developed
by Moderna, against this pandemic virus. Moderna, along with China’s CanSino Bio-
logics, became the first research group to launch small clinical trials of vaccines against
COVID-19. Their study is evaluating the vaccine’s safety and ability to trigger immune
responses (296).

Scientists from all over the world are trying hard to develop working vaccines with
robust protective immunity against COVID-19. Vaccine candidates, like mRNA-1273
SARS-CoV-2 vaccine, INO-4800 DNA coronavirus vaccine, and adenovirus type 5 vector
vaccine candidate (Ad5-nCoV), are a few examples under phase I clinical trials, while
self-amplifying RNA vaccine, oral recombinant COVID-19 vaccine, BNT162, plant-based
COVID-19 vaccine, and Ii-Key peptide COVID-19 vaccine are under preclinical trials
(297). Similarly, the WHO, on its official website, has mentioned a detailed list of
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COVID-19 vaccine agents that are under consideration. Different phases of trials are
ongoing for live attenuated virus vaccines, formaldehyde alum inactivated vaccine,
adenovirus type 5 vector vaccine, LNP-encapsulated mRNA vaccine, DNA plasmid
vaccine, and S protein, S-trimer, and Ii-Key peptide as a subunit protein vaccine, among
others (298). The process of vaccine development usually takes approximately ten
years, in the case of inactivated or live attenuated vaccines, since it involves the
generation of long-term efficacy data. However, this was brought down to 5 years
during the Ebola emergency for viral vector vaccines. In the urgency associated with
the COVID-19 outbreaks, we expect a vaccine by the end of this year (343). The
development of an effective vaccine against COVID-19 with high speed and precision
is the combined result of advancements in computational biology, gene synthesis,
protein engineering, and the invention of advanced manufacturing platforms (342).

The recurring nature of the coronavirus outbreaks calls for the development of a
pan-coronavirus vaccine that can produce cross-reactive antibodies. However, the
success of such a vaccine relies greatly on its ability to provide protection not only
against present versions of the virus but also the ones that are likely to emerge in the
future. This can be achieved by identifying antibodies that can recognize relatively
conserved epitopes that are maintained as such even after the occurrence of consid-
erable variations (362). Even though several vaccine clinical trials are being conducted
around the world, pregnant women have been completely excluded from these
studies. Pregnant women are highly vulnerable to emerging diseases such as COVID-19
due to alterations in the immune system and other physiological systems that are
associated with pregnancy. Therefore, in the event of successful vaccine development,
pregnant women will not get access to the vaccines (361). Hence, it is recommended
that pregnant women be included in the ongoing vaccine trials, since successful
vaccination in pregnancy will protect the mother, fetus, and newborn.

The heterologous immune effects induced by Bacillus Calmette Guérin (BCG) vac-
cination is a promising strategy for controlling the COVID-19 pandemic and requires
further investigations. BCG is a widely used vaccine against tuberculosis in high-risk
regions. It is derived from a live attenuated strain of Mycobacterium bovis. At present,
three new clinical trials have been registered to evaluate the protective role of BCG
vaccination against SARS-CoV-2 (363). Recently, a cohort study was conducted to
evaluate the impact of childhood BCG vaccination in COVID-19 PCR positivity rates.
However, childhood BCG vaccination was found to be associated with a rate of
COVID-19-positive test results similar to that of the nonvaccinated group (364). Further
studies are required to analyze whether BCG vaccination in childhood can induce
protective effects against COVID-19 in adulthood. Population genetic studies con-
ducted on 103 genomes identified that the SARS-CoV-2 virus has evolved into two
major types, L and S. Among the two types, L type is expected to be the most prevalent
(�70%), followed by the S type (�30%) (366). This finding has a significant impact on
our race to develop an ideal vaccine, since the vaccine candidate has to target both
strains to be considered effective. At present, the genetic differences between the L and
S types are very small and may not affect the immune response. However, we can
expect further genetic variations in the coming days that could lead to the emergence
of new strains (367).

Therapeutics and Drugs

There is no currently licensed specific antiviral treatment for MERS- and SARS-CoV
infections, and the main focus in clinical settings remains on lessening clinical signs and
providing supportive care (183–186). Effective drugs to manage COVID-19 patients
include remdesivir, lopinavir/ritonavir alone or in a blend with interferon beta, conva-
lescent plasma, and monoclonal antibodies (MAbs); however, efficacy and safety issues
of these drugs require additional clinical trials (187, 281). A controlled trial of ritonavir-
boosted lopinavir and interferon alpha 2b treatment was performed on COVID-19
hospitalized patients (ChiCTR2000029308) (188). In addition, the use of hydroxychlo-
roquine and tocilizumab for their potential role in modulating inflammatory responses
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in the lungs and antiviral effect has been proposed and discussed in many research
articles. Still, no fool-proof clinical trials have been published (194, 196, 197, 261–272).
Recently, a clinical trial conducted on adult patients suffering from severe COVID-19
revealed no benefit of lopinavir-ritonavir treatment over standard care (273).

