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Abstract

Positron emission tomography/computed tomography (PET/CT) imaging can simultaneously 

acquire functional metabolic information and anatomical information of the human body. How to 

rationally fuse the complementary information in PET/CT for accurate tumor segmentation is 

challenging. In this study, a novel deep learning based variational method was proposed to 

automatically fuse multimodality information for tumor segmentation in PET/CT. A 3D fully 

convolutional network (FCN) was first designed and trained to produce a probability map from the 

CT image. The learnt probability map describes the probability of each CT voxel belonging to the 

tumor or the background, and roughly distinguishes the tumor from its surrounding soft tissues. A 

fuzzy variational model was then proposed to incorporate the probability map and the PET 

intensity image for an accurate multimodality tumor segmentation, where the probability map 

acted as a membership degree prior. A split Bregman algorithm was used to minimize the 

variational model. The proposed method was validated on a non-small cell lung cancer dataset 

with 84 PET/CT images. Experimental results demonstrated that: 1). Only a few training samples 

were needed for training the designed network to produce the probability map; 2). The proposed 

method can be applied to small datasets, normally seen in clinic research; 3). The proposed 

method successfully fused the complementary information in PET/CT, and outperformed two 

existing deep learning-based multimodality segmentation methods and other multimodality 

segmentation methods using traditional fusion strategies (without deep learning); 4). The proposed 

method had a good performance for tumor segmentation, even for those with Fluorodeoxyglucose 

(FDG) uptake inhomogeneity and blurred tumor edges (two major challenges in PET single 

modality segmentation) and complex surrounding soft tissues (one major challenge in CT single 

modality segmentation), and achieved an average dice similarity indexes (DSI) of 0.86 ± 0.05, 
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sensitivity (SE) of 0.86 ± 0.07, positive predictive value (PPV) of 0.87 ± 0.10, volume error (VE) 

of 0.16 ± 0.12, and classification error (CE) of 0.30 ± 0.12.
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1. Introduction

Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) has been widely 

used in clinical practice. PET imaging extracts the functional and metabolic information of 

the human body. Compared with other imaging modalities, such as the magnetic resonance 

imaging (MRI) and computed tomography (CT), PET can be used for an earlier diagnosis of 

the disease. Because of a faster metabolism and more 1SF-FDG uptake, the diseased areas 

appear as ‘hot’ in PET images [1]. The contrast is typically high between malignant tumors 

and normal tissues in PET (see Fig. 1(a) and (c) for examples). However, the PET scanners 

usually have a low spatial resolution, which results in blurred tumor edges (Fig. 1(e) and (g)) 

[2]. Besides, a tumor may present intensity inhomogeneity in PET (Fig. 1(c) or (g)). Both of 

these make it difficult to accurately delineate a tumor from a single PET image.

CT imaging provides detailed anatomical information of the human body. It has a higher 

spatial resolution than PET. There are clear boundaries between the tumors and the non-soft 

tissues in CT images (Fig. 1(f) and (h)). However, the intensity of the tumor is often similar 

to that of the normal soft tissues in CT. When a tumor invades into the adjacent normal soft 

tissues, it is very difficult to tell the tumor from the normal tissues in CT. The lung cancer is 

a typical example of this kind: a lung tumor can attach to the thoracic vertebrae or the chest 

wall (Fig. 1(b) and (d)). In addition, the background in a CT image can be very complex, 

which makes tumor segmentation even more difficult. For these reasons, most of traditional 

methods cannot work well for tumor segmentation using a single CT image.

In recent years, multimodal imaging techniques, such as PET/CT, MRI/CT, MRI/PET, and 

MRI/SPECT, have been used in clinic to enhance disease diagnosis and treatment 

assessment [3-5]. These techniques provide different physical or biological aspects for 

observing a tumor. Fusion strategies have been proposed to utilize the complementary 

information from multimodality images [6-8]. For tumor segmentation, rational use of the 

complementary information between different modality images can improve the tumor 

segmentation accuracy. Over the last decade, some multimodality tumor segmentation 

methods have been proposed. To identify the biophysical structure, EI Naqa et al. proposed a 

multivalued level set model based variational method to integrate information from 

multimodality images [9]. A geometric level set contour based multimodality segmentation 

algorithm was studied in [10], where the Jensen-Rényi divergence was used to evolve the 

level set contour. In [11], a variety of 3D texture features were extracted to train a combined 

decision tree (DT) with K-nearest neighbor (KNN) classifier for multimodality image 

segmentation. Han et al. constructed a PET/CT segmentation formulation based on the 

Markov Random Field optimization problem [12]. Song et al. designed an adaptive context 
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term for the objective function to achieve consistent segmentation results between PET and 

CT [13]. Ju et al. used a random walk method as an initial preprocessor to obtain object 

seeds, and a graph cut method was then used for lung tumor segmentation on PET/CT 

images [1]. Bagci et al. built an automatic random walk based multimodality image 

segmentation method [14]. This method combined different modality images using a hyper 

graph construction. Cui et al. proposed a ‘topo-poly’ graph model for PET/CT lung tumor 

segmentation. This model combined joint foreground density similarity and topology 

information between PET and CT [15]. They also proposed a label information propagation 

model for tumor segmentation in PET/CT [16]. This model correlated the local intensity 

changes of CT and the spatial–topological information from PET. All these studies 

mentioned above demonstrated that combining the information of multimodality images 

could obtain more accurate tumor segmentation result. Actually, there are a lot of 

inconsistent information between the different modality images due to the different imaging 

mechanisms. The unreasonable use of these inconsistent information will reduce the 

segmentation accuracy instead of improving it. The existing multimodality segmentation 

methods usually obtained a compromise segmentation result for the inconsistent 

information, which could not make full use of the superior information of each modality 

image.

The similar intensity distribution between the tumor and its surrounding normal soft tissues 

and the complex background in CT images always introduce a lot of inconsistent 

information for the PET and CT images. The traditional (e.g., region based and edge based) 

segmentation methods are unreliable to separate the tumor from the normal soft tissues. In 

the past several years, deep learning demonstrated great success in image recognition 

[17-19], object detection [20], object segmentation [21] and medical image processing [22], 

such as single-modality CT image segmentation [23-25], multi-channel MRI image 

segmentation [26-28], standard-dose PET image estimation from low-dose PET/MRI [29], 

and automated whole-body bone lesion detection from PET/CT images [30]. In the first 

MICCAI (Medical Image Computing and Computer Assisted Intervention) challenge on 

PET tumor segmentation, a method based on convolutional neural networks (CNN) won the 

challenge [31]. The concept of deep learning originated in the research of artificial neural 

network (ANN). Each deep learning network usually consists of multiple processing layers. 

It can learn representations of data with multiple levels of abstraction and is very good at 

discovering intricate structures in high-dimensional data [32].

