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Hazardous waste management is of paramount importance due to the potential threats posed to the
environment and local residents. The design of a hazardous waste management system involves several
important decisions, i.e., the determination of the locations and sizes of treatment, recycling and disposal
facilities, and organizing the transportation of hazardous waste among different facilities. In this paper,
we proposed a novel stochastic bi-objective mixed integer linear program (MILP) to support these de-
cisions in order to reduce the population exposure to risk while simultaneously maintaining a high cost
efficiency of the transportation and treatment of hazardous waste. Moreover, considering the inherent
uncertainty within the planning horizon, the cost, demand and affected population are defined as sto-
chastic parameters. A sample average approximation based goal programming (SAA-GP) approach is
used to solve the mathematical model. The proposed model and solution method are validated through
numerical experiments whose results show that uncertainty may not only affect the objective value but
also lead to different strategic decisions in the network design of a hazardous waste management sys-
tem. In this regard, the strategic decisions obtained by the stochastic model is more robust to the change
of external environment. Finally, the model is applied in a real-world case study of healthcare waste
management in Wuhan, China, in order to show its applicability.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With the rapid increase on production and consumption, a large
amount of hazardous waste is now generated from a wide range of
industries and service sectors (Rabbani et al., 2019), e.g., production
and manufacturing, chemical processes, construction, healthcare,
and household activities. Hazardous waste is, however, an inevi-
table by-product of industrial processes and can be found in several
forms, e.g., solid, sludge, liquid, packaged or containerized gases,
etc., from both large-scale industrial sectors and small businesses
(Alumur and Kara, 2007). Any type of waste can be classified as
hazardous if it possesses any of the following properties: ignit-
ability, reactivity, corrosiveness or toxicity (Alumur and Kara,
2007). Because of these characteristics, if hazardous waste is
treated or disposed of in an inappropriate manner, the nearby

* Corresponding author.
E-mail address: hao.yu@uit.no (H. Yu).
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residents and the environment will be exposed to substantial risk
and threats. Therefore, the management of hazardous waste is of
prime importance.

Hazardous waste management consists of several activities
including collection, transportation, treatment, recycling and
disposal (Samanlioglu, 2013). The network design of a hazardous
waste management system consists of the determination of the
locations and sizes of treatment, recycling and disposal facilities
and organizing the transportation of hazardous waste among these
facilities. It is a complex decision making problem due to the con-
flicting perspectives from different stakeholders (Alumur and Kara,
2007). For instance, the primary objective of a waste management
company is to minimize its cost. However, on the other hand, the
government’s perspective is to minimize exposure of the popula-
tion to risk. An optimal decision is usually made through a trade-off
between cost efficiency and population exposure risk. Furthermore,
based on the characteristics of hazardous waste, different treat-
ment technologies, i.e., chemical or biological process, incineration,
and immobilization are required (Boyer et al,, 2013). Thus, the

0959-6526/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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network decisions are also affected by the compatibility between
hazardous waste and the adopted technology.

Another important issue is uncertainty. The network design of a
hazardous waste management system is a long-term strategic de-
cision and is therefore influenced by a high level of uncertainty
within the planning horizon, i.e., the generation and composition of
hazardous waste, the cost of facility operation and transportation,
and so forth, which further complicates the decision making
problem. However, most mathematical models for hazardous waste
management are developed with deterministic inputs and the
proper control of the uncertainty related to the parameters is
insufficient. In reality, decision making with all the input parame-
ters fully known in advance is impossible (King and Wallace, 2012)
and the incapability of coping with uncertainty may reduce the
robustness of a model’s outputs. When a strategic facility location
decision is made for hazardous waste management, it will be
extremely expensive to alter, and the lack of robustness may thus
limit the use of a deterministic decision-support model. For these
reasons, we formulate a novel two-stage stochastic multi-objective
model for the network planning of a hazardous waste management
system under an uncertain environment.

In this paper, by using a mathematical programming approach,
we aim at answering the following research questions:

e How is the decision making on the network configuration of a
hazardous waste management system affected by the
uncertainty?

e What benefits can be achieved by using a stochastic model?

The rest of the paper is organized as follows. Section 2 presents
an extensive literature review. Section 3 describes the problem and
formulates the mathematical model. Section 4 develops a solution
method for the proposed model. The numerical experiments, result
and sensitivity analyses are given in Section 5. Section 6 presents a
real-world case study of healthcare waste management in Wuhan,
China. Section 7 concludes the paper with a summary of contri-
butions and research opportunities.

2. Literature review

The hazardous waste management problem has been the sub-
ject of many research works, and this section provides a literature
review considering four basic elements of the decision-support
models, namely, the types of decisions modeled, the objective
functions of the models, the solution approaches, and the treat-
ment of uncertainty. Finally, the literature gaps are identified and
the contributions of this research are summarized.

2.1. Types of decisions

The modeling efforts focus on three different types of decisions,
namely, facility location, routing or allocation, and integrated
network design problem. The strategic facility location problem of
hazardous waste management was extensively investigated in late
1980s and was described an “obnoxious” or “undesirable” facility
location problem (Erkut and Neuman, 1989). The target of these
models is to minimize nuisance sometimes at the expense of ser-
vice cost (Alumur and Kara, 2007). Recently, Li et al. (2015) devel-
oped an integer linear program (ILP) to select the locations of
collection and treatment facilities for industrial hazardous waste.
Based on a covering problem, Chauhan and Singh (2016) proposed a
hybrid method combining interpretive structural modeling, fuzzy
AHP, and a fuzzy TOPSIS to select the locations of healthcare waste
disposal facilities in a sustainable manner. The second group of
models focuses on short-term decisions, i.e., routing and allocation.

For instance, Paredes-Belmar et al. (2017) formulated an ILP for
minimizing the cost of hazardous waste collection problem, where
only the routing decisions were considered. Considering the route
selection of a hazardous waste management system, Zografos and
Androutsopoulos (2008) formulated a bi-objective ILP to simulta-
neously minimize the cost and risk associated with the trans-
portation of hazardous waste. Sheu (2007) formulated a bi-
objective linear program (LP) to determine the allocation of haz-
ardous waste over several periods considering the minimization of
both cost and risk. The third strand of literature models the inte-
grated network design problem that aims at determining both
strategic and operational decisions, for example, location-routing
and location-allocation problems. Due to the effectiveness in
simultaneously solving both complex decision making problems
(Rabbani et al., 2018), most recent publications belong to this group,
as shown in Table 1.

2.2. Objective functions

The network design of a hazardous waste management system
considers three objectives related to economic performance, risk,
and equity (Rabbani et al,, 2018). The maximization of equity in
hazardous waste management was mainly modeled in the early
1990s. However, it may result in a higher number of facilities to be
opened and in a lower utilization rate in order to evenly allocate the
risk to different communities (Alumur and Kara, 2007). Thus, the
recent modeling efforts mainly focus on the cost and risk objec-
tives. From the waste management companies’ perspective, effi-
ciency is the primary target. In this regard, several models were
developed to minimize the cost related to collection, trans-
portation, and treatment of hazardous waste. Emek and Kara
(2007) developed a mixed integer linear program (MILP) for
selecting of the optimal locations for incarnation plants. This model
aims at minimizing the cost, while at the same time fulfilling the
emission requirement for air pollution, which is measured using a
Gaussian plume equation (Sykes et al., 1986). Lee et al. (2016)
developed a MILP to design the reverse logistics network of a
municipal solid waste (MSW) management system. The objective is
to minimize the total cost through the determination of optimal
facility locations, number of trips and allocation of MSW among
different facilities.

The transportation and treatment of hazardous waste may
impose a significant risk to the population exposure and the envi-
ronment, so the primary objective of most mathematical models is
to balance the trade-off between economic efficiency and risk
through formulating a multi-objective optimization model. In this
regard, several researches formulated multi-objective MILPs to
balance the trade-off between the cost and risk related to the fa-
cility operation and the transportation of hazardous waste (Yu and
Solvang, 2016). Das et al. (2012) developed a bi-objective routing
optimization model which simultaneously minimizes both cost and
risk related to the transportation of hazardous waste. Considering
multiple transportation modes, Jiang et al. (2014) improved a bi-
objective location-routing model of a multi-commodity hazard-
ous waste management system. Xie et al. (2012) proposed an
integer non-linear program to determine the optimal locations of
transfer yards and routing plan for hazardous waste management.
Zhao and Verter (2015) investigated an improved weighted goal
programming (GP) method for the location-routing problem of
used oil treatment. This model simultaneously minimizes the sys-
tem'’s operating cost and environment risk from the treatment and
transportation of used oil. In addition, the recent multi-objective
optimization models have attempted to better reflect real-world
situations by incorporating the waste-to-technology compatibility
and the multi-product material flow (see, e.g., Rabbani et al.
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Table 1

A comparison of relevant literature in the network design of hazardous waste management system.