The efforts to control SARS-CoV-2 infection utilize defined strategies as followed
against MERS and SARS, along with adopting and strengthening a few precautionary
measures owing to the unknown nature of this novel virus (36, 189). Presently, the main
course of treatment for severely affected SARS-CoV-2 patients admitted to hospitals
includes mechanical ventilation, intensive care unit (ICU) admittance, and symptomatic
and supportive therapies. Additionally, RNA synthesis inhibitors (lamivudine and teno-
fovir disoproxil fumarate), remdesivir, neuraminidase inhibitors, peptide (EK1), anti-
inflammatory drugs, abidol, and Chinese traditional medicine (Lianhuaqingwen and
ShuFengJieDu capsules) could aid in COVID-19 treatment. However, further clinical
trials are being carried out concerning their safety and efficacy (7). It might require
months to a year(s) to design and develop effective drugs, therapeutics, and vaccines
against COVID-19, with adequate evaluation and approval from regulatory bodies and
moving to the bulk production of many millions of doses at commercial levels to meet
the timely demand of mass populations across the globe (9). Continuous efforts are also
warranted to identify and assess viable drugs and immunotherapeutic regimens that
revealed proven potency in combating other viral agents similar to SARS-CoV-2.

COVID-19 patients showing severe signs are treated symptomatically along with
oxygen therapy. In such cases where the patients progress toward respiratory failure
and become refractory to oxygen therapy, mechanical ventilation is necessitated. The
COVID-19-induced septic shock can be managed by providing adequate hemodynamic
support (299). Several classes of drugs are currently being evaluated for their potential
therapeutic action against SARS-CoV-2. Therapeutic agents that have anti-SARS-CoV-2
activity can be broadly classified into three categories: drugs that block virus entry into
the host cell, drugs that block viral replication as well as its survival within the host cell,
and drugs that attenuate the exaggerated host immune response (300). An inflamma-
tory cytokine storm is commonly seen in critically ill COVID-19 patients. Hence, they
may benefit from the use of timely anti-inflammation treatment. Anti-inflammatory
therapy using drugs like glucocorticoids, cytokine inhibitors, JAK inhibitors, and chlo-
roquine/hydroxychloroquine should be done only after analyzing the risk/benefit ratio
in COVID-19 patients (301). There have not been any studies concerning the application
of nonsteroidal anti-inflammatory drugs (NSAID) to COVID-19-infected patients. How-
ever, reasonable pieces of evidence are available that link NSAID uses with the
occurrence of respiratory and cardiovascular adverse effects. Hence, as a cautionary
approach, it is better to recommend the use of NSAIDs as the first-line option for
managing COVID-19 symptoms (302). The use of corticosteroids in COVID-19 patients
is still a matter of controversy and requires further systematic clinical studies. The
guidelines that were put forward to manage critically ill adults suggest the use of
systemic corticosteroids in mechanically ventilated adults with ARDS (303). The gener-
alized use of corticosteroids is not indicated in COVID-19, since there are some concerns
associated with the use of corticosteroids in viral pneumonia. Stem cell therapy using
mesenchymal stem cells (MSCs) is another hopeful strategy that can be used in clinical
cases of COVID-19 owing to its potential immunomodulatory capacity. It may have a
beneficial role in attenuating the cytokine storm that is observed in severe cases of
SARS-CoV-2 infection, thereby reducing mortality. Among the different types of MSCs,
expanded umbilical cord MSCs can be considered a potential therapeutic agent that
requires further validation for managing critically ill COVID-19 patients (304).

Repurposed broad-spectrum antiviral drugs having proven uses against other viral
pathogens can be employed for SARS-CoV-2-infected patients. These possess benefits
of easy accessibility and recognized pharmacokinetic and pharmacodynamic activities,
stability, doses, and side effects (9). Repurposed drugs have been studied for treating
CoV infections, like lopinavir/ritonavir, and interferon-1� revealed in vitro anti-MERS-
CoV action. The in vivo experiment carried out in the nonhuman primate model of
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common marmosets treated with lopinavir/ritonavir and interferon beta showed su-
perior protective results in treated animals than in the untreated ones (190). A com-
bination of these drugs is being evaluated to treat MERS in humans (MIRACLE trial)
(191). These two protease inhibitors (lopinavir and ritonavir), in combination with
ribavirin, gave encouraging clinical outcomes in SARS patients, suggesting their ther-
apeutic values (165). However, in the current scenario, due to the lack of specific
therapeutic agents against SARS-CoV-2, hospitalized patients confirmed for the disease
are given supportive care, like oxygen and fluid therapy, along with antibiotic therapy
for managing secondary bacterial infections (192). Patients with novel coronavirus or
COVID-19 pneumonia who are mechanically ventilated often require sedatives, anal-
gesics, and even muscle relaxation drugs to prevent ventilator-related lung injury
associated with human-machine incoordination (122). The result obtained from a
clinical study of four patients infected with COVID-19 claimed that combination therapy
using lopinavir/ritonavir, arbidol, and Shufeng Jiedu capsules (traditional Chinese med-
icine) was found to be effective in managing COVID-19 pneumonia (193). It is difficult
to evaluate the therapeutic potential of a drug or a combination of drugs for managing
a disease based on such a limited sample size. Before choosing the ideal therapeutic
agent for the management of COVID-19, randomized clinical control studies should be
performed with a sufficient study population.