In view of these good performance of deep learning, we first designed a 3D fully 

convolutional network (FCN) to produce a probability map in an end-to-end way from the 

CT image that indicates the probability of each CT voxel belonging to the tumor or the 

background. For natural images, such a probability map can be considered as a result for 

object segmentation by its own [33, 34]. It is widely known that the good performance of the 

end-to-end deep learning method typically depends on a large number of labeled training 

data. However, acquiring such amount of training data in medical imaging is typically 

infeasible. As a result, the CT probability map extracted by FCN might not be accurate 

enough when directly used as a tumor segmentation result. But it removed a great deal of 

redundant information in the CT image. Fusing the obtained CT probability map with the 

PET image information would be more conducive to tumor segmentation than directly 
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fusing the CT image information. We then designed a fuzzy variational model to adaptively 

combine the CT probability map and the PET image for a more refined tumor segmentation. 

The variational model consists of a fidelity term constructed using the PET image and a 

fuzzy membership function, a length measurement term of tumor edges, and a fuzzy 

membership degree prior term constructed using the CT probability map. The proposed 

fuzzy variational model not only successfully fused the CT and PET information, but also 

was specially designed to deal with the blurred tumor edges normally seen in a PET image 

for more accurate tumor segmentation. Combining the advantages of deep learning and 

variational segmentation method, the proposed method can accurately delineate the tumors 

and need not large amount of training samples.

A standard benchmark platform for the evaluation and validation of PET-auto-segmentation 

methods following the recommendations of the American Association of Physicists in 

Medicine (AAPM) task group No. 211 [35] was described in [36]. This tool is convenient to 

evaluate the performance of the PET-auto-segmentation methods. Unfortunately, the current 

benchmark platform can not evaluate the PET/CT co-segmentation methods. In this study, 

we validated the performance of the proposed method on a non-small cell lung cancer 

dataset with 84 PET/CT images. Experimental results showed that the proposed method 

successfully fused the complementary information between PET and CT. The large 

probability values of voxels belonging to the tumor obtained from the CT image overcame 

the impact of tumor intensity inhomogeneity in PET to tumor segmentation. The proposed 

method could correctly classify the ‘cold’ area (with low intensity) in tumor in PET as 

foreground (tumor). The small probability values of voxel belonging to the tumor obtained 

from CT was helpful to correctly classify the ‘hot’ area (normal tissues with high 18F-FDG 

uptake) in the background of PET as background. On the other hand, the high contrast 

between tumor and background in PET is helpful to eliminate the influence of the possible 

error introduced by the fuzzy membership degree prior from the CT probability map. The 

proposed method worked better for tumor segmentation than deep learning methods over a 

single modality (either PET or CT). Experimental results also demonstrated that the 

proposed method worked better than multimodality tumor segmentation methods with 

traditional fusion strategies (without deep learning) and two recently proposed deep 

learning-based multimodality segmentation methods using W-net [30] and 3D-UNet [37] 

respectively.

2. Related Work

2.1. Deep Learning Methods for CT Image Segmentation

Recent advances in deep learning have made a big leap to help solve the difficult problems 

in CT image segmentation by exploiting hierarchical feature representations learned from 

data [22]. Deep convolutional neural networks (CNNs), one type of deep learning model, 

provide enhanced performance in object segmentation. Dou et al. [25] proposed a novel 

deeply supervised network for 3D liver automatic segmentation in CT. Segmentation for 

pancreas tumor and liver tumor on CT images using deep CNNs were studied in [24] and 

[38], respectively. Typically, CNNs based segmentation systems do not fully utilize image 

spatial and configuration information. To better utilize these information, FCN was proposed 
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by Long et al. with the backbone of CNNs, achieving impressive results in multi-object 

semantic natural image segmentation [39].

FCN based methods such as U-Net [40] and V-Net [41] have been studied very recently for 

medical image segmentation. Due to the complex intensity and geometry variation in CT 

[42], additional procedures were often introduced to help enhance these deep learning 

methods to achieve more accurate and robust results [23, 43]. For example, Hu et al. [43] 

combined surface evolution and deep learning for liver segmentation. Conditional random 

fields based post-processing was used after the cascaded FCN to automatically segment liver 

and lesion in CT [23]. In this study, we used FCN to learn the probability map of lung 

tumors from CT, and integrated the probability map into a fuzzy variational model 

containing the PET image information to refine the tumor segmentation results.

2.2. Fuzzy Energy Based Variational Models

Fuzzy energy based methods allow the pixels to be classified to several regions 

simultaneously with probability in [0, 1] [44]. They are flexible and have been widely used 

for image segmentation. Krinidis and Chatzis proposed a fuzzy energy-based active contour 

model to detect objects whose boundaries are not necessarily defined by gradient [45]. Shyu 

et al. introduced a global and local fuzzy energy-based active contours for blurred and 

intensity inhomogeneity image segmentation [46]. Tran et al. proposed an active contour 

segmentation model with a fuzzy energy and a shape prior [47]. Wu et al. designed a region-

based fuzzy active contour model with kernel metric for a robust and stable image 

segmentation [48]. This model could detect the boundaries precisely and worked well with 

images in the presence of noise, outliers and low contrast. Li et al. proposed a variational 

multiphase image segmentation model based on fuzzy membership functions and L1-norm 

fidelity [44]. These methods demonstrated that the fuzzy energy-based method had a good 

performance for blurred image segmentation. In this study, we designed a fuzzy membership 

function based variational model to handle the blurred tumor edges normally seen in a PET 

image.

2.3. Lung Tumor Segmentation

Lung cancer is one of the most common malignant tumors, which seriously threaten 

people’s health and life. Accurate tumor segmentation plays a very important part in 

radiation therapy. Lung tumor segmentation has been extensively studied. As mentioned in 

Introduction, Cui et al. proposed a ‘topo-poly’ graph model [15] and a label information 

propagation model [16] for PET/CT lung tumor segmentation. Ju et al. proposed a lung 

tumor segmentation method based on random walk and graph cut [1]. In [49], Jeba et al. 
reviewed on various PET/CT lung tumor segmentation methods proposed before 2017.

In recent two years, some deep-learning-based lung tumor segmentation methods have been 

proposed. Jiang et al. proposed two multiple resolution residually connected network 

formulations for automatic lung tumor segmentation from CT images [50], Zhong et al. 
proposed a lung tumor segmentation method (3D-UNet+GC) by combining the FCN based 

semantic segmentation framework (3D-UNet) and Song’s graph cut based co-segmentation 

model [37]. First, two separate deep Unets was constructed to extract the probability maps 
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from the PET and CT images respectively. Then, the obtained two probability maps were 

employed in the graph cut based co-segmentation model to produce the final segmentation 

results. Different from Zhong’s method, the method presented in this paper extracted the 

probability map only from the CT images, and the obtained probability map was used as the 

membership degree prior in the new designed variational model, which made the proposed 

method more flexible and stable.

3. Methods

The proposed method was constructed based on a deep learning method and a novel fuzzy 

variational model. Firstly, a 3D FCN with the V-Net architecture was designed and trained 

on CT images to learn a probability map describing the probability of each CT voxel 

belonging to the tumor or the background. Generally, FCN needs a large amount (thousands 

or even millions) of labeled training data to get accurate tumor segmentation. However, 

acquiring that amount of training data in medical imaging is typically infeasible. The 

probability map obtained from the CT image with limited training samples was not enough 

to accurately delineate the tumor. Taking into account the flexibility of variational model in 

fusing different image information, we then designed a fuzzy variational model to integrate 

the obtained probability map and the image intensity information of PET to refine the tumor 

segmentation. The final segmentation result was acquired by minimizing there proposed 

variational model using a split Bregman algorithm, and the probability map was also used as 

the initialization of the fuzzy membership function in the variational model.