Papers Decisions Material flow

Objective

Environment Solution Validation methodology

function

Location Allocation/

Others Single Multiple Single Multiple Certain Uncertain Exact Approximation

Routing

Nema and Gupta (2003) X X X X X X Numerical experiment

Alumur and Kara (2007) X X X X X X Case study

Emek and Kara (2007) X X X x X X Case study

Sheu (2007) X X X X X Numerical experiment

Zografos and x x x x Case study

Androutsopoulos (2008)

Das et al. (2012) x x X x x Case study

Xie et al. (2012) x x x X x X Case study

Boyer et al. (2013) X X X X X X Case study

Samanlioglu (2013) X X X X X X Case study

Berglund and Kwon (2014) X X X X X X X Numerical experiment

Jiang et al. (2014) X X X X X X Case study

Ardjmand et al. (2015) X X x X X X Numerical experiment

Li et al. (2015) x x x x X Case study

Zhao and Verter (2015) X X X X X X Case study

Ardjmand et al. (2016) X X X X X X Numerical experiment

Lee et al. (2016) X X X X X Case study

Yu and Solvang (2016) X X X X X X Numerical experiment

Zhao et al. (2016) X X X X X X X Case study

Yu and Solvang (2017a) X X x X X X Numerical experiment

Asgari et al. (2017) x x x x x x Case study

Farrokhi-Asl et al. (2017) X X X X X X Numerical experiment

Paredes-Belmar et al. (2017) X X X X X Case study

Yilmaz et al. (2017) X X X X X X Case study

Rabbani et al. (2018) X X X X X X Numerical experiment

Rabbani et al. (2019) X X X X X X X Numerical experiment

Zhao and Huang (2019) X X X X X X Case study

This study x x x x x x Numerical experiment and
case study

(2018)). related to the input information, so taking control of uncertainty is

2.3. Solution approaches

Due to the involvement of multiple objectives, the network
design of a hazardous waste management system is a complicated
optimization problem that can be solved by both exact and
approximation methods. To obtain exact solutions, commercial
optimization packages like CPLEX and LINGO have been widely
used for the implementation of several scalarization methods, i.e.,
the weighting method (Nema and Gupta, 2003), the GP (Zhao and
Verter, 2015), the lexicographic weighted Tchebycheff method
(Samanlioglu, 2013) and the augmented e-constraint method (Yu
and Solvang, 2016), in order to generate the Pareto-optimal solu-
tions. With a focus on improving the computational performance,
several highly effective and efficient approximation methods have
been implemented for hazardous waste network design problems.
Farrokhi-Asl et al. (2017) and Rabbani et al. (2018) evaluated the
performance of two meta-heuristic algorithms called non-
dominated sorting genetic algorithm (NSGA-II) and multi-
objective particle swarm optimization (MOPSO) on solving a
large-scale bi-objective location-routing problem for waste collec-
tion. Ardjmand et al. (2015) developed an improved genetic algo-
rithm to calculate efficient Pareto-optimal solutions of a single-
product single-period location-routing problem of hazardous ma-
terials. Asgari et al. (2017) developed an effective memetic algo-
rithm to solve a multi-objective hazardous waste location-routing
problem.

2.4. Treatment of uncertainty

Strategic decision making usually involves many uncertainties

of importance. However, most network design models for hazard-
ous waste management were formulated under a deterministic
environment and, to our knowledge, the only exceptions were
provided by Berglund and Kwon (2014), Ardjmand et al. (2016) and
Rabbani et al. (2019). Considering the budgeted uncertainty related
to the number of trucks required in a shipment and the exposure
risk, Berglund and Kwon (2014) developed a robust optimization
model for hazardous waste location-routing problem. The most
widely used approach in modeling the uncertainty of a robust lo-
gistics network is stochastic programming (Hatefi and Jolai, 2014).
In this regard, Ardjmand et al. (2016) investigated a single-product
single-objective hazardous waste location-routing problem to
balance the trade-off between cost and risk under a stochastic
environment. Even though the risk of hazardous waste manage-
ment was considered in Berglund and Kwon (2014) and Ardjmand
et al. (2016), it was directly monetized and combined in the cost
objective. Thus, their models are the extension of a single-objective
MILP and the different measures of the cost and the risk are,
however, not fully considered. The most recent research work is
that of Rabbani et al. (2019) who formulated a multi-product multi-
objective location-routing problem for hazardous waste manage-
ment. The model was first developed in a deterministic form and an
integrated sim-heuristic with both NSGA-II and Monte Carlo
simulation was then proposed to generate a set of Pareto-optimal
solutions in a stochastic environment.

2.5. Summary and contributions

Table 1 summarizes the relevant literature. With the help of
multi-objective optimization, the previous modeling efforts have
led to a well-established methodological framework for the
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formulation of and the balance between the economic performance
and the risk of hazardous waste management. Furthermore, the
research focus has also been given to the development of improved
solution approach and algorithm in order to effectively and effi-
ciently solve the complex optimization problems. However, one
major limitation is the input parameters of most previous models
are deterministic and are therefore incapable of dealing with the
uncertainty. In the real world, uncertainty may have a significant
impact on the robustness of a solution, and the incapability to cope
with uncertainty can significantly limit the use of a decision-
support model. Besides, the three exceptions of Berglund and
Kwon (2014), Ardjmand et al. (2016) and Rabbani et al. (2019)
only evaluate the impact of uncertainty on the objective values
but not on the strategic facility locations in the hazardous waste
management system. Compared with a deterministic model, the
most significant benefit of using a stochastic model is to generate
more realistic estimations and robust decisions (King and Wallace,
2012). When a facility location is selected, it is extremely expensive
to change. Moreover, different from commercial logistics systems,
the treatment of hazardous waste requires strict qualifications,
which limits the flexibility of the network. Therefore, a robust
strategic decision under an uncertain environment is particularly
worth investigating. In addition, these three models mainly
consider the uncertainty related to demand and cost but not to
other important parameters, i.e., the waste composition and the
possible change of affected population over the planning horizon.
Besides, none of them has been applied in real-world case studies.
For these reasons, in order to fill the literature gap, we formulate a
novel mathematical model for the network design of a hazardous
waste management system. The contributions are summarized as
follows:

o We model the uncertainty of the generation and composition of
hazardous waste, the fluctuations on the cost of facility opera-
tion and transportation, and the demographic change.

e We evaluate the impact of uncertainty on both the objective

values and the strategic facility location decisions in hazardous

waste management.

We introduce a sample average approximation based goal pro-

gramming (SAA-GP) algorithm to effectively solve the proposed

model.

e We validate the model and algorithm with a set of numerical
experiments and a real-world case study in order to show the
trade-off between economic performance and the risk of haz-
ardous waste management under a stochastic environment.

3. Problem description and mathematical model

We now describe the problem under study and provide a
mathematical model for it.

3.1. Problem description

Fig. 1 illustrates the network structure of a hazardous waste
management system. Different types of hazardous waste are first
collected at the generation points and thence distributed to
respective recycling centers and treatment centers in accordance
with their composition and characteristics. It is noteworthy that
hazardous waste can be sent for treatment only when a compatible
technology is installed at the respective treatment center. For
instance, explosive hazardous waste cannot be treated at an
incineration plant. After the treatment operations, some non-
hazardous recyclable parts and components can be sent for recy-
cling, and the non-recyclables and hazardous components are
dispatched for proper disposal. In addition, the waste residue from

Treatment center f

o mm——— > P e 1
Dcyy, HW, 1
} waq‘,.,, Ly thy wa,d i
T 1
1
. i §
: Disposal center d
Generation point g 1 Hwi,
1 Dcy, Hwg
1
T 1 )
1 1 1
: : '
s
: Hwgrn Recycling center r Hwyq

Dc,, Hw;

Fig. 1. A General network structure of a hazardous waste management system.

the recycling centers will also go to the disposal centers.

The aim of the model is to simultaneously balance the system
operating cost and the risk to the population of exposure from
hazardous waste management through an optimal network
configuration. In essence, the planning of a hazardous waste
management is a two-stage decision making process. In the first
stage, strategic decisions are made to design the network structure
through the determination of facility locations and technologies
installed. Then, through allocation and route planning, the second
stage tactical or operational decisions determine how the network
for hazardous waste management is used in an optimal fashion.