Antiviral Drugs

Several classes of routinely used antiviral drugs, like oseltamivir (neuraminidase
inhibitor), acyclovir, ganciclovir, and ribavirin, do not have any effect on COVID-19 and,
hence, are not recommended (187). Oseltamivir, a neuraminidase inhibitor, has been
explored in Chinese hospitals for treating suspected COVID-19 cases, although proven
efficacy against SARS-CoV-2 is still lacking for this drug (7). The in vitro antiviral potential
of FAD-approved drugs, viz., ribavirin, penciclovir, nitazoxanide, nafamostat, and chlo-
roquine, tested in comparison to remdesivir and favipiravir (broad-spectrum antiviral
drugs) revealed remdesivir and chloroquine to be highly effective against SARS-CoV-2
infection in vitro (194). Ribavirin, penciclovir, and favipiravir might not possess note-
worthy in vivo antiviral actions for SARS-CoV-2, since higher concentrations of these
nucleoside analogs are needed in vitro to lessen the viral infection. Both remdesivir and
chloroquine are being used in humans to treat other diseases, and such safer drugs can
be explored for assessing their effectiveness in COVID-19 patients.

Several therapeutic agents, such as lopinavir/ritonavir, chloroquine, and hydroxy-
chloroquine, have been proposed for the clinical management of COVID-19 (299). A
molecular docking study, conducted in the RNA-dependent RNA polymerase (RdRp) of
SARS-CoV-2 using different commercially available antipolymerase drugs, identified
that drugs such as ribavirin, remdesivir, galidesivir, tenofovir, and sofosbuvir bind RdRp
tightly, indicating their vast potential to be used against COVID-19 (305). A broad-
spectrum antiviral drug that was developed in the United States, tilorone dihydrochlo-
ride (tilorone), was previously found to possess potent antiviral activity against MERS,
Marburg, Ebola, and Chikungunya viruses (306). Even though it had broad-spectrum
activity, it was neglected for an extended period. Tilorone is another antiviral drug that
might have activity against SARS-CoV-2.

Remdesivir, a novel nucleotide analog prodrug, was developed for treating Ebola
virus disease (EVD), and it was also found to inhibit the replication of SARS-CoV and
MERS-CoV in primary human airway epithelial cell culture systems (195). Recently, in
vitro study has proven that remdesivir has better antiviral activity than lopinavir and
ritonavir. Further, in vivo studies conducted in mice also identified that treatment with
remdesivir improved pulmonary function and reduced viral loads and lung pathology
both in prophylactic and therapeutic regimens compared to lopinavir/ritonavir-IFN-�
treatment in MERS-CoV infection (8). Remdesivir also inhibits a diverse range of
coronaviruses, including circulating human CoV, zoonotic bat CoV, and prepandemic
zoonotic CoV (195). Remdesivir is also considered the only therapeutic drug that
significantly reduces pulmonary pathology (8). All these findings indicate that remde-
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sivir has to be further evaluated for its efficacy in the treatment of COVID-19 infection
in humans. The broad-spectrum activity exhibited by remdesivir will help control the
spread of disease in the event of a new coronavirus outbreak.

Chloroquine is an antimalarial drug known to possess antiviral activity due to its
ability to block virus-cell fusion by raising the endosomal pH necessary for fusion. It also
interferes with virus-receptor binding by interfering with the terminal glycosylation of
SARS-CoV cellular receptors, such as ACE2 (196). In a recent multicenter clinical trial that
was conducted in China, chloroquine phosphate was found to exhibit both efficacy
and safety in the therapeutic management of SARS-CoV-2-associated pneumonia
(197). This drug is already included in the treatment guidelines issued by the
National Health Commission of the People’s Republic of China. The preliminary
clinical trials using hydroxychloroquine, another aminoquinoline drug, gave promising
results. The COVID-19 patients received 600 mg of hydroxychloroquine daily along with
azithromycin as a single-arm protocol. This protocol was found to be associated with a
noteworthy reduction in viral load. Finally, it resulted in a complete cure (271); however,
the study comprised a small population and, hence, the possibility of misinterpretation
could arise. However, in another case study, the authors raised concerns over the
efficacy of hydroxychloroquine-azithromycin in the treatment of COVID-19 patients,
since no observable effect was seen when they were used. In some cases, the treatment
was discontinued due to the prolongation of the QT interval (307). Hence, further
randomized clinical trials are required before concluding this matter.