3.1. 3D FCN for CT Image Processing

3.1.1. Network Architecture—CT imaging has low contrast, and the tumor intensity 

may be similar to that of the surrounding normal tissues. It is difficult to delineate a tumor 

from the complex background of the CT image using traditional methods. Take the lung 

cancer as an example. In lung cancer, a tumor may invade into the chest wall, the 

mediastinal structure or the diaphragm [13]. When this happens, there is barely a clear 

boundary between the tumor and its surrounding normal tissues, and most traditional 

methods especially those over single imaging modality would fail to delineate the tumor.

By extracting higher-dimensional and more abstract features, deep learning methods have 

achieved state-of-the-art performance in many applications. In our study, we designed a 3D 

deep learning network based on FCN to produce a probability map, in order to extract CT 

information for our multimodality tumor segmentation method.

As shown in Fig. 2, the network includes a down-sampling path and an up-sampling path. 

The down-sampling path can be divided into three stages. Each stage includes two or three 

convolutional blocks. For each convolutional block, kernels of size 3×3×3 voxels and the 

stride of 1 were employed to perform the convolution operation. In order to keep the size 

unchanged, appropriate padding operation were also performed at the same time. The down-

sampling process was completed by convolution with kernels of size 2×2×2 and the stride of 

2. Along with the down-sampling process, the number of channels increased two or four 

times, and the size of the features map decreased by half. Correspondingly, the structure of 

the up-sampling path was almost symmetrical with the down-sampling path. The up-
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sampling path also consisted of three convolutional blocks, where the size of kernels was 

3×3×3 with stride 1. During the convolution process, the size of the feature maps and the 

number of channels also remained unchanged. The size of the feature maps increased due to 

the de-convolutional operation with kernels of size 2×2×2 and a stride of 2. The number of 

channels kept the same as the corresponding down-sampling path. At the end of the network, 

convolution with kernels size 1×1×1 was performed, which led to the number of channels of 

the feature maps be 2 (foreground and background). The probability maps were output by 

calculating the softmax function. Moreover, rectified linear units were applied in this 

network and dropout was also employed to prevent the network from overfitting. The 

foreground probability map would be used as a membership degree prior of the tumor and 

initial membership function in the next step of the proposed method.

3.1.2. Implementation Details—In our study, the V-Net style network has been 

improved so that it can accept inputs of any size. Data augmentations, including adding 

Gaussian noise and rotation, were performed to increase the number of samples. 

Considering the GPU memory limitation and the various size of training sample, the batch 

size was set to 1. For the gradient descent optimization algorithms, the Adam optimizer with 

a stable learning rate of 0.001 was used. The rate of dropout was 0.2.

The network was implemented using Python and the Tensorflow library. It was trained on 

Nvidia GTX 1080 Ti GPU about 350 epochs and took about 3 hours. The number of epoch 

was a hyperparameter in the network, which was adjusted based on the learning curve. The 

hyperparameter was determined when the loss remained stable.

3.2. A Novel Fuzzy Variational Model for Tumor Segmentation

3.2.1. The Model Description—The variational model is powerful and convenient to 

consider prior information in various image-related application frameworks. In this study, 

we integrated the probability map obtained by FCN from CT and the image intensity 

information of PET into a novel variational model for multimodality tumor segmentation. 

Note that PET imaging has a low spatial resolution, and tumor edges in a PET image are 

usually blurred, which is one of the major challenges for tumor segmentation in PET. Fuzzy 

energy based methods work well with images with weak, blurred or even discontinuous 

boundaries [44-48]. In this study, we designed a novel variational model based on the fuzzy 

membership function.

The energy functional of the proposed model was defined as:

F c1, c2, u = Ffidelity c1, c2, u + αFlengtℎ u + βFprior u , (1)

where α, β are fixed positive parameters; c1 and c2 are average uptake prototypes of the 

tumor area and the background area in a PET image, respectively; uϵ[0,1] is a fuzzy 

membership function, u(x, y, z) and 1–u(x, y, z) represent the membership value that the 

voxel at point (x, y, z) belongs to the tumor and the background, respectively.
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Ffidelity is the data fidelity term based on the PET image and the fuzzy membership function 

u. Let Ω⊂R be the image domain, and I: Ω→R be a PET image. The fidelity term can be 

expressed as:

Ffidelity c1, c2, u = ∫
Ω

I x, y, z − c1 2 u x, y, z 2 dxdydz

+ ∫
Ω

I x, y, z − c2 2 1 − u x, y, z 2 dxdydz .
(2)

Flength is the total variational (TV) regularization term for the fuzzy membership function u, 

which can be written as:

Flengtℎ u = ∫
Ω

∇u x, y, z dxdydz, (3)

and controls the length of the boundaries of the segmented areas. This term is important to 

the proposed model since PET images are usually seriously corrupted by noise.

Fprior is a membership degree prior term. It integrated the probability map function P 
obtained by FCN from the corresponding CT image into the energy functional:

Fprior u = ∫
Ω

1 − P x, y, z
P x, y, z u x, y, z + P x, y, z

1 − P x, y, z 1 − u x, y, z dxdydz . (4)

Let w1 =(1–P(x,y,z))/P(x,y,z) and w2 =P(x,y,z)/(1–P(x,y,z)). If the probability prior P(x, y, z) 

is large, which indicates that the voxel has a higher probability of belonging to the tumor in 

the CT image, w2 would be much bigger than w1. This makes u(x, y, z) get a larger value in 

minimizing the energy functional Eq. (1). In contrast, a small probability prior leads to a 

smaller membership value. In other words, the prior term leads the variational model to 

automatically achieve balanced tumor segmentation result between the PET and CT images. 

Especially, when P(x, y, z)→0 or P(x, y, z)→1, w1 or w2 has a large value. In this case, the 

prior term plays a large role in acquiring the membership function u.

Substituting Eqs. (2) (3) and (4) into Eq. (1), the proposed model could be rewritten as:

F c1, c2, u = ∫
Ω

I x, y, z − c1 2 u x, y, z 2 dxdydz + ∫
Ω

I x, y, z − c2 2 1 − u x, y, z
2 dxdydz

+ α∫
Ω

∇u x, y, z dxdydz + β∫
Ω

1 − P x, y, z
P x, y, z u x, y, z + P x, y, z

1 − P x, y, z (1 − u x, y, z ) dxdydz .

(5)

3.2.2. Energy Minimization—Before minimizing the energy functional, we up-sampled 

the PET image to have the same voxel dimensionality as the CT image. This was to obtain a 
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one-to-one voxel correspondence between the PET image and the probability map P. In our 

study, a cubic B-spline interpolator method was used for the up-sampling.