Nevertheless, decision making in the real world is rarely made
with all the necessary information perfectly known in advance
(King and Wallace, 2012). Usually, several uncertainties are
encountered within the lifespan of a system, but some important
decisions have to be made with imperfect information about the
future. Hence, it is of prime importance to properly control the
uncertainty related to the input parameters of the network design.
To this end, a two-stage stochastic model can be used to formulate
such a decision making problem. In a scenario-based stochastic
optimization model, discrete scenarios as well as their probabilities
of occurrence are used to formulate different conditions, and the
decisions will be made taking into account future uncertain con-
ditions. In accordance with King and Wallace (2012), considering
the nature of decisions, a modeling choice for a decision is to be
either robust or flexible.

e Robust: A robust decision means that it should be able to
withstand the change of environment and has a proper perfor-
mance. For example, the decision on a bus schedule should be
robust even if the future demand may be uncertain when the
bus schedule is planned.

o Flexible: A flexible decision should be able to adapt the change of
environment in order to maximize the performance of a system.
For instance, the daily route planning of an express delivery
company may be adjusted based on changes in customer de-
mands in order to improve the resource utilization and
efficiency.

In the hazardous waste network design problem, the first stage
strategic facility location decisions will not change with respect to
the realization of different scenarios and are therefore robust. On
the other hand, the second stage allocation and routing decisions
are flexible and can be adjusted according to the realizations of
different scenarios in order to optimize the overall effectiveness
and efficiency of the hazardous waste management system.
Therefore, considering the nature of the decision making, the
determination of the network structure through the first-stage
decision variables are more important due to their robust nature.
These decisions will have a long-term impact on the system per-
formance and cannot be easily altered without a significant cost.



H. Yu et al. / Journal of Cleaner Production 277 (2020) 123566 5

3.2. Mathematical model

The modeling structure of a hazardous waste network design
problem comprises four basic elements, namely, decision variables,
parameters, objective functions and constraints. First, two types of
variables are needed for the decision making at different stages.
The binary variables are modeled to determine the facility locations
and the continuous variables are formulated to make allocation
decisions. Then, the input information is modeled as the parame-
ters of the model, and the parameters with high uncertainty are
modeled as scenario-dependent stochastic parameters. The model
includes two objective functions in order to minimize both the cost
and the risk related to collection, transportation, treatment and
disposal of hazardous waste. Meanwhile, the model needs to be
solved under several logistical constraints, i.e., demand fulfillment,
flow balance, capacity limitation, compatibility requirement, etc.

Taking into account the requirements on the modeling struc-
ture, we develop a novel two-stage stochastic bi-objective MILP on
the basis of the hazardous waste location-routing problem
formulated by Alumur and Kara (2007) and Samanlioglu (2013).
The main differences are summarized as follows:

1. We extend the model in a stochastic environment in order to
control uncertainty arising from different input parameters.

2. We consider not only the facility selection problem, but also the
operation of facility as well as its risk impact on the population
exposure.

3. We enhance the risk assessment formula by considering the
combined risk impact from the different types of hazardous
waste and different treatment technologies implemented.

The mathematical notation used in the model is first given in
Table 2.

The objective functions are formulated in Egs. (1) and (2) where
the uncertainty is described by discrete scenarios from a probability
distribution. Depending on the characteristics of the problems, the
scenarios can be generated by different methods, e.g., sampling,
statistical approaches, and simulation. The comparison of different
scenario generation methods has been given by Di Domenica et al.
(2007) and Lohndorf (2016). Eq. (1) minimizes the overall cost of
opening and operating a hazardous waste management system.
The first three terms are the fixed cost of establishing the network
through opening different facilities, and they only involve the first-
stage decision variables which should be robust throughout all the
possible scenarios. The rest of Eq. (1) calculates the variable facility
operating cost and transportation cost of hazardous waste man-
agement. The decision variables specify the second-stage and
scenario-dependent decisions, through which the optimal opera-
tional plan of the hazardous waste management system is
determined:

minimizef; (x) = ZZFMDCM + ZFrDcr + ZFchd

teTveV rer deD

+3 Probs ( DTN VE HWE  + > VEHWS

seS teTheHveV rer

+ Z V“;waj + Z Z Z Tg,t,hHW;,t,h + Z Z Z Tg,r,hHng,r,h

deD geGteTheH geGreRheH

+ zzTirHW;r + Z Z Tts,dHW;d + Z Z Tf,dHWIS’«,d (1)

teTreR teTdeD reRdeD

minimizef,(x) = Probs > > "> POPTy  ,Hwy

seS geGteTheH

+>_ > POP 4HW;
teTdeD '
+ > Probs (Z > POPF{ HW;, + > POPf,waj> : (2)
= teTvev ~ deD

The second objective Eq. (2) minimizes the population exposure
risk. In this equation, the first term calculates the transportation
risk of hazardous waste and residue on arcs (g, t) and (¢, d), and the
second term represents the facility operating risk of the treatment
facilities and disposal facilities. In risk management, the combined
risk impact can be measured by the probability of occurrence of an
event, multiplied by the value of the consequence of that event
(Erkut and Verter, 1995). This idea has been widely adopted in
hazardous waste management problems for risk assessment since
the mid-1990s (Erkut and Verter, 1995), in which the probability of
occurrence is proportional to the usage of arcs and facilities, and the
value of the consequence is proportional to the population expo-
sure (Current and Ratick, 1995). Besides, the methods developed in
the 1990s (see, e.g. ReVelle et al. (1991) and Nema,and Gupta
(1999)) have become the theoretical foundation for quantifying
the parameters in the risk minimization objective function and
have been applied in today’s modeling efforts. Traditionally, the
facility operating risk has been formulated through the first-stage
binary variables (Alumur and Kara, 2007), which means that if a
facility is opened, there is an equal risk to the surrounding popu-
lation regardless of the facility usage. However, for the same
probability of occurrence of risk events, more facility usage leads to
a higher probability of adverse events. Therefore, the formula for
the measurement of facility operating risk can be improved with
the second-stage continuous variables related to the facility usage
(refer to Table 2 for the notation):

POPTZ, :POPfgthsh, VgeG, teT, heH, s€S (2a)

,t,h

POPFS, = POPSRs,, VteT, veV, sES. (2b)

In this model, the risk minimization objective function is
improved through the compensation of the consequence of the
events in Eq. (2). As argued in Yu and Solvang (2016), the conse-
quence of an event on the population exposure may vary signifi-
cantly when transporting different types of hazardous waste or
operating a facility with different technologies. Compared with
other types of hazardous waste, a higher consequence is encoun-
tered when accidents happen on the transportation of explosive or
radiative waste. For instance, the explosion of a tanker truck of
hazardous materials on June 13th, 2020, caused 19 casualties and
170 injuries in Zhejiang, China (BBC, 2020). Therefore, the conse-
quence of an event is not only determined by the population
exposed, but also by the type and quantity of hazardous waste
transported and the treatment technology implemented. Egs. (2a)
and (2b) are used to compensate the technology-related risk on
facility teT and waste-related risk on arc (g, t) to the population
exposure, which imply the transportation and treatment of
different types of hazardous waste may impose different levels of
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Table 2
Mathematical notation.
Sets
N=(P,Q) Network of hazardous waste management system with nodes P and arcs Q
G g Set and index of generation points of hazardous waste, GeP
T t Set and index of potential locations for treatment centers, TP
R 1 Set and index of potential locations for recycling centers, ReP
D,d Set and index of potential locations for disposal centers, DeP
H, h Set and index of different types of hazardous waste
V,v Set and index of different treatment technologies
S, s Set and index of scenarios
Parameters
Fey Fixed cost of opening a treatment center at location t T with technology veV
Fr, F4 Fixed cost of opening a recycling center at location reR and a disposal center at location deD
Vi Variable cost of operating a treatment center at location t €T with technology vV in scenario s€S
7% Variable cost in scenario s<S of operating a recycling center at location r&R and a disposal center at location deD
Tg,t,h' Tg,r.h Cost of transporting one unit of hazardous waste hH in scenario s€S on arc (g,t)Q and on arc (g,1)€Q
T Tg Ty Cost of transporting one unit of residue in scenario s€S on arc (t,r)€Q, on arc (t,d)Q and on arc (r,d)€Q
POPT;M Population risk along the arc (g, t) €Q for transporting hazardous waste heH in scenario s€S
POPg Population risk along the arc (g,t) €Q in scenario s€S
Rsp Risk compensation multiplier for hazardous waste he H
POP; Population along the arc (t,d) €Q for transporting the waste residue in scenario s€S
POPF}, Population risk around the potential location for treatment center t T with technology vV in scenario s€S
POP{, POP§ Population around the potential location for treatment center t T and around the potential location for disposal center d€D in scenario s€S
Rs, Risk compensation multiplier for technology veV
Probs Probability of the realization of scenario s€S
GHw;h Generation of hazardous waste heH at point g G in scenario s€S
vj Recyclable fraction of hazardous waste heH in scenario s€S
Losy, ,, Losy Percentage of weight reduction of hazardous waste hH with technology vV and at recycling center r&R
Recy, ., Dispy, , Recyclable fraction and disposal fraction of hazardous waste h€H treated by technology veV, where Recy, , + Disp,, =1, VheH,veV
Capy., Utile, Capacity and minimum utilization rate of treatment center t T with technology veV
Capy, Utily Capacity and minimum utilization rate of recycling center reR
Capy, Utily Capacity and minimum utilization rate of disposal center deD
Campy,, Compatibility between hazardous waste heH and technology veV.
Campp, =1,
If hazardous waste can be treated with the specific technology, Camp),, = 0, otherwise
InfN An arbitrarily large number