Recently, another FDA-approved drug, ivermectin, was reported to inhibit the in
vitro replication of SARS-CoV-2. The findings from this study indicate that a single
treatment of this drug was able to induce an �5,000-fold reduction in the viral RNA at
48 h in cell culture. (308). One of the main disadvantages that limit the clinical utility of
ivermectin is its potential to cause cytotoxicity. However, altering the vehicles used in
the formulations, the pharmacokinetic properties can be modified, thereby having
significant control over the systemic concentration of ivermectin (338). Based on the
pharmacokinetic simulation, it was also found that ivermectin may have limited ther-
apeutic utility in managing COVID-19, since the inhibitory concentration that has to be
achieved for effective anti-SARS-CoV-2 activity is far higher than the maximum plasma
concentration achieved by administering the approved dose (340). However, ivermec-
tin, being a host-directed agent, exhibits antiviral activity by targeting a critical cellular
process of the mammalian cell. Therefore, the administration of ivermectin, even at
lower doses, will reduce the viral load at a minor level. This slight decrease will provide
a great advantage to the immune system for mounting a large-scale antiviral response
against SARS-CoV-2 (341). Further, a combination of ivermectin and hydroxychloro-
quine might have a synergistic effect, since ivermectin reduces viral replication, while
hydroxychloroquine inhibits the entry of the virus in the host cell (339). Further, in vivo
studies and randomized clinical control trials are required to understand the mecha-
nism as well as the clinical utility of this promising drug.

Nafamostat is a potent inhibitor of MERS-CoV that acts by preventing membrane
fusion. Nevertheless, it does not have any sort of inhibitory action against SARS-CoV-2
infection (194). Recently, several newly synthesized halogenated triazole compounds
were evaluated, using fluorescence resonance energy transfer (FRET)-based helicase
assays, for their ability to inhibit helicase activity.

Among the evaluated compounds, 4-(cyclopent-1-en-3-ylamino)-5-[2-(4-iodophenyl)
hydrazinyl]-4H-1,2,4-triazole-3-thiol and 4-(cyclopent-1-en-3-ylamino)-5-[2-(4-chlorophenyl)
hydrazinyl]-4H-1,2,4-triazole-3-thiol were found to be the most potent. These compounds
were used for in silico studies, and molecular docking was accomplished into the active
binding site of MERS-CoV helicase nsp13 (21). Further studies are required for evalu-
ating the therapeutic potential of these newly identified compounds in the manage-
ment of COVID-19 infection.

Passive Immunization/Antibody Therapy/MAb

Monoclonal antibodies (MAbs) may be helpful in the intervention of disease in
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CoV-exposed individuals. Patients recovering from SARS showed robust neutralizing
antibodies against this CoV infection (164). A set of MAbs aimed at the MERS-CoV S
protein-specific domains, comprising six specific epitope groups interacting with
receptor-binding, membrane fusion, and sialic acid-binding sites, make up crucial entry
tasks of S protein (198, 199). Passive immunization employing weaker and strongly
neutralizing antibodies provided considerable protection in mice against a MERS-CoV
lethal challenge. Such antibodies may play a crucial role in enhancing protective
humoral responses against the emerging CoVs by aiming appropriate epitopes and
functions of the S protein. The cross-neutralization ability of SARS-CoV RBD-specific
neutralizing MAbs considerably relies on the resemblance between their RBDs; there-
fore, SARS-CoV RBD-specific antibodies could cross-neutralized SL CoVs, i.e., bat-SL-CoV
strain WIV1 (RBD with eight amino acid differences from SARS-CoV) but not bat-SL-CoV
strain SHC014 (24 amino acid differences) (200).

Appropriate RBD-specific MAbs can be recognized by a relative analysis of RBD of
SARS-CoV-2 to that of SARS-CoV, and cross-neutralizing SARS-CoV RBD-specific MAbs
could be explored for their effectiveness against COVID-19 and further need to be
assessed clinically. The U.S. biotechnology company Regeneron is attempting to rec-
ognize potent and specific MAbs to combat COVID-19. An ideal therapeutic option
suggested for SARS-CoV-2 (COVID-19) is the combination therapy comprised of MAbs
and the drug remdesivir (COVID-19) (201). The SARS-CoV-specific human MAb CR3022
is found to bind with SARS-CoV-2 RBD, indicating its potential as a therapeutic agent
in the management of COVID-19. It can be used alone or in combination with other
effective neutralizing antibodies for the treatment and prevention of COVID-19 (202).
Furthermore, SARS-CoV-specific neutralizing antibodies, like m396 and CR3014, failed
to bind the S protein of SARS-CoV-2, indicating that a particular level of similarity is
mandatory between the RBDs of SARS-CoV and SARS-CoV-2 for the cross-reactivity to
occur.

Further assessment is necessary before confirming the effectiveness of such com-
bination therapy. In addition, to prevent further community and nosocomial spread of
COVID-19, the postprocedure risk management program should not be neglected
(309). Development of broad-spectrum inhibitors against the human coronaviral patho-
gens will help to facilitate clinical trials on the effectiveness of such inhibitors against
endemic and emerging coronaviruses (203). A promising animal study revealed the
protective effect of passive immunotherapy with immune serum from MERS-immune
camels on mice infected with MERS-CoV (204). Passive immunotherapy using conva-
lescent plasma is another strategy that can be used for treating COVID-19-infected,
critically ill patients (205).

