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Abstract

A primary goal of human genetics is to identify DNA sequence variants that influence biomedical 

traits, particularly those related to the onset and progression of human disease. Over the past 25 

years, progress in realizing this objective has been transformed by advances in technology, 

foundational genomic resources and analytical tools, and by access to vast amounts of genotype 

and phenotype data. Genetic discoveries have substantially improved our understanding of the 

mechanisms responsible for many rare and common diseases and driven development of novel 

preventative and therapeutic strategies. Medical innovation will increasingly focus on delivering 

care tailored to individual patterns of genetic predisposition.

For almost all human diseases, individual susceptibility is, to some degree, influenced by 

genetic variation. Consequently, characterizing the relationship between sequence variation 

and disease predisposition provides a powerful tool for identifying processes fundamental to 

disease pathogenesis and highlighting novel strategies for prevention and treatment.

Over the past 25 years, advances in technology and analytical approaches, often building on 

major community projects–such as those that generated the human genome sequence1 and 

elaborated on that reference to capture sites of genetic variation2–6–have enabled many of 

the genes and variants that are causal for rare diseases to be identified and enabled a 

systematic dissection of the genetic basis of common multifactorial traits. There is growing 

momentum behind the application of this knowledge to drive innovation in clinical care, 

most obviously through developments in precision medicine. Genomic medicine, which was 

previously restricted to a few specific clinical indications, is poised to go mainstream.

This Review charts recent milestones in the history of human disease genetics and provides 

an opportunity to reflect on lessons learned by the human genetics community. We focus 

first on the long-standing division between genetic discovery efforts targeting rare variants 

with large effects and those seeking alleles that influence predisposition to common 

diseases. We describe how this division, with its echoes of the century-old debate between 

Mendelian and biometric views of human genetics, has obscured the continuous spectrum of 

disease risk alleles–across the range of frequencies and effect sizes–observed in the 

population, and outline how genome-wide analyses in large biobanks are transforming 

genetic research by enabling a comprehensive perspective on genotype–phenotype 

relationships. We describe how the expansion in the scale and scope of strategies for 

enumerating the functional consequences of genetic variation is transforming the torrent of 

genetic discoveries from the past decade into mechanistic insights, and the ways in which 

this knowledge increasingly underpins advances in clinical care. Finally, we reflect on some 

of the challenges and opportunities that confront the field, and the principles that will, over 

the coming decade, drive the application of human genetics to enhance understanding of 

health and disease and maximize clinical benefit.
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Rare diseases, rare variants

During the 1980s and 1990s, efforts to map disease genes were focused on rare, monogenic 

and syndromic diseases and were mostly driven by linkage analysis and fine mapping within 

large multiplex pedigrees. Localization of genetic signals was typically followed by Sanger 

sequencing of the genes found to map within the linked locus to identify disease-causing 

alleles. Assessments of pathogenicity, based on segregation of a putatively causal variant 

with disease across multiple families and evidence that the risk genotype was absent in 

healthy individuals, were typically followed by confirmatory functional studies in cellular 

and animal models. This path to gene identification was laborious; nevertheless, by 2000, 

around 1,000 of the estimated 7,000 single-gene inherited diseases had been characterized, 

including many with substantial biomedical impact, such as Huntington’s disease and cystic 

fibrosis7–9.

Completion of the draft human genome sequence1 reduced many of the obstacles to disease-

gene mapping and propelled a fourfold increase in the genes implicated as causal for rare, 

single-gene disorders (Fig. 1). Microarray-based detection of structural variation10 and 

exome-and genome-wide sequencing11,12 have been pivotal, bolstered by in silico analysis 

and prioritization of the discovered genetic variants. Increasing availability of reference 

datasets cataloguing population genetic variation across diverse ethnic backgrounds has 

supported robust causal inference2,3,5,6. More recently, the adoption of high-throughput 

sequencing technologies has enabled the full range of causal genetic variation, from single 

mutations to large structural rearrangements, to be identified in a single assay. These 

technologies have extended from research into clinical usage, driving earlier and faster 

diagnosis for genetic disorders.