In the process of energy minimization, we firstly fixed the fuzzy membership function u and 

minimized the energy functional (5) with respect to c1 and c2. Taking the derivative of Eq. 

(5) with respect to c1 and c2 respectively, it was easy to get the updating equations of c1 and 

c2:

c1 =
∫Ω u(x, y, z) 2I(x, y, z)dxdydz

∫Ω u(x, y, z) 2dxdydz
, (6)

c2 =
∫Ω 1 − u(x, y, z) 2I(x, y, z)dxdydz

∫Ω 1 − u(x, y, z) 2dxdydz
. (7)

Then we fixed c1 and c2 and minimized the energy functional (5) with respect to u using a 

split Bregman algorithm. The algorithm details were described in the next section.

3.2.3. A Split Bregman Algorithm for u—The energy functional (5) is convex with 

respect to the fuzzy membership function u. After each update of c1 and c2, we used a split 

Bregman method [51] to find the global optimal solution u* of the energy functional.

Note that minimizing the functional (5) with respect to u is equivalent to optimizing the 

following convex energy functional:

min
u ∈ [0, 1]

F u = ∫
Ω

r1u2 + r2u dxdydz + α∫
Ω

∣ ∇u ∣ dxdydz, (8)

where

r1 = I x, y, z − c1 2 + I x, y, z − c2 2, (9)

and

r2 = β 1 − P x, y, z
P x, y, z − P x, y, z

1 − P x, y, z − 2 I x, y, z − c2 2 . (10)

We introduced an auxiliary variable d and the equality constraint d = ∇u. The optimization 

problem in Eq. (8) became as:

u∗, d∗ = arg min
u ∈ [0, 1], d

F u = ∫
Ω

r1u2 + r2u dxdydz + α∫
Ω

∣ d ∣ dxdydz + λ
2∫Ω

‖d

− ∇u‖2 dxdydz,
(11)

where λ is a positive penalty parameter and (u*, d*) denotes the global optimal solution. We 

performed this minimization by splitting the L1 and L2 components of functional (11) with 
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respect to u and d separately. Two elegant iterations in the split Bregman method can be 

obtained:

un + 1, dn + 1 = arg min
u ∈ [0, 1], d ∫

Ω
r1u2 + r2u dxdydz + α∫

Ω
∣ d ∣ dxdydz + λ

2∫Ω
‖d

− ∇u − bn‖2 dxdydz ,
(12)

and

bn + 1 = bn + ∇un + 1 − dn + 1 . (13)

We needed to perform two sub-optimization problems for Eq. (12):

PI:

un + 1 = arg min
u ∈ [0, 1], d ∫

Ω
r1u2 + r2u dxdydz + λ

2∫Ω
‖dn − ∇u − bn‖2 dxdydz , (14)

P2:

dn + 1 = arg min
d

α∫
Ω

∣ d ∣ dxdydz + λ
2∫Ω

‖d − ∇un + 1 − bn‖2 dxdydz . (15)

For P1, the Euler-Lagrange equation of the optimization problem with respect to u is

−2r1 + λΔ un + 1 = r2 + λ∇x dn − bn + λ∇y dn − bn + λ∇z dn − bn . (16)

The central difference was used for the Laplace operator (Δ) and the backward difference 

was used for the gradient operator. With the Gauss-Seidel formula, the solution at the (n+1)th 

iteration was given as

ui, j, k
n + 1 = − r2, i, j, k

2r1, i, j, k + 6λ − λ
2r1, i, j, k + 6λ Φi, j, k

n − ui − 1, j, k
n − ui + 1, j, k

n

− ui, j − 1, k
n − ui, j + 1, k

n − ui, j, k − 1
n − ui, j, k + 1

n ,
(17)

where

Φi, j, k
n = di, j, k

n, x − di − 1, j, k
n, x − bi, j, k

n, x + bi − 1, j, k
n, x + di, j, k

n, y − di, j − 1, k
n, y − bi, j, k

n, y

+ bi, j, k − 1
n, y + di, j, k

n, z − di, j, k − 1
n, z − bi, j, k

n, z + bi, j, k − 1
n, z .

(18)

To be restricted within the solution space, the solution u was truncated as

un + 1 = max min un + 1, 1 , 0 . (19)
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For P2, since the function f(x) = ∣x∣ is differentiable in R\{0}, the optimization problem (15) 

with respect to d at the (n+1)th iteration is:

dn + 1 = sℎrink bn + ∇un + 1, α
λ , (20)

where the shrinkage operator was given as:

sℎrink x, y =
x

∣ x ∣max ∣ x ∣ − y, 0 , x ≠ 0

0, x = 0
. (21)

The split Bregman algorithm of the proposed method was summarized in Algorithm 1. After 

the split Bregman iteration, the tumor region and background region were given as {(x, y, z) 

ϵΩ∣ u* (x, y, z) ≥ 0.5} and {(x,y,z) ϵΩ∣ u* (x,y,z) < 0.5}, respectively.

The above optimization process was performed in Matlab. It took about 15 seconds to 

segment one tumor on a computer with 3.40 GHz CPU and 8GB RAM.

4. Experimental Settings

4.1. Datasets

The performance of the proposed method was validated on a clinical dataset with 84 non-

small cell lung cancer patients. 48 randomly selected CT images were used to train the FCN, 

and the remaining 36 PET/CT images were used as the test dataset.

All 3D PET/CT images were obtained on a PET/CT scanner (Reveal HD, CTI, Knoxville, 

TN, USA). Each pair of PET/CT images has been registered through the hardware in the 

PET/CT scanner. The transaxial resolution of the PET scanner increased from 4.6 mm (full-

width at half-maximum, FWHM) at 1 cm from the center to 7.8 mm at a radius of 20 cm. 

The axial resolution increased from 3.5 mm at the center to 7.8 mm at a radius of 20 cm [52, 

53]. The PET images were reconstructed using the iterative Ordered Subset Expectation 

Maximization (OSEM) algorithm with 8 subsets and 2 iterations. The dimensionality of each 

reconstructed PET slice was 128×128, with a voxel size 4.69×4.69×3.27 mm3. For the CT 

images, the dimensionality of each reconstructed slice was 512×512, with a voxel size 
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0.98×0.98×3.27 mm3. The tumor volumes in the training and test datasets range from 3.82 

ml to 313.69 ml and 1.59 ml to 526.77 ml respectively.

The ground truth for each pair of the PET/CT images in the datasets was manually 

delineated by an experienced radiation oncologist. As with the existing lung tumor 

segmentation methods [15, 16, 37, 50], a rectangular ROI was manually defined for each 

PET/CT images, which enclosed the whole tumor. The proposed method and all comparison 

algorithms were implemented in the ROI.