The exploration of fully human antibodies (human single-chain antibodies; HuscFvs)
or humanized nanobodies (single-domain antibodies; sdAb, VH/VHH) could aid in
blocking virus replication, as these agents can traverse the virus-infected cell mem-
branes (transbodies) and can interfere with the biological characteristics of the repli-
cating virus proteins. Such examples include transbodies to the influenza virus, hepa-
titis C virus, Ebola virus, and dengue virus (206). Producing similar transbodies against
intracellular proteins of coronaviruses, such as papain-like proteases (PLpro), cysteine-
like protease (3CLpro), or other nsps, which are essential for replication and transcrip-
tion of the virus, might formulate a practical move forward for a safer and potent
passive immunization approach for virus-exposed persons and rendering therapy to
infected patients.

In a case study on five grimly sick patients having symptoms of severe pneumonia
due to COVID-19, convalescent plasma administration was found to be helpful in
patients recovering successfully. The convalescent plasma containing a SARS-CoV-2-
specific ELISA (serum) antibody titer higher than 1:1,000 and neutralizing antibody titer
more significant than 40 was collected from the recovered patients and used for plasma
transfusion twice in a volume of 200 to 250 ml on the day of collection (310). At present,
treatment for sepsis and ARDS mainly involves antimicrobial therapy, source control,
and supportive care. Hence, the use of therapeutic plasma exchange can be considered
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an option in managing such severe conditions. Further randomized trials can be
designed to investigate its efficacy (311).

Potential Therapeutic Agents

Potent therapeutics to combat SARS-CoV-2 infection include virus binding mole-
cules, molecules or inhibitors targeting particular enzymes implicated in replication and
transcription process of the virus, helicase inhibitors, vital viral proteases and proteins,
protease inhibitors of host cells, endocytosis inhibitors, short interfering RNA (siRNA),
neutralizing antibodies, MAbs against the host receptor, MAbs interfering with the S1
RBD, antiviral peptide aimed at S2, and natural drugs/medicines (7, 166, 186). The S
protein acts as the critical target for developing CoV antivirals, like inhibitors of S
protein and S cleavage, neutralizing antibodies, RBD-ACE2 blockers, siRNAs, blockers of
the fusion core, and proteases (168).

All of these therapeutic approaches have revealed both in vitro and in vivo anti-CoV
potential. Although in vitro research carried out with these therapeutics showed
efficacy, most need appropriate support from randomized animal or human trials.
Therefore, they might be of limited applicability and require trials against SARS-CoV-2
to gain practical usefulness. The binding of SARS-CoV-2 with ACE2 leads to the
exacerbation of pneumonia as a consequence of the imbalance in the renin-
angiotensin system (RAS). The virus-induced pulmonary inflammatory responses may
be reduced by the administration of ACE inhibitors (ACEI) and angiotensin type-1
receptor (AT1R) (207).

Several investigations have suggested the use of small-molecule inhibitors for the
potential control of SARS-CoV infections. Drugs of the FDA-approved compound library
were screened to identify four small-molecule inhibitors of MERS-CoV (chlorpromazine,
chloroquine, loperamide, and lopinavir) that inhibited viral replication. These com-
pounds also hinder SARS-CoV and human CoVs (208). Therapeutic strategies involving
the use of specific antibodies or compounds that neutralize cytokines and their
receptors will help to restrain the host inflammatory responses. Such drugs acting
specifically in the respiratory tract will help to reduce virus-triggered immune pathol-
ogies in COVID-19 (209). The later stages of coronavirus-induced inflammatory cascades
are characterized by the release of proinflammatory interleukin-1 (IL-1) family members,
such as IL-1 and IL-33. Hence, there exists a possibility that the inflammation associated
with coronavirus can be inhibited by utilizing anti-inflammatory cytokines that belong
to the IL-1 family (92). It has also been suggested that the actin protein is the host factor
that is involved in cell entry and pathogenesis of SARS-CoV-2. Hence, those drugs that
modulate the biological activity of this protein, like ibuprofen, might have some
therapeutic application in managing the disease (174). The plasma angiotensin 2 level
was found to be markedly elevated in COVID-19 infection and was correlated with viral
load and lung injury. Hence, drugs that block angiotensin receptors may have potential
for treating COVID-19 infection (121). A scientist from Germany, named Rolf Hilgenfeld,
has been working on the identification of drugs for the treatment of coronaviral
infection since the time of the first SARS outbreak (19).

The SARS-CoV S2 subunit has a significant function in mediating virus fusion that
provides entry into the host cell. Heptad repeat 1 (HR1) and heptad repeat 2 (HR2) can
interact and form a six-helix bundle that brings the viral and cellular membranes in
close proximity, facilitating its fusion. The sequence alignment study conducted be-
tween COVID-19 and SARS-CoV identified that the S2 subunits are highly conserved in
these CoVs. The HR1 and HR2 domains showed 92.6% and 100% overall identity,
respectively (210). From these findings, we can confirm the significance of COVID-19
HR1 and HR2 and their vital role in host cell entry. Hence, fusion inhibitors target the
HR1 domain of S protein, thereby preventing viral fusion and entry into the host cell.
This is another potential therapeutic strategy that can be used in the management of
COVID-19. Other than the specific therapy directed against COVID-19, general treat-
ments play a vital role in the enhancement of host immune responses against the viral
agent. Inadequate nutrition is linked to the weakening of the host immune response,
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making the individual more susceptible. The role played by nutrition in disease
susceptibility should be measured by evaluating the nutritional status of patients with
COVID-19 (205).