Reduced reliance on multiplex pedigrees in favour of collections of affected cases, often 

with parents13, has proven decisive in identifying new dominant disorders, many of which 

were previously considered recessive14. Increasingly, discovery of rare disease genes has 

transitioned from genetic characterization of small numbers of individuals with similar 

clinical presentations to genome-wide sequencing of larger cohorts of phenotypically diverse 

patients. This genotype-driven approach has revealed new disorders associated with more 

variable clinical presentation15,16.

A more systematic approach to data sharing has been critical, both for the characterization of 

new disorders and diagnostic interpretation of potential causal alleles. The value of sharing 

genetic and phenotypic data from those thought to harbour rare undiagnosed genetic 

diseases has fostered global collaborative networks (for example, Matchmaker Exchange, 

DECIPHER and GeneMatcher) designed to match patients with similar genetic variants 

and/or phenotypic manifestations, even across continents17–19. Interactions between 

researchers and families with rare disease have enabled natural history studies to be driven 

by family support groups positioned to initiate data collection from patient cohorts once a 

causal gene is discovered20.

Clinical translation of these technologies has benefited from a series of information 

resources, including open databases of genes associated with rare disorders (for example, 
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OMIM and ORPHANET)21, clinically interpreted variants (for example, ClinVar and 

ClinGen)22,23 and patient records (for example, DECIPHER and MyGene2 (https://

mygene2.org/MyGene2))17. Access to resources that catalogue genetic variation across 

populations (such as ExAC and its successor gnomAD)5,6 has enabled the confident 

exclusion of genetic variants too common in population-level data to be plausible causes of 

rare, penetrant early-onset genetic diseases24. These analyses have reduced the 

contamination of databases with variants erroneously interpreted as causal for disease, and 

are addressing the overestimation of disease penetrance arising from the historical focus on 

multiplex pedigrees25. Improved recognition of the variable penetrance of many 

‘monogenic’ disease alleles has invigorated efforts to identify the genetic and environmental 

modifiers responsible26,27.

Although huge strides have been made in associating specific genes with particular 

disorders, establishing the causal role of individual variants within those genes remains 

problematic, and many patients with suspected rare genetic diseases are left without a 

definitive diagnosis28.Even for variants with established causality, the penetrance is often 

unclear. Resolving these uncertainties represents the central challenge for the field. 

Aggregation of sequencing data from large numbers of affected cases and population 

reference samples will provide the evidence base required for robust interpretation of 

variants. Highly parallelized in vitro cellular assays that allow assessment of the functional 

effects of all variants in a disease-associated gene can transform interpretation of novel 

variants29, although developing well-calibrated functional assays predictive of pathogenicity 

for all disease genes represents a daunting prospect. Direct functional genomic exploration 

of accessible and disease-relevant tissues from patients using RNA sequencing and DNA 

methylation assays30,31 can identify previously cryptic causal genetic variants, particularly 

in under-explored regions outside protein-coding genes32,33. Developments in each of these 

areas will extend the range of variants and genes for which diagnostic and prognostic 

clinical information can be provided to patients and their families.

Common diseases, common variants

Efforts to apply the approach–linkage analysis in multiplex pedigrees–that had been so 

successful for the high-penetrance variants responsible for Mendelian disease were, with 

notable exceptions34–36, largely unsuccessful for common, later-onset traits with more 

complex multifactorial aetiologies, such as asthma, diabetes and depression. Recognition 

that association-based methods, focused on detecting phenotype-related differences in 

variant allele frequencies might have greater traction for identifying less penetrant common 

alleles redirected attention to analysis of case–control samples37. However, initial efforts 

targeting variants within ‘candidate’ genes were plagued by inadequate power, unduly 

liberal thresholds for declaring significance and scant attention to sources of bias and 

confounding, resulting in overblown claims and failed replication.