4.2. Comparison Algorithms

To determine the contribution of multimodality information fusion to tumor segmentation, 

we compared the proposed method with the FCN on CT images (FCN_CT) — thresholding 

the probability map by 0.5, and the fuzzy variational model — the proposed variational 

model on PET image without the membership degree prior term from CT (FVM_PET), 

which was defined as:

F c1, c2, u = ∫
Ω

I x, y, z − c1 2 u x, y, z 2 dxdydz + ∫
Ω

I x, y, z − c2 2 1 − u x, y, z
2 dxdydz

+ α∫
Ω

∣ ∇u x, y, z ∣ dxdydz .
(22)

We also compared the proposed method with two existing deep learning-based 

multimodality segmentation method — W-net [30] and 3D-UNet+GC [37], and two 

traditional variational multimodality tumor segmentation methods (without deep learning) 

which fused the PET and CT image information with traditional image fusion strategies. The 

W-Net architecture was constructed by cascading two V-Nets. This network can extract 

features from both PET and CT images, and all these features were used in unison to 

delineate the tumors. As mentioned in Section 2.3, the 3D-UNet+GC method combined the 

fully convolutional networks (3D-UNet) and Song’s graph cut based co-segmentation model 

[13]. Traditionally in multimodality segmentation, one of the most widely used fusion 

strategy considered the PET and CT images as two channels of a hyper-image (e.g., the 

methods in [9] and [14]). Another widely used strategy fused the PET and CT information 

by constraining the consistency of the segmentation results of the two modalities (e.g., the 

method proposed by the Song et al. [13]). The two variational multimodality segmentation 

methods used for comparison in this study were constructed based on the fuzzy clustering 

theory and the two widely used fusion strategy respectively. The model of the first 

multimodality method (FVM_CO_1) with the hyper-image strategy was formulated as:

Li et al. Page 12

Neurocomputing. Author manuscript; available in PMC 2021 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



F u x, y, z , c1_PET , c1_CT , c2_PET , c2_CT

= ∫
Ω

η IPET x, y, z − c1_PET 2 + 1 − η ICT x, y, z − c1_CT 2 u x, y, z 2 dxdydz

+ ∫
Ω

ξ IPET x, y, z − c2_PET 2 + 1 − ξ ICT x, y, z − c2_CT 2 1 − u x, y, z 2 dxdydz

+ α∫
Ω

∣ ∇u x, y, z ∣

dxdydz,

(23)

where η and ξ are two positive parameters assigning the weight of PET and CT, IPET and 

ICT denote the PET image and CT image respectively, c1_PET (c1_CT) and c2_PET (c2_CT) are 

average prototypes of the tumor area and the background area of PET (CT) image, u(x, y, z) 

denotes a fuzzy membership function (like the proposed method). This model is exactly a bi-

modality extension of the classical Active Contours without edges model (AC) [54] and also 

a convex approximation of the El Naqa’s multimodality segmentation model [9]. The model 

of the second multimodality method method (FVM_CO_2) with the another fusion strategy 

was formulated as

F u1 x, y, z , u2 x, y, z , c1_PET , c1_CT , c2_PET , c2_CT

= ζ∫
Ω

IPET x, y, z − c1_PET 2 u1 x, y, z 2 dxdydz

+ ζ∫
Ω

IPET x, y, z − c2_PET 2 1 − u1 x, y, z 2 dxdydz + α1∫
Ω

∇u1 x, y, z dxdydz

+ 1 − ζ∫
Ω

ICT x, y, z − c1_CT 2 u2 x, y, z 2 dxdydz

+ 1 − ζ∫
Ω

ICT x, y, z − c2_CT 2 1 − u2 x, y, z2 dxdydz + α2∫
Ω

∇u2(x, y, z ) dxdydz

+ u∫
Ω

u1 x, y, z − u2 x, y, z 2dxdydz,

(24)

where ζ, μ, α1 and α2 are positive parameters and ζ balances the weight of PET and CT, 

u1(x, y, z) and u2(x, y, z) are two membership functions corresponding to the PET and CT 

images respectively. This method obtained two different segmentation results for each pair 

of PET/CT images — one for PET (denoted as FVM_CO_2_PET) and another for CT 

(denoted as FVM_CO_2_CT). The last term penalized the segmentation difference between 

PET and CT, which fused the PET and CT information and achieved consistent tumor 

segmentation results between the two modalities. This model is an approximated variational 

version of Song’s PET/CT co-segmentation graph model [13] (please see Eqs. (2)-(6) in 

[13]).

Besides, we compared the proposed method with some classical segmentation methods on 

PET images. They are thresholding algorithms — Otsu automatic thresholding [55], 42% 

and 50% of the maximum standardized uptake value (SUVmax, 42% Threshold and 50% 

Threshold); clustering algorithm — Fuzzy C-means Clustering (FCM); variational methods 

— MS segmentation method (MS) [56], Active Contours without edges (AC) [54] and 
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Geodesic Active Contours (GAC) [57]; and a graph theory algorithm — Graph Cuts (GC) 

[58].

4.3. Parameter Setting

All PET images were normalized linearly to [0, 255] in the proposed method. We first chose 

a pair of PET/CT image to adjust the parameters. The obtained parameters were used for the 

remaining images.

In our experiments, the parameters were set as: α = 103, β = 0.1. λ = 500 (see Eqs. (1) and 

(11)). We added a small constant 1×10−6 to the denominator of the fuzzy membership prior 

term to avoid the zero denominator.

In FVM_CO_1 (Eq. (23)), we set η=0.7 and ξ=0.5 to assign a larger weight to PET in the 

background areas. In FVM_CO_2 (Eq. (24)), we set ζ=0.6. A larger weight was assigned to 

PET images to overcome the influences of complex background of CT images.

4.4. Evaluation Metrics

The segmentation accuracy was evaluated by computing the dice similarity index (DSI), 

sensitivity (SE), positive predictive value (PPV), classification error (CE) and volume error 

(VE).

DSI [2, 59-61], SE and PPV [31, 35, 36] measures the similarity (spatial overlap) between 

the segmented tumor volume VA and the reference volume VR:

DSI(V A, V R) = 2 ∣ V A ∩ V R ∣
∣ V A ∣ + ∣ V R ∣ , (25)

SE = ∣ V A ∩ V R ∣
∣ V R ∣ , (26)

PPV = ∣ V A ∩ V R ∣
∣ V A ∣ . (27)

∣X∣ denotes the size of the set X. All these three metrics range from 0 (no spatial overlap) to 

1 (perfect segmentation). As recommended by the TG211 [35] and the first MICCAI 

challenge on PET tumor segmentation [31] we also calculated the accuracy score by the 

mean of SE and PPV:

Score = 0.5 × SE + 0.5 × PPV . (28)

VE and CE measure the volume difference and spatial location bias between the segmented 

tumor volume and the reference volume respectively [2, 59, 62]:
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VE(V A, V R) = abs ∣ V A ∣ − ∣ V R ∣
∣ V R ∣ , (29)

CE(V A, V R) = ∣ V FP ∣ + ∣ V FN ∣
∣ V R ∣ . (30)

where ∣VFP∣ denotes the number of false positive errors, ∣VFN∣ represents the number of false 

negative errors. The smaller VE and CE mean the better segmentation result.