Animal Models and Cell Cultures

For evaluating the potential of vaccines and therapeutics against CoVs, including
SARS-CoV, MERS-CoVs, and the presently emerging SARS-CoV-2, suitable animal models
that can mimic the clinical disease are needed (211, 212). Various animal models were
assessed for SARS- and MERS-CoVs, such as mice, guinea pigs, golden Syrian hamsters,
ferrets, rabbits, nonhuman primates like rhesus macaques and marmosets, and cats
(185, 213–218). The specificity of the virus to hACE2 (receptor of SARS-CoV) was found
to be a significant barrier in developing animal models. Consequently, a SARS-CoV
transgenic mouse model has been developed by inserting the hACE2 gene into the
mouse genome (219). The inability of MERS-CoV to replicate in the respiratory tracts of
animals (mice, hamsters, and ferrets) is another limiting factor. However, with genetic
engineering, a 288-330�/� MERS-CoV genetically modified mouse model was devel-
oped and now is in use for the assessment of novel drugs and vaccines against
MERS-CoV (220). In the past, small animals (mice or hamsters) have been targeted for
being closer to a humanized structure, such as mouse DPP4 altered with human DPP4
(hDPP4), hDPP4-transduced mice, and hDPP4-Tg mice (transgenic for expressing
hDPP4) for MERS-CoV infection (221). The CRISPR-Cas9 gene-editing tool has been used
for inserting genomic alterations in mice, making them susceptible to MERS-CoV
infection (222). Efforts are under way to recognize suitable animal models for SARS-
CoV2/COVID-19, identify the receptor affinity of this virus, study pathology in experi-
mental animal models, and explore virus-specific immune responses and protection
studies, which together would increase the pace of efforts being made for developing
potent vaccines and drugs to counter this emerging virus. Cell lines, such as monkey
epithelial cell lines (LLC-MK2 and Vero-B4), goat lung cells, alpaca kidney cells, drom-
edary umbilical cord cells, and advanced ex vivo three-dimensional tracheobronchial
tissue, have been explored to study human CoVs (MERS-CoV) (223, 224). Vero and
Huh-7 cells (human liver cancer cells) have been used for isolating SARS-CoV-2 (194).

Recently, an experimental study with rhesus monkeys as animal models revealed the
absence of any viral loads in nasopharyngeal and anal swabs, and no viral replication
was recorded in the primary tissues at a time interval of 5 days post-reinfection in
reexposed monkeys (274). The subsequent virological, radiological, and pathological
observations indicated that the monkeys with reexposure had no recurrence of COVID-
19, like the SARS-CoV-2-infected monkeys without rechallenge. These findings suggest
that primary infection with SARS-CoV-2 could protect from later exposures to the virus,
which could help in defining disease prognosis and crucial inferences for designing and
developing potent vaccines against COVID-19 (274).

PREVENTION, CONTROL, AND MANAGEMENT

In contrast to their response to the 2002 SARS outbreak, China has shown immense
political openness in reporting the COVID-19 outbreak promptly. They have also
performed rapid sequencing of COVID-19 at multiple levels and shared the findings
globally within days of identifying the novel virus (225). The move made by China
opened a new chapter in global health security and diplomacy. Even though complete
lockdown was declared following the COVID-19 outbreak in Wuhan, the large-scale
movement of people has resulted in a radiating spread of infections in the surrounding
provinces as well as to several other countries. Large-scale screening programs might
help us to control the spread of this virus. However, this is both challenging as well as
time-consuming due to the present extent of infection (226). The current scenario
demands effective implementation of vigorous prevention and control strategies ow-
ing to the prospect of COVID-19 for nosocomial infections (68). Follow-ups of infected
patients by telephone on day 7 and day 14 are advised to avoid any further uninten-
tional spread or nosocomial transmission (312). The availability of public data sets
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provided by independent analytical teams will act as robust evidence that would guide
us in designing interventions against the COVID-19 outbreak. Newspaper reports and
social media can be used to analyze and reconstruct the progression of an outbreak.
They can help us to obtain detailed patient-level data in the early stages of an outbreak
(227). Immediate travel restrictions imposed by several countries might have contrib-
uted significantly to preventing the spread of SARS-CoV-2 globally (89, 228). Following
the outbreak, a temporary ban was imposed on the wildlife trade, keeping in mind the
possible role played by wild animal species in the origin of SARS-CoV-2/COVID-19 (147).
Making a permanent and bold decision on the trade of wild animal species is necessary
to prevent the possibility of virus spread and initiation of an outbreak due to zoonotic
spillover (1).