First-stage decision variables
Dcty, Der, Deg
Second-stage decision variables

Binary decision variable determines if a new facility is opened at respective candidate location

Hwi, , Quantity of hazardous waste heH treated at tT with technology veV in scenario s€S
Hw;, Hw) Quantity of waste treated at recycling center r<R and at disposal center d<D in scenario s€S
Hw;t_h, sz,_m Quantity of hazardous waste heH transported in scenario s€S on arc (g,t)Q and on arc (g,1)€Q

HW?,,. Hwi_d’ les‘.d

Quantity of residue transported in scenario s€S on arc (t,r)€Q, on arc (t,d)€Q and on arc (r,d)€Q

risk.

Seven sets of constraints are formulated as follows. The first set
is the demand fulfillment constraint. Eq. (3) requires the hazardous
waste generated at each generation point to be totally collected and
sent for recycling or treatment in all scenarios. Eq. (4) specifies that
different types of the hazardous waste can be recycled with a
fraction which is a quality-dependent stochastic parameter:

GHWS, = "HWS ; + > Hw} . Vg€G, heH, ses (3)
teT rer

ZH\/@Iﬁh:l?ZGH\A/;h, VgeG, heH, ses. (4)

reR

Egs. (5)—(7) are the mass balance constraints at the treatment
facilities of hazardous waste. There will be a mass loss of the input
of hazardous waste treated with different technologies. For
different types of hazardous waste, they can be converted to
recyclable fraction and disposal fraction at a fixed rate:

ZHWE_I_’,I: ZHW?,W vteT, heH,seS (5)
geG veV

> > Hw;, (1—Losy ,)Recy,=> Hw;,, VtET, s€S  (6)

heHveV reR

> Hwi,,(1—Losp, ,)Dispy, = > Hw;g VteT, s€S.
heHveV ’ ' deD

(7)

Egs. (8) and (9) are the mass balance constraints at the recycling
centers. Eq. (8) calculates the input amount from both generation
points and treatment centers. Eq. (9) calculates the output amount
of the residue sent to disposal centers:

> > Hwy,u+> Hwi, = Hw}, VreR, s€S (8)

geGheH teT

Hw;(1—Los;)=> Hw;,, Vr €R, SES. (9)
deD
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Eq. (10) is the mass balance constraint at the disposal centers,
which adds the input amount from both the recycling centers and
the treatment centers:

> _Hwiy+ > Hwi,=Hwj VdeD, ses. (10)

teT rer

Constraints (11—16) are the capacity and utilization re-
quirements for treatment centers, recycling centers and disposal
centers, respectively, through which the upper and lower limits of a
facility are specified:

> Hwj, , <Cape,Dcty, VEET,vEV, SES (11)
heH '

> “Hwj, > Util ,Cape ,Det,, YEET,vEV, SES (12)
heH o

Hws < Cap;Dcy, VreR, s€S (13)
Hwi > Util,Cap;Dc;, VrEeR, s€S (14)
Hw} < CapyDcy, VdED, s€S (15)
Hw > UtilyCapyDcy, VdED, sES. (16)

Constraints (17) are the compatibility constraint for treatment
facilities, which require the hazardous waste to be processed at a
treatment center only when the type of hazardous waste is
compatible with the treatment technology installed:

Hw},, , < Dce,Campy InfN, VteT, heH, veV, ses. (17)

The last constraints define the domains of the decision
variables:

D¢, {0, 1}, VteT, veV
Dc;e{0, 1}, VreRr (18)
Dcye{0, 1}, vdeD

Hwﬁm >0, VteT, heH, veV, seS
Hw; 2 0, VreR,seS

Hw} >0, vdeD,seS

wag’t’h >0, VgeG,teT, heH, seS
Hng,r,h >0, VgeG,rer, heH, seS
Hw{, >0, VteT, reR, seS

HW, >0, VtET, deD, seS

Hw; ;> 0, VreR, deD, seS.

(19)

4. Algorithm

Stochastic multi-objective problems are highly complicated
optimization problems, especially in view of the fact that the con-
flict among several objective functions and the influence from
different uncertainties have to be simultaneously considered.
Hence, we use a sample average approximation based goal pro-
gramming (SAA-GP) approach to solve the model heuristically.

4.1. Sample average approximation (SAA)

An optimal solution of a stochastic programming model is one

with the best and most reliable performance throughout all the
possible scenarios (Yu and Solvang, 2018). The number of scenarios
in a stochastic optimization problem can be very large, which may
lead to a significant computational challenge. In this regard, sample
average approximation (SAA) has been extensively applied to solve
a wide variety of problems, e.g. network design (Ayvaz et al., 2015),
vehicle routing (Verweij et al., 2003), and supply chain operations
(Schiitz et al., 2009). SAA is a Monte Carlo simulation based
approach used to solve stochastic optimization problems with a
large number of scenarios. Instead of solving the original problem,
SAA approximates its optimal solution value with a high level of
confidence through repeatedly solving a number of smaller sized
problems:

min

xyeo Yoy =Cxr e £} (20)

Eq. (20) defines a two-stage stochastic minimization problem,
where x and y are first-stage decisions and second-stage decisions
within a finite feasible solution space @ (e.g. a finite set of R"). £(y)
is a random vector with probability .22, E»[®(x, £(y))] is the ex-
pected resource value of a given first-stage decision x and proba-
bility .. The purpose of Eq. (20) is to minimize the sum of the first-
stage value and expected resource value with respect to the first-
stage decisions, and the real value of f(x,y) can be calculated as:
CTx + [®(x, y)2(dy) (Kleywegt et al,, 2002). In SAA as well as
other sampling methods, a sample withasetQ = {y!, y2, ..., y2} of
discrete scenarios is generated based in using the probability dis-
tribution 2. Instead of calculating the real value of E[®(x, £(y))],
the expected resource value can be approximated by the sample
average function %ZqQ:]tI)(x, £(y9)) (Verweij et al., 2003). Eq. (21)

shows the converted SAA problem of the original stochastic opti-
mization problem given in Eq. (20):

. . Q
Xy ® {fQ<x,y>: :ch+% ;m, w’))}. (21)

The optimal solution of Eq. (21) with respect to Q scenarios is
(Xq,¥q) and the optimal solution value is fq. With the increase on

the sample size Q,fQ converges to the optimal solution value of the
original stochastic optimization problem (Kleywegt et al., 2002).
Even though several attempts have been made to give a theoretical
basis for determining the sample size required for a SAA problem
(Shapiro, 2003; Kleywegt et al., 2002), the number calculated with
these formulas is usually much more than what is required to
obtain a solution with acceptable performance (King and Wallace,
2012). Hence, in practice, different sample sizes may be tested
taking into account of the balance between the quality of solution
and computational efforts required.

The implementation of the SAA method can be described
through the following procedure:

Step 1: R independent samples with Q scenarios are randomly
generated based upon a given probability distribution. Then, Eq.
(21) is repeatedly solved R times, and the optimal values and the

. . =1 R -
candidates for the first-stage decisions are fg, ...,fo and %!,
... &% respectively:

R,
fq,R:% Z]:fq (22)
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1 & o
U%Q_R:7(R—1)RZ1<fQ —fQ,R>- (23)

r=

Step 2: The average value fQ.R and variance ¢2 of all the

far

optimal value er are calculated by Egs. (22) and (23), and a
statistical lower bound of the original stochastic optimization
problem is estimated by f g (Mak et al., 1999):

~ 1 Q
fo®):= d(x, EyY)). (24)
q:l

Step 3: This step is to estimate the upper bound of the original
stochastic optimization problem with a feasible candidate of the
first-stage decisions X (e.g. the one with the best fa) and a
reference sample with Q' scenarios, as shown in Eq. (24). The
reference sample is generated independently with a large
number of scenarios and hence is used to represent the original
problem. Since the first-stage decisions have already been made
by X, the problem becomes a linear program which consists of
determining only the second-stage decisions, which is compu-
tationally manageable even if Q' is much larger than Q. Then,

the variance ofo (X) is estimated by Eq. (25):

Q
/2\ TS ~ q 7’\ ) A~
R Vo) _] o q;(c X+ ®R, £09) —fo (x)). (25)

Step 4: In order to evaluate the quality of the solutions obtained
by solving the SAA problem, the estimators of the optimality gap
gapq rq and the corresponding variance o éap are calculated by
Egs. (26) and (27):

gaporo (X)=fo®) —for (26)
2 _ 42 2 . 27
Tgap qu X + JfQ~ X (27)

Step 5: This step evaluates the performance and if the conver-
gence criterion is fulfilled (e.g. the gap estimator and variance
estimator are reasonable), the procedure can be stopped, and
the optimal value as well as the optimal first-stage decisions of
the original stochastic optimization problem can be approxi-
mated by selecting the candidate solutions with the best per-
formance in the reference sample Q. Otherwise, the above
procedures must be repeated with increased R or Q until the
convergence criterion is met.