5. Experimental Results

5.1. Performance Validation of Deep Learning on CT Tumor Probability Map Extraction

In this section, we show the performance of deep learning (FCN) on CT tumor probability 

map extraction. In Fig. 3, we display a learning curve of FCN (see Fig. 3(i)) and four CT 

slices coming from four different patient data in the first row. Figure 3(a) shows a simple 

case where the lung tumor is isolated from the normal tissues and organs. The other three 

complex cases are exhibited in Figs. 3(c), (e) and (g). These three tumors were attached to 

the chest wall. There are no clear boundaries between the tumors and the normal tissues. The 

corresponding probability maps obtained by FCN are shown in the second row. Although 

these probability maps could not accurately describe the tumors (e.g. some tumor voxels 

corresponding to the upper-left corner in Fig. 3(c) had small probability values; and some 

background voxels corresponding to the upper-right corner in Fig. 3(e) had large probability 

values), they could surprisingly distinguish the tumor from its surrounding normal tissues 

with similar intensity distribution as the tumor (see Figs. 3(b, d, f, h)). This indicated that the 

probability maps extracted by FCN could effectively describe and tell the tumor area and 

background area, for both the simple case (e.g., that shown in Fig. 3(a)) and the complex 

cases (e.g., those shown in Fig. 3(c), (e) and (g)). This was important for the proposed 

method to further fuse the CT and PET information for accurate tumor segmentation.

5.2. Contribution of Information Fusion to Tumor Segmentation

In Figs. 4 and 5, we show the segmentation results of the proposed method, FCN_CT and 

FVM_PET methods on two pairs of PET/CT images. In Fig. 4, there are necrosis tissues in 

the center of the tumor. Image intensities of the necrosis tissues are very low in the PET 

image (Fig. 4(a)). They are closer to the background intensities. Without the membership 

degree prior extracted from the CT image, FVM_PET method (Eq. (22)) failed to segment 

these necrosis tissues with low intensities (Fig. 4(e)). In the CT image (Fig. 4(b)), the tumor 

intensity is homogeneous. However, the tumor was attached to the chest wall. As we can see, 

the tumor and the chest wall have similar intensity in CT. In this case, the segmented tumor 

of the FCN_CT method has a small amount of false positive voxels on the chest wall (see 

the upper-right in Fig. 4(f)). Thanks to the use of the probability map from CT and the image 

intensity information from PET, the proposed method efficiently segmented the necrosis 

tissues, and the segmented tumor area did not include those false positive voxels (Figs. 4(c)-

(d)). Figure 5 also shows the outstanding performance of the proposed method. All these 
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demonstrated that the proposed method could effectively fuse the complementary 

information of PET and CT, and successfully improved the tumor segmentation accuracy.

5.3. Comparison with FCN on CT and Fuzzy Variational Model Solely on PET

In Figs. 6 and 7, we compared the overall performance of the proposed method with FCN on 

CT and the fuzzy variational model on PET (Eq. (22)). Figure 6 shows the result comparison 

for all 36 PET/CT images according to the DSI, SE and VE values. The means and standard 

deviations of DSIs, SEs, PPVs, VEs and CEs are shown in Fig. 7, and the detailed numerical 

values are listed in Table 1. As we can see, the proposed method (DSI=0.86, SE=0.86, 

PPV=0.87, VE=0.16 and CE=0.30) was superior to the other two methods which only used 

the PET or CT image information. The proposed method had an overall improvement and a 

consistent segmentation performance for all tested images. The major reason for the inferior 

segmentation performance of the FVM_PET method (DSI=0.82, SE=0.82, PPV=0.85, 

VE=0.25 and CE=0.38) is that it could not handle well with the intensity inhomogeneity in 

PET images (one major challenge in PET single modality segmentation). The FVM_PET 

method was not able to correctly segment the tumor areas with low intensities. The FCN_CT 

method (DSI=0.76, SE=0.82, PPV=0.74, VE=0.28 and CE=0.53) had the worst 

segmentation performance. A possible reason is that the FCN was trained with only a small 

amount of training samples in our study (Note that it is normal in PET/CT imaging that a 

large number of training samples are seldom available). FCN_CT method still had the 

leaking problem due to the low contrast of intensity between the tumor and the surrounding 

normal tissues (one major challenge in CT single modality segmentation). Combining both 

information of PET and CT, the proposed method could handle well the intensity 

inhomogeneity of PET by using the probability map extracted from CT, and overcome the 

leaking problem in CT-only methods by using the relatively less complex background in 

PET.

5.4. Comparison with Other Multimodality Tumor Segmentation Methods

Figure 8 shows the average performance comparison among the proposed method, two 

multimodality tumor segmentation methods (Eqs. (23) and (24)) with traditional fusion 

strategies and two deep learning-based multimodality segmentation methods — W-net [30] 

and 3D-UNet+GC [37]. The proposed method was significantly superior to the FVM_CO_1 

and FVM_CO_2 methods on both segmentation accuracy and stability. A possible reason is 

that the proposed method used the ‘clean’ CT information (the probability map) for the 

multimodality segmentation while the other two methods used the original but complex CT 

image. This again demonstrated the high ability of the designed method in learning to 

describe the tumor area and the background area using deep learning. The proposed method 

also had higher segmentation accuracy and better stability than the W-net and the 3D-UNet

+GC methods. It shows that combining the advantages of the deep learning and the specially 

designed variational segmentation method could more exactly delineate the tumors from the 

PET/CT images.

Visual comparison of the segmentation results on three pairs of PET/CT images are shown 

in Fig. 9. The first and second columns show that when the background areas have similar 

intensities with the tumor areas in the CT image, the FVM_CO_1 (Eq. (23)) and 
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FVM_CO_2 (Eq. (24)) methods wrongly segmented some of these areas as tumor, although 

we assigned a larger weight to PET. The third column shows that the FVM_CO_1 and 

FVM_CO_2 methods wrongly segmented the tumor areas with low intensities in PET as 

background, although the tumor in CT image has homogeneous intensities. A main reason 

for the failure of these two traditional multimodality tumor segmentation methods is that 

these two methods could not adaptively combine the image information of PET and CT. The 

third and the last two rows in Fig. 9 show that the proposed method, W-net and 3D-UNet

+GC methods could correctly segment these normal tissues in CT and the tumor areas with 

low intensities in PET, and the proposed method obtained more accurate segmentation 

results (Figs. 9(g)-(i)) than the W-net method (Figs. 9(s)-(u)) and the 3D-UNet+GC method 

(Figs. 9(v)-(x)).

5.5. Comparison with Several Traditional PET Segmentation Methods

In Fig. 10 and Table 1, we compared the average segmentation performance of the proposed 

method with several traditional single-modality PET segmentation methods. The mean and 

standard deviation of DSIs, SEs, PPVs, VEs and CEs of all the segmentation results of each 

method are listed in Table 1. A direct visual comparison is shown in Fig. 10. Combining the 

information from both PET and CT, the proposed method was superior to all the traditional 

segmentation methods conducted solely on the PET images on both accuracy and 

robustness. The FCM method, although not as good as the proposed method, performed the 

best in these traditional segmentation methods. A possible reason is that, similar with the 

proposed fuzzy variational model, the fuzzy characteristic of the FCM method was helpful 

to segment the blurred PET tumors. It seemed that both combining the information from 

different modalities and handling the fuzzy characteristic of tumors in PET could improve 

the tumor segmentation accuracy.