Personal protective equipment (PPE), like face masks, will help to prevent the spread
of respiratory infections like COVID-19. Face masks not only protect from infectious
aerosols but also prevent the transmission of disease to other susceptible individuals
while traveling through public transport systems (313). Another critical practice that
can reduce the transmission of respiratory diseases is the maintenance of hand
hygiene. However, the efficacy of this practice in reducing the transmission of respira-
tory viruses like SARS-CoV-2 is much dependent upon the size of droplets produced.
Hand hygiene will reduce disease transmission only if the virus is transmitted through
the formation of large droplets (314). Hence, it is better not to overemphasize that hand
hygiene will prevent the transmission of SARS-CoV-2, since it may produce a false sense
of safety among the general public that further contributes to the spread of COVID-19.
Even though airborne spread has not been reported in SARS-CoV-2 infection, trans-
mission can occur through droplets and fomites, especially when there is close,
unprotected contact between infected and susceptible individuals. Hence, hand hy-
giene is equally as important as the use of appropriate PPE, like face masks, to break the
transmission cycle of the virus; both hand hygiene and face masks help to lessen the
risk of COVID-19 transmission (315).

Medical staff are in the group of individuals most at risk of getting COVID-19
infection. This is because they are exposed directly to infected patients. Hence, proper
training must be given to all hospital staff on methods of prevention and protection so
that they become competent enough to protect themselves and others from this
deadly disease (316). As a preventive measure, health care workers caring for infected
patients should take extreme precautions against both contact and airborne transmis-
sion. They should use PPE such as face masks (N95 or FFP3), eye protection (goggles),
gowns, and gloves to nullify the risk of infection (299).

The human-to-human transmission reported in SARS-CoV-2 infection occurs mainly
through droplet or direct contact. Due to this finding, frontline health care workers
should follow stringent infection control and preventive measures, such as the use of
PPE, to prevent infection (110). The mental health of the medical/health workers who
are involved in the COVID-19 outbreak is of great importance, because the strain on
their mental well-being will affect their attention, concentration, and decision-making
capacity. Hence, for control of the COVID-19 outbreak, rapid steps should be taken to
protect the mental health of medical workers (229).

Since the living mammals sold in the wet market are suspected to be the interme-
diate host of SARS-CoV-2, there is a need for strengthening the regulatory mechanism
for wild animal trade (13). The total number of COVID-19 confirmed cases is on a
continuous rise and the cure rate is relatively low, making disease control very difficult
to achieve. The Chinese government is making continuous efforts to contain the
disease by taking emergency control and prevention measures. They have already built
a hospital for patients affected by this virus and are currently building several more for
accommodating the continuously increasing infected population (230). The effective
control of SARS-CoV-2/COVID-19 requires high-level interventions like intensive contact
tracing, as well as the quarantine of people with suspected infection and the isolation
of infected individuals. The implementation of rigorous control and preventive mea-
sures together might control the R0 number and reduce the transmission risk (228).
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Considering the zoonotic links associated with SARS-CoV-2, the One Health approach
may play a vital role in the prevention and control measures being followed to restrain
this pandemic virus (317–319). The substantial importation of COVID-19 presymptom-
atic cases from Wuhan has resulted in independent, self-sustaining outbreaks across
major cities both within the country and across the globe. The majority of Chinese cities
are now facing localized outbreaks of COVID-19 (231). Hence, deploying efficient public
health interventions might help to cut the spread of this virus globally.

The occurrence of COVID-19 infection on several cruise ships gave us a preliminary
idea regarding the transmission pattern of the disease. Cruise ships act as a closed
environment and provide an ideal setting for the occurrence of respiratory disease
outbreaks. Such a situation poses a significant threat to travelers, since people from
different countries are on board, which favors the introduction of the pathogen (320).
Although nearly 30 cruise ships from different countries have been found harboring
COVID-19 infection, the major cruise ships that were involved in the COVID-19 out-
breaks are the Diamond Princess, Grand Princess, Celebrity Apex, and Ruby Princess. The
number of confirmed COVID-19 cases around the world is on the rise. The success of
preventive measures put forward by every country is mainly dependent upon their
ability to anticipate the approaching waves of patients. This will help to properly
prepare the health care workers and increase the intensive care unit (ICU) capacity
(321). Instead of entirely relying on lockdown protocols, countries should focus mainly
on alternative intervention strategies, such as large-scale testing, contract tracing, and
localized quarantine of suspected cases for limiting the spread of this pandemic virus.
Such intervention strategies will be useful either at the beginning of the pandemic or
after lockdown relaxation (322). Lockdown should be imposed only to slow down
disease progression among the population so that the health care system is not
overloaded.