4.2. Goal programming (GP)

The network design of a hazardous waste management system
is a multi-objective optimization problem which aims at simulta-
neously balancing the trade-off between system operating cost and
the risk related to facility operation and transportation. An optimal
solution to a multi-objective optimization problem is called “Par-
eto-optimal solution”. In such a solution, the value of one objective
function cannot be improved without deteriorating the value on

the other objectives (Sakawa et al., 2013). Goal Programming (GP) is
an a priori method for determining the Pareto-optimal solution of a
multi-objective optimization problem, in which the priority or
relative importance of each objective has to be determined in
advance (e.g. with lexicographic method or weight). The GP
method was put forward by Charnes et al. (1955), and its objective
is to minimize the overall unwanted deviations from the target
value of all the objective functions. Eq. (28) presents a general form
of GP given by Charnes and Cooper (1977):

m

minimize » " (d;" +d;)
i—1

subject to

fix)—df +di =0, Vi=1, ..m

(28)

fix)|=]0, Vi=m+1,...,
<
df +di >0, Vi=1,

m+k

The objective function minimizes the sum of the over-
achievement (d;") and underachievement (d;") from the goal value
of all the objective functions. The second and third equations are
called goal constraint and system constraint, respectively. The last
constraint requires the deviations from the goal value is non-
negative. It is noteworthy that both the overachievement and the
underachievement to one goal cannot happen at the same time, so
that di” x d; = 0. The advantage of GP in the context of a multi-
objective optimization problem is the simplicity of its imple-
mentation and the clarity of the result interpretation. When using
GP, the goal value of each objective is first determined usually by
solving each individual single objective optimization problem.
Then the relative importance of each objective is specified. In this
paper, weighted GP is used to represent the importance of each
objective in decision making, as shown in Eq. (29):

minimize i w; <Z+(;)r d)

goal
subject to
fi®) —di +di =0, Vi=1, ...,m
>

fi®)|=10,Vi=m~+1,...m+k

IN

df +d >0, Vi=1,

Finally, a Pareto-optimal solution with respect to the goal value
and corresponding importance of the objective functions can be
calculated. In addition, because the units of different objective
functions may not be comparable (e.g. the units for cost and risk in
hazardous waste management), the deviations from the goal are
first normalized before they are weighted and summed in Eq. (29).

4.3. Stepwise procedures for the SAA-GP method
Fig. 2 shows the flowchart of the SAA-GP algorithm for solving

the proposed mathematical model, which can be implemented by
the following procedure:
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Convert the bi-objective model to two single objective models

v

A

Determine sample size, repetition and reference sample

v

Solve the single objective SAA problems and calculate
performance estimators

Quality criteria satisfied?
Yes

Select the optimal first-stage decisions and calculate the objective
value of the single objective models

2

Determine the goal and the weight of each objective function

v

Solve the bi-objective SAA problems and calculate performance
estimators

Quality criteria satisfied?
Yes

Output objective values and decisions

Fig. 2. Flowchart of the SAA-GP algorithm.

Step 1: Convert the original bi-objective stochastic model into
two individual single objective stochastic optimization
problems:

Cost minimization: Eq. (1) and constraints (3—19).
Risk minimization: Eq. (2) and constraints (3—19).

Step 2: Set up the number of scenarios Q, the number of repe-
titions R and the size of the reference sample (considered as the
original stochastics problem) Q' in the experiment. Then, using a
given probability distribution of the stochastic parameters, R
independent samples with Q scenarios as well as the reference
sample are generated.

Step 3: Solve both cost minimization and risk minimization
repeatedly for R times, and then the lower and upper bound
estimators for performance evaluation can be calculated by Eqs.
22-27.

Step 4: Evaluate the performance of the estimators with respect
to Q and R for both cost minimization and risk minimization. The
lower bound estimators evaluate the in-sample stability of the
SAA problems and the upper bound estimators evaluate the
quality of the SAA to the original problem. If the quality re-
quirements are fulfilled, proceed to Step 5. Otherwise, the Steps
2—4 should be iterated with increased sample size or repetitions
until all the quality requirements are met.

Step 5: Calculate the optimal objective value and selecting the
optimal first-stage decision for both single objective optimiza-
tion problems by testing each candidate in the reference sample.
Step 6: Set the goals of each objective to its optimal value ob-
tained in the previous step and demeaning the weight

combination. The original bi-objective stochastic problem is
then converted to a weighted GP by Eq. (29).

Step 7: Repeatedly optimize the weighted GP with Q scenarios
for R times. Then, calculate the estimators for performance
evaluation to the corresponding cost and risk in each optimal
solution by Eqgs. 22—27.

Step 8: Evaluate the performance, and if the quality re-
quirements are fulfilled, proceed to the next step. Otherwise,
repeat Steps 2—8 with increased sample size or repetitions until
all the quality requirements are met.

Step 9: Choose the optimal first-stage decision on location se-
lection and, by solving the reference sample with the given
weight combination, calculate the objective values and the de-
viation of cost and risk from their goals.

5. Numerical experiments, discussion and sensitivity analyses

In this section, we present numerical experiments in order to
validate the proposed mathematical model and the SAA-GP
method.

5.1. Test instances

The numerical experiments include eight generation points, five
candidates for treatment facility, five candidates for recycling fa-
cility and three candidates for disposal facility. All the parameter
values are randomly generated within a given interval. Table 3
presents the facility-related parameters used in the numerical
experiments.

Within the planning horizon, the model considers the uncer-
tainty existed in several input parameters related to the generation,
composition, treatment and transportation of hazardous waste.
These stochastic parameters follow a discrete uniform distribution.
Table 4 provides the generation intervals of the stochastic param-
eters, based on which all test problems are randomly generated.
Furthermore, to implement the SAA-GP method, we tested
different sample sizes with 20, 40 and 60 scenarios, and the
number of repetition was set to 10. The size of the reference sample
was set to 500 scenarios, and is considered to be the original sto-
chastic optimization problem. For comparison purposes, a deter-
ministic counterpart with the mean value of all stochastic
parameters was also tested. All the optimization problems were
coded and solved by a commercial optimization solver: LINGO 17.0
on a computer with Inter Core i5 2.2 GHz CPU and 8 GB RAM
operated under Windows 10 operating system.

6. Results and discussion

In the initial step, two single objective optimization problems
for cost minimization and risk minimization were solved. Table 5
presents the statistical lower bounds, upper bounds and the esti-
mators for quality evaluation of samples with increased sizes: 20,
40 and 60. The statistical lower bound is the mean of the optimal
value of 10 repetitions (Mak et al., 1999), and the upper bound is
calculated through optimizing the reference sample with one of the
feasible first-stage decisions obtained from the SAA problems. For
the lower bounds, the variances decrease significantly with the
increase on the sample size for both cost and risk objectives.
However, the variances are stable for the upper bounds. It is
noteworthy that the estimated optimality gap of cost minimization
remains relatively stable when Q increases from 20 to 40, but it
reduces dramatically when Q = 60. Comparing it with the cost
minimization objective, the estimated optimality gap of risk mini-
mization objective is much higher when Q = 20, and it decreases
consistently and considerably with the increase in the sample size.
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Table 3

Parameters of the candidate locations for treatment facility, recycling center and disposal center.

Facility Parameter Candidate locations
1 2 3 4 5
Treatment Fixed cost 6,113,721 6,038,976 6,029,742 7,936,913 6,798,470
Compensation factor 1.64 1.66 1.66 1.26 1.47
Capacity 2594 2943 2388 2579 2353
Recycling Fixed cost 4,236,571 5,261,293 4,376,145 5,281,432 4,934,609
Capacity 1610 1737 1829 1781 1639
Disposal Fixed cost 4,899,205 4,449,917 3,209,821
Compensation factor 2.04 2.25 3.12
Capacity 4490 3514 4332
Table 4 objective optimization are considered as the goals of the GP. In

Generation intervals of the stochastic parameters.