Illustrative results of the proposed and the eight compared methods on two lung cancer data 

are shown in Figs. 11 and 12, respectively. In the case of Fig. 11, there is a normal organ 

area with high intensity values as similar as the tumor area in the ROI (Fig. 11(a), the upper-

right corner). Except for the 50% threshold method, all the other methods wrongly 

segmented this organ area as tumor more or less. But this normal organ area did not affect 

the proposed method much (Fig. 11(d)). This is mainly because FCN provided a good tumor 

probability map in which this normal area with high intensities had small probability values 

(Fig. 11(c)), and the proposed fuzzy variational model effectively used the probability 

information. In Fig. 12, the tumor shows intensity inhomogeneity and there are necrosis 

tissues. All the traditional methods missed these necrosis tissues and the tumor areas with 

low intensities, while the proposed method did not (Fig. 12(d)).

6. Discussion

PET/CT images have been widely used in clinical practice. The PET imaging has a high 

contrast but a low spatial resolution. Tumor edges are usually blurred and tumor areas may 

have intensity inhomogeneity in a PET image. By contrast, CT imaging has higher spatial 

resolution but low contrast between the tumor and surrounding normal soft tissues. 

Combining the advantages of the two modalities together can improve the tumor 
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segmentation accuracy. However, the multimodality tumor segmentation using PET/CT is 

challenging since the information from the PET and CT can be either complementary or 

contradictory. In this study, we proposed a novel method to fuse the PET/CT information for 

tumor segmentation.

In a CT image, the tumors present various shapes and sizes and have similar intensity with 

its surrounding normal tissues. It is difficult for traditional methods to delineate the tumor 

over the CT image. In the proposed method, the state-of-the-art deep learning method was 

used to cope with the complex CT images. It is generally known that, the good performance 

of deep learning relies on the learning of a large amount of samples with exact labels. 

However, in medical image processing field, especially for PET/CT images, either acquiring 

that amount of training data or obtaining their exact labels are generally difficult or even 

infeasible. Instead, we designed a deep learning network to extract the tumor probability 

map from the CT image and proposed a fuzzy variational model to incorporate the obtained 

tumor probability map and the PET intensity image for accurate multimodality tumor 

segmentation. This deep learning network was fed with only a small amount of CT samples 

for learning in our study. Although the probability map could not accurately describe the 

tumors, it effectively distinguished the tumor from the complex background in CT (Fig. 3). 

This was important for us to further fuse the CT and PET image information for more 

accurate tumor segmentation. The high performance of the proposed method indicated the 

success of the designed network at describing the tumor and the background in CT. The 

proposed multimodality tumor segmentation method was effective in small PET/CT datasets 

and had higher tumor segmentation accuracy than the existing deep learning-based 

multimodality segmentation methods (W-net [30] and 3D-UNet+GC [37]) (see Figs. 8 and 

9).

In the proposed fuzzy variational model (Eq. (5)), the data term was designed based on the 

image intensity information of PET and a fuzzy membership function. The tumor probability 

map obtained by deep learning network from CT acted as a membership degree prior. With 

the prior information, the proposed variational model could handle well with the intensity 

inhomogeneity in a PET image (Figs. 4 and 12). The fuzzy membership function based data 

term coped well with the blurred tumor edges of the PET image. Because of the advantage 

of the high contrast, a PET image usually has a relatively less complex background, which is 

helpful to remove the false positive prior information introduced from the CT image due to 

its complex background (Figs. 4 and 5). Moreover, the proposed variational model is convex 

with respect to the fuzzy membership function u. We can easily and quickly get the global 

optimal solution of u.

The traditional multimodality tumor segmentation methods could not adaptively combine 

the advantages from PET and CT. They usually balanced the contradictory information 

between PET and CT using a compromised tumor segmentation result. These methods may 

still suffer from the complex background and the low contrast in CT (Fig. 9). Differently, the 

proposed method used the cleaner CT version, i.e., the probability map, rather than the 

original CT image. Using this new strategy, the proposed method made full use of the 

complementary information between PET and CT, and avoided the interference of the 
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complex background of CT. The proposed method had more accurate tumor segmentation 

results than these traditional multimodality tumor segmentation methods.

In a PET image, some normal organ areas near the tumor may have high intensity values. 

These normal organ areas were often incorrectly segmented as tumor by traditional PET 

segmentation methods (Fig. 11). With the constraint of a prior tumor probability map from 

CT, the proposed method could correctly classify those areas as background.

It is well known that different PET/CT scanners have different acquisition and 

reconstruction properties. The PET and CT images obtained from different scanners may 

have different spatial resolution, noise properties and voxel size, especially for PET. 

However, the proposed variational model could deal with the effects of the limited spatial 

resolution of PET on tumor segmentation thanks to the introduction of the fuzzy 

membership function. On the other hand, the regularization term about the fuzzy 

membership function could restrain the influence of noise on tumor segmentation. 

Therefore, the proposed method was robust to the spatial reconstruction and noise properties 

of the PET images. As mentioned in Section 3.2.2, the PET images need to be up-sampled to 

have the same voxel dimensionality as the CT image. Image intensity errors could be 

introduced during the up-sampling process, and the bigger the voxel size of the original PET 

images, the greater the error. These errors might affect the tumor segmentation accuracy. But 

because of the combination of the CT image information, those errors have only minor 

effects on tumor segmentation accuracy. Overall, the proposed method is robust to the PET 

and CT images obtained from different PET/CT scanners. Very possibly, the FCN trained on 

the present dataset is able to perform well on PET/CT images from a different scanner, 

which will be further verified in our future work.

Although the proposed method worked well with a small number of training samples, 

increasing the training samples will contribute to extracting more precise tumor probability 

map from CT and improving the tumor segmentation accuracy. In this work, the deep 

learning network only needed to be trained on the CT images. In clinical practice, the 

amount of CT images is much larger than PET/CT. Possibly we can increase the training 

sample using the single-modality CT images with the same tumor type – like transfer 

learning – to further improve the segmentation performance, which we will leave to our 

future study.

7. Conclusions

In this study, we proposed a deep learning based variational method for tumor segmentation 

in PET/CT images. In this method, a 3D deep learning network was firstly constructed and 

trained to learn a tumor probability map from the CT image. The probability map and the 

PET intensity image was then integrated into a novel fuzzy variational model for more 

accurate tumor delineation. Jointly using the deep learning network and the variational 

method, the proposed method could accurately segment the tumor areas and did not need a 

large amount of training samples. Experimental results demonstrated that the proposed 

method made full use of the complementary information from PET and CT, and had a good 

performance for tumor segmentation, even for those with intensity inhomogeneity and 
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blurred tumor edges in the PET image and low contrast and complex backgrounds in the CT 

image.
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Figure 1. 
PET/CT image pairs. (a) the PET image, and (b) its corresponding CT image, for one patient 

with lung cancer; (c) the PET image, and (d) its corresponding CT image, for another patient 

with lung cancer; (e)-(h) zoomed views of the regions of interest corresponding to the 

images in the first row. The pink contours are the tumor boundaries.
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Figure 2. 
The 3D fully convolutional network to extract the tumor probability map from CT images. 