Systematic efforts to characterize genome-wide patterns of genomic variation, initially 

through the HapMap Consortium2, proved catalytic, demonstrating that the allelic structure 

of the genome was segmented into haplotype blocks, each containing sets of correlated 

variants. Recognition that this configuration could support genome-wide surveys of 
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association energized the technological innovation–in the form of massively parallel 

genotyping arrays–to make such studies possible (Fig. 1). Early wins in acute macular 

degeneration38 and inflammatory bowel disease39 were encouraging, and progress on 

several fronts–expansion of study size, denser genotyping arrays, novel strategies for 

imputation, attention to biases and appropriate significance thresholds–delivered robust 

associations across a range of diseases40. Most variants uncovered by these early genome-

wide association studies (GWAS) were common, with more subtle effects than many had 

anticipated. A host of trait-specific consortia formed, covering diverse dichotomous and 

quantitative phenotypes, to accelerate genetic discovery through the aggregation and meta-

analysis of data from multiple GWAS studies41–43. Many tens of thousands of robust 

associations were identified44. Recently, increased access to exome and whole-genome 

sequence data has, through both direct association analysis45,46 and imputation3,4, extended 

discovery to low-frequency and rare alleles previously inaccessible to GWAS.

In the decade since the first GWAS, understanding of the genetic basis of common human 

disease has been transformed. The disparity between the observed effects of the variants first 

identified by GWAS and estimates of overall trait heritability (the ‘missing heritability’ 

conundrum) is now largely resolved47. Common diseases are not simply aggregations of 

related Mendelian conditions: for most complex traits, genetic predisposition is shared 

across thousands of mostly common variants with individually modest effects on population 

risk41,43.

Although the collective contribution of low-frequency and rare risk alleles to overall trait 

variability appears modest compared with that attributable to common variants45,48, the rare 

risk alleles detected in current sample sizes necessarily have large phenotypic effects and are 

proportionately more likely to be coding, enhancing their value for biological inference. 

Founder populations (such as those from Finland and Iceland) have provided multiple 

examples of otherwise rare risk alleles driven to higher frequency locally through drift 

and/or selection49–52. In addition, studies in populations with high rates of consanguinity 

make it possible to identify individuals homozygous for otherwise rare loss-of-function 

alleles, the basis for a ‘human knockout’ project to systematically investigate the phenotypic 

consequences of gene disruption in humans53,54.

For most diseases, large-scale GWAS-aggregation efforts have been disproportionately 

powered by information from individuals of European descent55. Whereas patterns of 

genetic predisposition appear broadly similar across major population groups and many 

common risk alleles discovered in one population group are detectable in others, allele 

frequencies can vary substantially; extending GWAS and sequencing studies to diverse 

populations will surely generate a rich harvest of novel risk alleles.

The relative contributions of common and rare variants indicate that, for many traits, 

particularly those with post-reproductive onset, purifying selection has had only limited 

effect45,56. For a few risk alleles, hallmarks of balancing selection reflect increased carrier 

survival, usually through protection from infectious diseases. This includes well-known 

examples of alleles maintained at high frequency in populations of African descent57,58
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While the extensive linkage disequilibrium within human populations has been essential to 

discovery in GWAS, high correlation between adjacent variants frustrates mapping of the 

specific variants responsible for these associations. Increasing sample size, improved access 

to trans-ethnic data, and more representative imputation reference panels3 provide a path to 

improved resolution of the causal variants59 and clues to the molecular mechanisms through 

which they operate. Functional interpretation is easiest for causal variants within coding 

sequences; however, most common disease-risk variants map to noncoding sequences, and 

are presumed to influence predisposition through effects on transcriptional regulation. In 

these cases, mechanistic inference depends on connecting association signals to their 

downstream targets (see below). For many traits, there is clear convergence between 

common-variant association signals and genes implicated in monogenic forms of the same 

disease, as well as enrichment of GWAS signals in regulatory elements specifically active in 

cell types consistent with known disease biology60,61. This provides reassurance that, even 

as the number of association signals for a given disease proliferates, the genetic associations 

uncovered will coalesce around molecular and cellular processes with a core role in 

pathogenesis62,63.

Importantly, the signals discovered by GWAS have revealed many unexpected insights into 

the biological basis of complex disease. Examples include the role of complement in the 

pathogenesis of acute macular degeneration38, synaptic pruning in schizophrenia64 and 

autophagy in inflammatory bowel disease65. In addition, as inherited sequence variation is a 

prominent cause of phenotypic variation (but the reverse is not true), risk variants identified 

by GWAS have value as genetic instruments, mapping causal relationships between traits 

and inferring contributions made by circulating biomarkers and environmental exposures to 

disease development66.