Stochastic parameter Generation interval

Vs, ~Unif (400, 600)
vs ~Unif (600, 800)
% ~Unif (200, 300)
POPFS, ~Unif (4000, 6000)
POP; ~Unif (3000, 4000)
TS, ~Unif (600, 1000)
TS ~Unif (500, 800)
T, ~Unif (500, 800)
TS, ~Unif (800, 1200)
TS, ~Unif (600, 800)
POPTS ~Unif (6000, 10000)
POPS , ~Unif (3000, 5000)
GHw, ~Unif (600, 900)
9 ~Unif (20%, 40%)

As can be seen, the quality of solutions improves greatly with
the increase of sample size, so Q = 60 was selected to test the GP
problem. One of the most important benefits of repeatedly solving
SAA problems is to obtain a robust first-stage decision of the
original stochastic optimization problem (Schiitz et al., 2009),
which yields the best performance in the reference sample. For the
cost minimization objective, the first-stage decisions are stable and
identical through all the SAA problems, where t = (2,3),r=(1,3,5)
and d = (3) are selected and the minimum cost is 43,250,900. For
the risk minimization objective, 10 candidates found by the SAA
problems are tested in the reference sample. In the optimal solu-
tion, t = (1, 4, 5), r = (3, 4, 5) and d = (1) are opened and the
minimum risk is 97,402,580. Fig. 3 compares the optimal results of
the cost minimization and risk minimization objectives. Compared
with transportation, facility operation has more impact on both
cost and risk performance of the tested numerical example. With
the risk minimization objective, more facilities are selected, which
leads to a significant increase in the facility operating cost.

The minimum cost and minimum risk obtained from the single

Table 5
Statistical lower bounds, upper bounds and the estimators for quality evaluation.

order to minimize the weighted deviations from the goals, a weight
combination with w; = 0.5 and wy = 0.5 was tested. The corre-
sponding SAA-GP problems with Q = 60 were repeatedly solved 10
times and the result is given in Table 6. This table presents the cost,
the risk as well as the deviations from their goals in the optimal
solution of each repetition, and the first-stage decisions are also
provided. In the SAA-GP problem, the optimal solution is obtained
through optimizing the trade-off between the weighted cost de-
viation and the risk deviation. The performance between the
different objectives and between the first-stage decisions may vary
significantly throughout the repetitions.

Table 7 shows the statistical lower bound, the upper bound and
the estimators for quality evaluation for both the cost and the risk
objectives. Compared with the single objective optimization, the
estimated optimality gaps are much higher for both objectives in
the SAA-GP problems, but they are still at an acceptable level to
guarantee a confident solution. Through the repetitions, six can-
didates are generated and tested in the reference sample, and the
best one is to open t = (1, 2), r = (1, 3, 5) and d = (1). In the best
solution, the cost deviation is 4.64% and the risk deviation is 6.34%.

For comparison purposes, the problem was also solved in its
deterministic form by replacing the stochastic parameters by their
mean value. The optimal solution of the deterministic model is to
opent=(1,4), r=(1,3,5)and d = (1), and the cost deviation is
8.37% and the risk deviation is 1.44%. The first-stage decision from
the optimization of the deterministic model was tested in the
reference sample. It is infeasible due to the capacity limitation of
the treatment facilities and more facilities should be opened to deal
with the demand fluctuation in the stochastic problem. This
eventually results in an increase in both cost and risk.

Fig. 4 shows a comparison of both cost and risk between the
optimal solutions obtained by the stochastic model and deter-
ministic model. The difference in performance can be measured by
the expected value of modeling uncertainty (EVMU) or by the value
of the stochastic solution (VSS) (Birge and Louveaux, 2011). The
EVMU is an indicator used to illustrate the benefit achieved by
using a stochastic model. The procedure applied to calculate EVMU
is first to replace the stochastic parameters with their mean value

Sample size Repetition Objective Lower bound Upper bound Gap estimators
- 5 PN 2 (% % 2
far O fo ) U?Q‘ ® 8aporq (X) % Tgap
Q=20 R=10 Cost 43,186,456 175,394 43,250,895 809,434 64,439 0.15 828,219
Risk 96,467,552 1,512,030 97,711,236 8,528,440 1,243,684 1.29 8,661,439
Q=40 R=10 Cost 43,181,245 130,564 43,250,895 809,434 69,650 0.16 819,896
Risk 97,021,695 1,016,312 97,402,577 8,596,540 380,882 0.39 8,656,408
Q=60 R=10 Cost 43,252,268 86,316 43,250,895 809,434 -1373 0 814,023
Risk 97,723,873 651,248 97,513,812 8,681,283 —210,061 —0.22 8,705,676
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Fig. 3. Comparison of the optimal solutions of the cost minimization and risk minimization objectives: (A): Total cost, facility operation cost and transportation cost; (B) Total risk,
facility operation risk and transportation risk.

Table 6
Cost, risk, deviation and first-stage decisions in the 10 repetition with Q = 60 and w; = 0.5.
Repetition Cost Deviation % Risk Deviation % First-stage decisions
t R d
1 47,892,370 10.73 97,739,620 0.35 4,5 1,3,5 1
2 45,822,090 5.94 101,572,500 4.28 2,5 1,35 1
3 47,248,020 9.24 100,896,900 3.59 2,4 1,3,5 1
4 47,021,950 8.72 98,681,730 1.31 2,4 1,3,5 1
5 45,273,500 4.68 103,533,700 6.30 1,2 1,35 1
6 45,308,100 4.76 103,358,100 6.11 1,2 1,3,5 1
7 47,127,450 8.96 98,989,440 1.63 1,4 1,3,5 1
8 47,029,250 8.74 98,493,990 1.12 1,4 1,35 1
9 47,095,480 8.89 99,711,530 237 2,4 1,3,5 1
10 45,154,750 4.4 103,590,000 6.35 2,3 1,3,5 1
Table 7
Statistical lower bound, upper bound and the estimators for quality evaluation for 10 repetition with Q = 60 and w; = 0.5.
Goal Lower bound Upper bound Gap estimators
7 2 T s 2 (% 2
for o fa® e ® 8%Pora (¥) * K
Cost 46,497,296 999,620 47,088,714 803,281 591,418 1.27 1,282,381
Risk 100,656,751 2,256,733 99,560,882 9,314,344 —1,095,869 -1.09 9,583,833
o 53 g 120
£ 51 = 115
s =
49 110
a7 105
45
100
43
95
41
39 90
37 85
35 80

| Stochastic Deterministic B Stochastic M Deterministic

(A) ®B)

Fig. 4. Comparison of the performance of the first-level decisions obtained by both deterministic and stochastic models in the original stochastic problem: (A) Cost; (B) Risk.
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and then solve the mean - value problem in order to obtain the
first-stage decision. Then, using that first-stage decision to optimize
the corresponding stochastic problem, and the EVMU can be
calculated with Eq. (30):

EVMU = Expected cost with mean — value model
— Expected cost with stochastic model. (30)

With a stochastic model, by installing only 7.04% more capacity
for the treatment centers, the overall performance of the hazardous
waste management system can be dramatically improved, with a
12.07% reduction in total cost and a 7.17% reduction in total risk,
respectively, compared with the optimal decision computed
through a deterministic model. Even if some authors argue that the
network flexibility may be used to overcome the demand fluctua-
tion, e.g., by outsourcing (King and Wallace, 2012) or by reducing
the service level (Yu and Solvang, 2017b), it may not be a solution
for hazardous waste management in which stringent regulations
are implemented in order to yield a timely and proper treatment for
all the hazardous waste generated within a certain period. In
addition, due to the complex nature of hazardous waste treatment
and transportation, only a few highly qualified companies and
service providers can be involved, which limits the outsourcing
options and network flexibility. Hence, in this regard, a robust de-
cision on network configuration obtained by a stochastic pro-
gramming model may significantly outperform its deterministic
counterpart.

6.1. Sensitivity analyses

Sensitivity analyses with different weight combinations were
also performed. To this end, 11 scenarios were tested with the
weight of the cost deviation gradually decreasing from 1 to O by
steps of 0.1 in each scenario, while the weight of risk deviation
increases in the opposite way. Table 8 shows the lower bounds, the
upper bounds and the estimators of the optimality gap in the
sensitivity analysis, and the gap between lower bound and upper
bound in all the test scenarios is acceptable for generating solutions
having a sufficient confidence level.