W×H×C denotes the dimensionality of the input CT image and the output probability map.
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Figure 3. 
Three CT images and the corresponding probability maps obtained by FCN. (a), (c), (e) and 

(g): CT images; (b), (d), (f) and (h): probability maps; (i) a learning curve of FCN.
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Figure 4. 
Compare (axial view) the segmentation results of the proposed method with those obtained 

by FCN on CT and the fuzzy variational method on PET (Eq. (22)), for one patient. The 

pink contour is the manual contour and the blue curves are the contours of the segmented 

tumors. (a) the PET image, (b) the CT image, (c)-(d) the proposed method (DSI=0.91, 

SE=0.86, PPV=0.97), superimposed on PET (c) and CT (d) images, (e) FVM_PET 

(DSI=0.80, SE=0.69, PPV=0.95), (f) FCN_CT (DSI=0.83, SE=0.73, PPV=0.95).

Li et al. Page 28

Neurocomputing. Author manuscript; available in PMC 2021 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Compare (axial view) the segmentation results of the proposed method with those obtained 

by FCN on CT and the fuzzy variational method on PET (Eq. (22)), for another patient. The 

pink contour is the manual contour and the blue curves are the contours of the segmented 

tumors. (a) the PET image, (b) the CT image, (c)-(d) results of the proposed method 

(DSI=0.91, SE=0.85, PPV=0.98), superimposed on PET (c) and CT (d) images, (e) 

FVM_PET (DSI=0.88, SE=0.79, PPV=0.99), (f) FCN_CT (DSI=0.87, SE=0.84, PPV=0.90).
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Figure 6. 
Compare the quantitative results of the proposed method (green), FCN on CT (blue) and the 

fuzzy variational model on PET (orange) (Eq. (22)) according to DSI (a), SE (b) and VE (c) 

on 36 PET/CT images.
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Figure 7. 
Compare the average performance of the proposed method, FCN on CT and the fuzzy 

variational model on PET (Eq. (22)) using the mean and standard deviation of DSI, SE, PPV, 

VE and CE of the 36 PET/CT images.
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Figure 8. 
Compare the average performance of the proposed method with two traditional 

multimodality segmentation methods (Eqs. (23) and (24)) and two deep learning-based 

multimodality segmentation methods — W-net [30] and 3D-UNet+GC [37], according to 

the mean and standard deviation of DSI, SE, PPV, CE and YE of the 36 PET/CT images.
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Figure 9. 
Compare the segmentation results of the proposed method with two traditional 

multimodality segmentation methods and two deep learning-based multimodality 

segmentation methods (W-net [30] and 3D-UNet+GC [37]) on three pairs of PET/CT 

images. The pink contours are the manual contours and the blue curves are the contours of 

the segmented tumors. (a)-(c) PET, (d)-(f) CT, (g)-(i) the proposed method, (j)-(l) 

FVM_CO_1 (Eq. (23)), (m)-(o) FVM_CO_2_PET (Eq. (24)), (p)-(r) FVM_CO_2_CT (Eq. 

(24)), (s)-(u) W-net, (v)-(x) 3D-UNet+GC.
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Figure 10. 
Compare the average segmentation performance ot the proposed method with several 

traditional segmentation methods on PET. (a) DSI, (b) Score (mean of SE and PPV), (c) CE, 

averaged over 36 lung cancer data.
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Figure 11. 
Visual comparison of segmentation performance for one patient. The pink curve denotes the 

manual contour, the blur curves are the contours of the segmented tumor of different 

methods. (a) PET, (b) CT, (c) the probability map from CT, (d) the proposed method, (e) 

42% Threshold, (f) 50% Threshold, (g) Otsu, (h) FCM, (i) MS, (j) AC, (k) GAC, (l) GC.
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Figure 12. 
Visual comparison of segmentation performance for another patient. The pink curve denotes 

the manual contour, the blur curves are the contours of the segmented tumor of different 

methods. (a) PET, (b) CT, (c) the probability map from CT, (d) the proposed method, (e) 

42% Threshold, (f) 50% Threshold, (g) Otsu, (h) FCM, (i) MS, (j) AC, (k) GAC, (l) GC.
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Table 1.

The mean and standard deviation of DSI, CE and VE of the segmentation results of different segmentation 

algorithms.

Methods
DSI SE PPV Score VE CE

(mean ± SD) (mean ± SD) (mean ± SD) (mean ± SD) (mean ± SD)

Ours 0.86 ± 0.05 0.86 ± 0.07 0.87 ± 0.10 0.87 0.16 ± 0.12 0.30 ± 0.12

FVM_PET 0.82 ± 0.08 0.82 ± 0.09 0.85 ± 0.16 0.84 0.25 ± 0.24 0.38 ± 0.22

FCN_CT 0.76 ± 0.07 0.82 ± 0.09 0.74 ± 0.14 0.78 0.28 ± 0.23 0.53 ± 0.22

FVM_CO_1 0.82 ± 0.10 0.86 ± 0.08 0.81 ± 0.18 0.84 0.25 ± 0.28 0.39 ± 0.25

FVM_CO_2_PET 0.80 ± 0.12 0.87 ± 0.08 0.78 ± 0.19 0.83 0.30 ± 0.27 0.42 ± 0.26

FVM_CO_2_CT 0.73 ± 0.14 0.87 ± 0.08 0.67 ± 0.23 0.77 0.48 ± 0.38 0.61 ± 0.33

W-net 0.83 ± 0.10 0.87 ± 0.10 0.82 ± 0.14 0.84 0.17 ± 0.18 0.36 ± 0.23

3D-UNet+GC 0.82 ± 0.07 0.86 ± 0.12 0.81 ± 0.11 0.84 0.22 ± 0.18 0.37 ± 0.14

42% Threshold 0.70 ± 0.16 0.61 ± 0.17 0.90 ± 0.18 0.76 0.38 ± 0.21 0.47 ± 0.17

50% Threshold 0.58 ± 0.18 0.45 ± 0.18 0.94 ± 0.17 0.69 0.54 ± 0.20 0.59 ± 0.17

Otsu 0.78 ± 0.16 0.86 ± 0.09 0.78 ± 0.24 0.82 0.32 ± 0.34 0.43 ± 0.29

FCM 0.81 ± 0.09 0.84 ± 0.09 0.82 ± 0.19 0.83 0.29 ± 0.30 0.41 ± 0.27

MS 0.79 ± 0.11 0.78 ± 0.16 0.84 ± 0.12 0.81 0.21 ± 0.19 0.40 ± 0.20

AC 0.77 ± 0.19 0.91 ± 0.07 0.73 ± 0.24 0.82 0.34 ± 0.35 0.45 ± 0.29

GAC 0.73 ± 0.12 0.80 ± 0.17 0.68 ± 0.11 0.74 0.27 ± 0.20 0.59 ± 0.24

GC 0.78 ± 0.10 0.75 ± 0.16 0.86 ± 0.14 0.80 0.26 ± 0.19 0.42 ± 0.19
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