As described below, findings from GWAS have increasing translational impact through 

identification of novel therapeutic targets67, prioritization (and deprioritization) of existing 

ones68 and development of polygenic scores that quantify individual genetic risk69.

Comprehensive genotype–phenotype maps

The historical division of disease-gene discovery into monogenic and polygenic strands 

arose from development and implementation of analytical approaches–family-based linkage 

and case–control association37–that are best-suited for detecting particular subsets of causal 

alleles. This obscured the true state of nature, with disease-risk alleles being distributed 

across a continuous spectrum of frequencies and effect sizes. In addition, the trait-and 

disease-specific perspective of early GWAS discovery (mostly reliant on case–control 

studies) was poorly equipped to investigate the contribution of genetic variants to phenotypic 

effects that are nested within or spread across classical disease definitions. Recent 

developments have enabled a more holistic perspective on genotype–phenotype relationships 

(Fig. 1).

One major advance has been the increasing availability of large prospective population-

based cohorts. These biobank efforts, pioneered in studies such as the Framingham Cohort70 

and the efforts of DeCODE in Iceland71,72, now encompass a growing inventory of national 
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cohorts in North America, Europe, Asia and beyond73–76. The UK Biobank study, including 

500,000 largely healthy, middle-aged participants has been particularly influential, 

transforming human genetic research in part through permissive data-sharing policies that 

have allowed multiple research groups to analyse the data74. Efforts to make clinical data 

embedded in electronic health records and registries available for research77,78 mean that 

biobanks increasingly provide access to a wide range of demographic, clinical and lifestyle 

data, captured in harmonized, systematic fashion from large, often multi-ethnic collections 

of individuals. For millions of biobank participants, this rich phenotypic information has 

been combined with genome-wide genetic data. There are nascent efforts to capture 

transcriptomic, proteomic and metabolomic phenotypes, although these are not yet at 

equivalent scale to the genetic data79,80. Biobank analyses have provided more generalizable 

estimates of the relevance of genetic risk factors in the context of the separate and joint 

effects of non-genetic factors81. Increasingly, integration with healthcare data brings a 

longitudinal dimension to phenotypic characterization, which facilitates analyses of disease 

progression and lifelong disease risk82.

The rich phenotypic scope of these cohorts has enabled variants of interest to be interrogated 

for associations across the gamut of available phenotypes. These phenome-wide association 

studies (PheWAS) have revealed the extent to which many variants have pleiotropic effects 

across multiple traits83. Some of these relationships are expected, such as the impact of 

obesity variants on risk of hepatic steatosis and type 2 diabetes84 or variants that influence 

multiple autoimmune conditions85. Others connect diseases and traits in surprising ways, 

highlighting shared polygenic, pleiotropic effects and cell-type specificity, and delivering 

insights into shared biology and overlapping mechanisms86,87. These findings inform the 

prioritization of therapeutic targets, providing clues to potential on-target side effects and 

opportunities for drug repurposing87–89.

The second enabler of inclusive, systematic analysis of genotype–phenotype relationships 

has been access to whole-genome sequence data. The scale of genetic analysis based on 

sequence data still lags behind that of genome-wide genotyping data (the largest sequence-

based datasets are one tenth the size of the largest GWAS90–92), although reductions in 

sequencing costs are decreasing the differential. Most direct analysis of high-throughput 

sequence data has focused on the coding regions. Strategies for assigning variant function 

and jointly analysing sets of variants of similar functional effect have enabled aggregate, 

gene-level tests of rare functional-variant association that are often better powered than 

single-variant tests91,92. However, the principal benefit to date of whole-genome sequence 

data to genetic discovery has been to bolster array-based access to lower-frequency alleles, 

either directly, through their inclusion on genotyping platforms, or indirectly, through 

imputation from sequence-based reference samples3,4.

These developments have enabled researchers to bridge the gap between the monogenic and 

polygenic realms, identifying common variant modifiers of monogenic phenotypes 

contributing to the variable expression of rare, large-effect alleles26,93, and low-frequency 

and rare variants that influence common multifactorial traits94,95. This enables more 

rigorous evaluation of the contribution of rare and common variants to trait susceptibility48 

and supports the enumeration of ‘allelic series’ (sets of alleles of varying frequency, effect 
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size and direction that disrupt the same gene) critical for studies of disease mechanism and 

therapeutic target optimization89,96. These developments are rapidly converging towards the 

ultimate destination: a comprehensive matrix of the effect of all observable genetic variants 

across the widest possible range of cross-sectional and longitudinal biomedical phenotypes. 