The reproduction number (R0) of COVID-19 infection was earlier estimated to be in
the range of 1.4 to 2.5 (70); recently, it was estimated to be 2.24 to 3.58 (76). Compared
to its coronavirus predecessors, COVID-19 has an R0 value that is greater than that of
MERS (R0 � 1) (108) but less than that of SARS (R0 value of 2 to 5) (93). Still, to prevent
further spread of disease at mass gatherings, functions remain canceled in the affected
cities, and persons are asked to work from home (232). Hence, it is a relief that the
current outbreak of COVID-19 infection can be brought under control with the adop-
tion of strategic preventive and control measures along with the early isolation of
subsequent cases in the coming days. Studies also report that since air traffic between
China and African countries increased many times over in the decade after the SARS
outbreak, African countries need to be vigilant to prevent the spread of novel coro-
navirus in Africa (225). Due to fear of virus spread, Wuhan City was completely shut
down (233). The immediate control of the ongoing COVID-19 outbreaks appears a
mammoth task, especially for developing countries, due to their inability to allocate
quarantine stations that could screen infected individuals’ movements (234). Such
underdeveloped countries should divert their resources and energy to enforcing the
primary level of preventive measures, like controlling the entry of individuals from
China or countries where the disease has flared up, isolating the infected individuals,
and quarantining individuals with suspected infection. Most of the sub-Saharan African
countries have a fragile health system that can be crippled in the event of an outbreak.
Effective management of COVID-19 would be difficult for low-income countries due to
their inability to respond rapidly due to the lack of an efficient health care system (65).
Controlling the imported cases is critical in preventing the spread of COVID-19 to other
countries that have not reported the disease until now. The possibility of an imported
case of COVID-19 leading to sustained human-to-human transmission was estimated to
be 0.41. This can be reduced to a value of 0.012 by decreasing the mean time from the
onset of symptoms to hospitalization and can only be made possible by using intense
disease surveillance systems (235). The silent importations of infected individuals
(before the manifestation of clinical signs) also contributed significantly to the spread
of disease across the major cities of the world. Even though the travel ban was
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implemented in Wuhan (89), infected persons who traveled out of the city just before
the imposition of the ban might have remained undetected and resulted in local
outbreaks (236). Emerging novel diseases like COVID-19 are difficult to contain within
the country of origin, since globalization has led to a world without borders. Hence,
international collaboration plays a vital role in preventing the further spread of this
virus across the globe (237).

We also predict the possibility of another outbreak, as predicted by Fan et al. (6).
Indeed, the present outbreak caused by SARS-CoV-2 (COVID-19) was expected. Similar
to previous outbreaks, the current outbreak also will be contained shortly. However, the
real issue is how we are planning to counter the next zoonotic CoV epidemic that is
likely to occur within the next 5 to 10 years or even sooner (Fig. 7).

CONCLUDING REMARKS

Several years after the global SARS epidemic, the current SARS-CoV-2/COVID-19
pandemic has served as a reminder of how novel pathogens can rapidly emerge and
spread through the human population and eventually cause severe public health crises.
Further research should be conducted to establish animal models for SARS-CoV-2 to
investigate replication, transmission dynamics, and pathogenesis in humans. This may
help develop and evaluate potential therapeutic strategies against zoonotic CoV epi-
demics. Present trends suggest the occurrence of future outbreaks of CoVs due to
changes in the climate, and ecological conditions may be associated with human-
animal contact. Live-animal markets, such as the Huanan South China Seafood Market,
represent ideal conditions for interspecies contact of wildlife with domestic birds, pigs,
and mammals, which substantially increases the probability of interspecies transmis-
sion of CoV infections and could result in high risks to humans due to adaptive genetic
recombination in these viruses (323–325).

The COVID-19-associated symptoms are fever, cough, expectoration, headache, and
myalgia or fatigue. Individuals with asymptomatic and atypical clinical manifestations
were also identified recently, further adding to the complexity of disease transmission
dynamics. Atypical clinical manifestations may only express symptoms such as fatigue
instead of respiratory signs such as fever, cough, and sputum. In such cases, the
clinician must be vigilant for the possible occurrence of asymptomatic and atypical
clinical manifestations to avoid the possibility of missed diagnoses.

The present outbreak caused by SARS-CoV-2 was, indeed, expected. Similar to

FIG 7 Coronavirus origins. Coronavirus is the most prominent example of an emerging virus that has
crossed the species barrier from wild animals to humans, like SARS and MERS. The origin of SARS-CoV-2
is also suspected to be from an intermediate animal host. The possibility of crossing the species barrier
again for the fourth time cannot be ruled out.
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previous outbreaks, the current pandemic also will be contained shortly. However, the
real question is, how are we planning to counter the next zoonotic CoV epidemic that
is likely to occur within the next 5 to 10 years or perhaps sooner? Our knowledge of
most of the bat CoVs is scarce, as these viruses have not been isolated and studied, and
extensive studies on such viruses are typically only conducted when they are associated
with specific disease outbreaks. The next step following the control of the COVID-19
outbreak in China should be focused on screening, identification, isolation, and char-
acterization of CoVs present in wildlife species of China, particularly in bats. Both in vitro
and in vivo studies (using suitable animal models) should be conducted to evaluate the
risk of future epidemics. Presently, licensed antiviral drugs or vaccines against SARS-
CoV, MERS-CoV, and SARS-CoV-2 are lacking. However, advances in designing antiviral
drugs and vaccines against several other emerging diseases will help develop suitable
therapeutic agents against COVID-19 in a short time. Until then, we must rely exclu-
sively on various control and prevention measures to prevent this new disease from
becoming a pandemic.
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