Table 8

wil=0

wil=0.1
w1=0.2 i e——
wil=03 Hille—
w1=0.4 Il
wi1=05 I
wi=0.6 I
wil=07 I
wl=08 F

w1l=0.9

wl=1 °"

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00%

M Deviation from risk goal M Deviation form cost goal

Fig. 5. Sensitivity analysis with varying weight combination.

Fig. 5 presents the cost deviation and risk deviation of the
Pareto-optimal solutions with varying weight combinations. When
wi = 0 and 0.1, the risk level is minimized, but there is a large de-
viation in the cost goal. On the other hand, when w; =0.8, 0.9 and 1,
the cost approaches the optimal value, but the risk significantly
deviates from its goal. In the other scenarios, the deviations from
the cost and risk goals must be balanced with one another, so it is of
particular interest to investigate the system behavior under these
scenarios.

One of the most important purposes of using a two-stage sto-
chastic programming model is to obtain a robust first-stage deci-
sion. Table 9 compares the first-stage decisions generated by both
the deterministic model and the stochastic model. We first observe
that the network configuration varies greatly with the change of
focus on the system design. Second, in some scenarios (w; =0, 0.1,
0.7,0.8,0.9 and 1), a deterministic model can also yield a good first-
stage decision. However, in the other scenarios, especially when the
balance between cost deviation and risk deviation is emphasized,
the decisions made by a stochastic model are much better with
respect to system performance. Third, in a multi-objective opti-
mization problem under uncertainty, even though the overall sys-
tem performance is better with the decision made by a stochastic

Statistical lower bounds, upper bounds and the estimators for quality evaluation in the sensitivity analysis with changing weight combination.

Weight Goal Lower bound Upper bound Gap estimators
fQ‘R D‘!%zx fQ‘ (?) 0’-%12' x) EPara ® * a-gap
wy =1 Cost 43,252,268 86,316 43,250,895 809434 -1373 0 814,023
Risk 119,952,310 967,360 119,895,022 10,839,277 —57,288 —-0.05 10,882,358
w; =09 Cost 43,475,060 148,551 43,281,984 813,666 —193,076 -0.44 827,115
Risk 117,960,070 1,269,067 118,560,005 10,703,293 599,935 0.51 10,778,266
w; = 0.8 Cost 43,425,067 120,239 43,349,774 815,638 —75,293 -0.17 824,452
Risk 117,384,540 964,128 104,244,613 9,809,252 51,613 0.05 9824,419
w; = 0.7 Cost 45,115,179 100,370 45,090,960 809,304 —24,219 —-0.05 815,504
Risk 104,193,000 545,693 104,244,613 9,809,252 51,613 0.05 9,824,419
w; = 0.6 Cost 45,151,484 105,368 45,132,280 814,186 -19,204 —0.04 820,976
Risk 103,933,240 594,219 104,066,758 9,783,581 133,518 0.13 9,801,610
w; = 0.5 Cost 46,497,296 999,620 47,088,714 803,281 591,418 1.27 1,282,381
Risk 100,656,751 2,256,733 99,560,882 9,314,344 —1,095,869 -1.09 9,583,833
w; =04 Cost 47,281,433 309,679 47,106,247 806,902 —175,186 -0.37 864,287
Risk 99,134,692 1,046,516 99,528,192 9,309,252 393,500 0.40 9,367,890
w; =03 Cost 47,304,111 299,695 47,118,668 810,118 —185,443 -0.39 863,776
Risk 99,106,560 1,042,259 99,512,380 9,304,577 405,820 041 9,362,770
w; = 0.2 Cost 47,313,976 296,886 47,133,044 811,360 —180,932 -0.38 863,971
Risk 99,099,020 1,041,099 99,501,415 9,303,115 402,395 0.41 9,361,188
w; = 0.1 Cost 50,023,629 3,383,297 53,930,043 813,174 3,906,414 7.81 3,479,648
Risk 98,370,287 818,338 97,516,075 8,681,971 —854,212 -0.87 8,720,453
w; =0 Cost 59,850,556 3,259,162 60,620,437 825,052 769,880 1.29 3,361,970
Risk 97,723,873 651,248 97,513,812 8,681,283 —210,061 -0.22 8,705,676
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Table 9

Fist-stage decisions obtained by both deterministic and stochastic model as well as
the EVMU in percentage in the sensitivity analysis with change weight
combinations.

Weight First-stage decisions EVMU %
Deterministic Stochastic Cost Risk
t r d t r d

wy=1 2,3 1,3,5 3 2,3 1,3,5 3 0 0

w; =09 1,2 1,3,5 3 1,2 1,3,5 3 0 0

w; = 0.8 2,3 1,3,5 3 2,3 1,3,5 3 0 0

wy = 0.7 2,3 1,3,5 1 2,3 1,3,5 1 0 0

w; = 0.6 1,3 1,3,5 1 1,2 1,3,5 1 8.64 9.93

w; =05 1,4 1,3,5 1 1,2 1,3,5 1 12.07 7.17

w; =04 4,5 1,3,5 1 2,4 1,3,5 1 9.74 9.96

w; =03 4,5 1,3,5 1 2,4 1,3,5 1 12.72 -2.15

w; =02 4,5 1,3,5 1 2,4 1,3,5 1 12.72 -2.15

wy = 0.1 4,5 1,3,5 1 1,4,5 1,3,5 1 0 0

w; =0 4,5 3,4,5 1 1,4,5 3,4,5 1 0 0

model, the performance of individual objectives may increase
monotonically, as can be seen when w; = 0.2 and 0.3.

7. Case study

The model was applied in a case study of healthcare waste
management from the third-level grade-A hospitals in Wuhan,
which are the top tier hospitals in China. Wuhan is the capital of
Hubei province and is a megacity with more than 10 million resi-
dents. The total generation of healthcare waste in Wuhan is 17,300
tons (Ministry of Ecology and Environment of People’s Republic of
China, 2019), which are mainly from four types of healthcare in-
stitutions including hospitals, healthcare centers, community
health service centers, and maternity and child care hospitals.
Table 10 illustrates the number of beds and the utilization rate of
beds at these healthcare institutions, based on which the annual
generation of healthcare waste per bed can be estimated by

Total healthcare waste H
5 O her ofbeds < Uiization and is 0.216 tons/bed/year. There
ealthcare institutions

are 30 third-level grade-A hospitals, which have 35,769 clinical
beds in total and contribute to 41.2% healthcare waste generation in
Wuhan (Statistical yearbook of Wuhan, 2018). It is assumed the
total healthcare waste generation in the planning horizon will be
increased by 30%, and the healthcare waste generation is propor-
tional to the number of beds and the utilization rate at each
healthcare institution. Based on these assumptions, the number,
name, total number of beds, and projected annual healthcare waste
generation of the third-level grade-A hospitals in Wuhan are given
in Table A1 (Appendix A).

Due to the highly infectious nature, the recycling of healthcare
waste is not performed at the current stage in Wuhan. Instead, the
healthcare waste is first treated at a specialized incineration plant
at Guodingshan before they are sent to the landfill. In this study, we
considered all the five incineration plants in Wuhan as candidate
locations for opening specialized facility for the treatment of
healthcare waste. The residue from incineration plants can be sent

Table 10

to the landfills at Zixiaguan, Changshankou and Chenjiachong. The
Baidu map (https://map.baidu.com) was used to identify the loca-
tions of hospitals, incineration plants and landfills and also to
calculate the distance among these locations. Fig. 6 shows the lo-
cations of respective nodes. The distance matrixes between hos-
pitals and incineration plants and between incineration plants and
landfills are given in Tables A2 and A3, respectively. The parameters
of the candidate locations for treatment centers and disposal cen-
ters are given in Table 11. The transportation cost of healthcare
waste is proportional to the travel distance between two nodes and
the unit transportation cost is set to 40 yuan/km (Zhao et al., 2016).

In order to evaluate the risk impact of the healthcare waste
management system, the population exposure within a bandwidth
of 800 m along each transportation route was first estimated
(ReVelle et al., 1991; Alumur and Kara, 2017). Then, the population
exposure was calculated by 1.6 (km)

xlength of the route (km) x population density along the route

(people / kmz)

(Zhao and Huang, 2019). Furthermore, the risk impact to popula-

tion exposure of the transportation of untreated healthcare waste is
higher than that of the residue. Hence, the Rs, was set to 1.3 in this
study. The waste-to-residue conversion rate at the incineration
plant was assumed to 0.2 (Zhao et al., 2016). The risk of facility
operation is related to both population exposure and the imple-
mented technologies. The population exposure within a radius of
3 km from the facility was used and was thus calculated by
9 (km?) x population density of the district (people /km?). Consid-
ering the diffusion of hazardous smoke from the combustion of
healthcare waste, the risk impact to the population exposed to
incineration plants was compensated by Rs, = 1.5.

The model parameters were first generated in deterministic
forms. Taking into account the randomness of the input informa-
tion, the stochastic parameters were then generated from an uni-
form distribution on (p;, py). Herein, p; and p, are the lower bound
and the upper bound of the parameter interval, which can be
calculated by p;=p(1-«a) and p, = p(1 + «), respectively
(Pishvaee and Razmi, 2012). The samples size was set to 60. In the
case study, the value of a was set to 10%, 20% and 30%. We
compared three scenarios with different weight combinations
S1(wq = 0.5, w, = 0.5), S2(w; =0.7, w, = 0.3) and S3(w; = 0.3,
wy = 0.7). The computational results are presented in Table 12.
With the change of « from 10% to 30%, the computational results, in
general, show high stability in both objective values and facility
location decisions. Besides, when wy increases from 0.5 to 0.7, the
network configuration and objective values are not changed.
However, when wy decreases from 0.5 to 0.3, one more incineration
plant is opened at Hankounan, which result in changes in both cost
and risk. Finally, under the realistic situation, another set of ex-
periments was tested in order to evaluate the model’s computa-
tional performance, where the weight combination was set
to S1(wq = 0.5, w, = 0.5) and the sample size was set to 20. The

Number of beds and utilization rate of beds at different healthcare institutions in Wuhan.

Healthcare institutions

Number of beds (Units)

Utilization rate of beds (%)

Hospitals 78,447
Healthcare centers 4530
Community health service centers 6215
Maternity and child care centers 1877

92.51
66.24
4547
99.61

Data source: Statistical yearbook of Wuhan (2018).
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Fig. 6. Locations of the third-level grade-A hospitals, incineration plants and landfills in Wuhan.

Table 11
Parameters of the candidate locations.

Facility Candidate number Location (District) Population density (people/sq. km) Fixed cost (yuan/year) Unit processing cost (yuan/ton) Capacity (ton/year)
Incineration plant 1 Hanyang 5898 10,000,000 1200 11,000
2 Jiangxia 453 8,000,000 1200 11,000
3 Qingshan 9349 12,000,000 1200 11,000
4 Huangpi 437 8,000,000 1200 11,000
5 Dongxihu 1133 9,000,000 1200 11,000
Landfill 1 Hanyang 5898 8,000,000 900 8000
2 Xinzhou 616 6,000,000 900 8000
3 Jianxia 453 5,000,000 900 8000
Data source of population density: Statistical yearbook of Wuhan (2018).
Table 12
Computational result.
Scenario a Objective value Facility selection CPU time (s)
Cost (yuan) Risk Incineration Landfill
S1 10% 39,289,706 1,880,790,279 Changshankou Changshankou 51
20% 39,297,148 1,891,555,270 Changshankou Changshankou 45
30% 39,233,298 1,864,974,160 Changshankou Changshankou 19
S2 10% 39,289,706 1,880,790,279 Changshankou Changshankou 186
20% 39,297,148 1,891,555,270 Changshankou Changshankou 78
30% 39,233,298 1,864,974,160 Changshankou Changshankou 55
S3 10% 44,468,037 1,711,485,811 Changshankou and Hankoubei Changshankou 13
20% 44,534,915 1,698,147,950 Changshankou and Hankoubei Changshankou 16
30% 44,723,216 1,655,355,272 Changshankou and Hankoubei Changshankou 15

result is presented in Table 13.

Compared with the current incineration plant at Guodingshan,
the computational results suggest opening a new incineration plant
for healthcare waste at Changshankou is a better choice. Even
though the total transportation cost could be minimized by oper-
ating a healthcare waste incineration plant at Guodingshan due to
its close proximity to the city center, it imposes significant risks to a
large population exposed and has thus been complained by nearby
residents for many years (Hu et al., 2015). Furthermore, when the
decision making on network design favors more on risk control and
minimization, another healthcare waste incineration plant would
be selected at Hankoubei and would thus be significantly increase
the facility operating cost. However, on the other hand, the

healthcare waste generated at different hospitals can be allocated
to these two incineration plants based on the proximity, which
optimizes the transportation network and reduces both risk and
cost related to the transportation. Moreover, the focus on risk
control equips the system with a larger capacity that may be used to
better deal with the future uncertainty. For instance, the outbreak
of the novel coronavirus disease (COVID-19) from December 2019
(Wu et al., 2020) in Wuhan causes several challenges in the pre-
vention of epidemic spread, among which the transportation and
treatment of highly infectious and rapidly increased healthcare
waste is one of the most significant logistical problems (Yu et al.,
2020). In this regard, a system planning with more focus on risk
minimization may be of vital importance in order to deliver timely
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Table 13
Computational performance.

Instance Problem size Computational performance

Hospital Incineration Disposal CPU time (s) Solver type Solver interactions
1 30 10 10 6 B-and-B 16,661
2 30 20 20 49 B-and-B 117,310
3 30 30 30 71 B-and-B 157,765
4 50 30 30 331 B-and-B 953,295
5 50 40 40 537 B-and-B 1,524,667
6 50 50 50 539 B-and-B 983,286
7 80 50 50 694 B-and-B 1,167,708
8 80 80 80 4644 B-and-B 2,329,267
9 100 80 80 4422 B-and-B 2,115,509
10 150 100 100 12,572 B-and-B 7,046,249

and responsive logistical service for removing the infectious
healthcare waste at hospitals, which may drastically reduce the
exposure risk for both medical staffs and patients. In addition,
taking into account the uncertainty related to the input informa-
tion, the cost estimation given by the stochastic model may be
more realistic (King and Wallace, 2012), so it may result in a more
robust and reliable decision making.

8. Conclusions

The network design of a hazardous waste management system
is a complex decision making problem that needs to achieve a
trade-off between system operating cost and population exposure
risk. It is also influenced by a high level of uncertainty within the
planning horizon. Unlike the network design of the other logistical
systems and supply chains, only a few companies are qualified to
perform operations in hazardous waste management, which
greatly limits the system flexibility. In this paper, a novel two-stage
stochastic bi-objective mathematical model was formulated in or-
der to optimize the trade-off between cost and risk through the
network decisions. In contrast to most of the other models which
predominantly focus on simultaneously making both strategic de-
cisions (location), and tactical and operational decisions (allocation,
routing and inventory), our model takes into account the robust
and flexible nature of the decision making and thus emphasizes the
robustness of the strategic location decisions in the first-stage
under an uncertain environment.

We have applied a Monte Carlo simulation based SAA-GP heu-
ristic to solve the multi-objective stochastic optimization problem.
The application of the model and the algorithm were accessed
through extensive numerical experiments and a real-world case
study. Based on the experimental results, three implications for
hazardous waste network design emerge in order to answer the
proposed research questions:

e Considering future uncertainty may lead to a significant change
not only in the objective values of the model but also in the
strategic location decisions that are extremely difficult to alter.
In this regard, the stochastic model for hazardous waste
network design takes a large number of possible scenarios, e.g.,
fluctuations of cost and waste generation, into decision making
and may thus obtain a more realistic estimation and generate
more robust location decisions.

e The optimal facility locations obtained under a stochastic envi-
ronment can better reflect the infrastructural preparedness for
the worst situations. Different from other logistics systems that
enjoy the benefits of fulfilling fluctuate demands with several
flexible options, e.g., outsourcing, hiring of seasonal workers,
etc., a hazardous waste management system usually has a much
lower flexibility due to the limited number of qualified

companies and personnel in this sector. In this regard, the better
infrastructural preparedness suggested by the stochastic model
is important to effectively deal with the fluctuation of waste
generation and react to emergency situations.

Even though a stochastic program may improve the objective
value and the location decisions under an uncertain environ-
ment, this is more effective with a single objective function.
However, in a multi-objective optimization, the improvement
may not be monotonic in all objectives. The performance of
some objective values obtained by the stochastic model may be
weakened when they become less important in the decision
making of hazardous waste network design.

Preparedness for the worst is of vital importance for a hazardous
waste management system which lacks flexibility. The better de-
cisions on facility selection and locations obtained by using a sto-
chastic model may improve the long-term performance of a
hazardous waste management system. For example, due to the
COVID-19 outbreak, the daily generation of medical waste i.e., used
respirators, waste medical masks and protective clothes, increases
drastically all over the world and a robust network configuration
for hazardous waste management may help to better react to these
kinds of public health emergency.

Extensions of the current research could consist of improving
the effectiveness and efficiency of the model computation for large-
size instances using, for example, decomposition methods (e.g.
Bender’s decomposition) and metaheuristics. The incorporation of
emergency response of risk event in the network planning of a
hazardous waste management system is also of interest for future
investigation.
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