Success in this endeavour depends on ever greater harmonization between, and integration 

of results from, individual studies through sustained investments in data sharing.

Adding function

From the first linkage maps to whole-genome sequencing of large cohorts, human genetics 

has deployed increasingly sophisticated and inherently systematic approaches for mapping 

the genetic factors that underlie traits and diseases. However, progress in determining how 

these variants influence disease, through systematic interrogation of their functional effects 

on molecular, cellular and physiological processes, has been far slower.

For monogenic diseases, for which the alleles responsible are typically rare, penetrant and 

coding, genetic approaches have generally been both necessary and sufficient to implicate a 

gene as causal28.However, as efforts to elucidate the genetic basis of Mendelian disorders 

progress towards completion97, functional studies remain important to understand the 

mechanisms by which disruptive variation within a causal gene leads to disease phenotypes. 

Unlike common diseases, the clarity of causation for Mendelian disorders usually simplifies 

the task of generating models (including human cells and organoids or rodents) to connect 

genotype to organismal phenotype; these have led to many critical insights into the biology 

of health and disease in humans98,99. In addition, for genes harbouring variants with 

medically actionable consequences (as with the BRCA1 and BRCA2 mutations that are 

causal for early-onset breast and ovarian cancer), functional studies can support the 

translational interpretation of novel alleles identified by medical sequencing29.

For common diseases, functional studies have a more fundamental role. Although tens of 

thousands of associations have been discovered across thousands of common human 

diseases and traits44, multiple factors have frustrated efforts to convert these genetic signals 

to knowledge about causal variants, genes and mechanisms. For the common variants that 

underlie the bulk of complex-disease risk, the resolution of association mapping is often 

limited by the haplotype structure of the human genome2–4. Furthermore, most GWAS 

associations map to the noncoding genome and thus lack a direct address to the gene that 

mediates their effects. Growing appreciation of the pervasive role of pleiotropy complicates 

matters: many variants identified by GWAS are associated with multiple traits and exert 

diverse effects across multiple cell types100.

To date, relatively few studies have achieved the goal of connecting variants causal for 

complex traits to the molecular and cellular functions that mediate that predisposition. One 

early success described how regulatory variants that modulate SORT1 expression influence 

low-density lipoprotein cholesterol and myocardial infarction risk101 More recent examples 

have focused on the relationship between obesity-associated variants intronic to FTO, altered 

expression of IRX3 IRX5, and adipocyte102 and hypothalamic103 function. Similar 
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functional descriptions have been reported for individual loci implicated in schizo phrenia64, 

cardiovascular disease104, type 2 diabetes105 and Alzheimer’s disease106, among others.

Over the past decade, the challenge for the functional genomics community has been to 

convert this ‘one-locus-at-a-time’ workflow to a systematic, multidimensional, integrative 

approach able to deliver genome-scale functional analyses to match genome-wide variant 

discov ery (Fig. 2). At the molecular level, one cornerstone has been generation of genome-

wide catalogues of functional activity. For example, the ENCODE and Roadmap 

Epigenomics projects have generated maps of histone modifications, transcription-factor 

binding, chromatin accessibility, three-dimensional genome structure and other regulatory 

annotations across hundreds of cell types and tissues107,108. The patterns of genomic overlap 

between these data and GWAS results enable the functional inference of risk variants, 

deliver clues to the specific cell types driving disease pathogenesis60,109 and accelerate 

locus-specific mechanistic insights.

In parallel, there has been a scaling of efforts to connect trait-associated regulatory variants 

to the genes and processes that they regulate in cell types relevant to the disease of 

interest110,111. For example, the GTEx (Genotype-Tissue Expression) consortium has 

mapped thou sands of expression quantitative trait loci (QTLs) across hundreds of 

individuals and dozens of tissues112. Further clues to the relationships between regulatory 

variants and their effector genes can be gathered from DNA proximity assays (such as Hi-C) 

and single-cell data113 (Fig. 2) Programs such as HubMAP114 and the Human Cell Atlas115 

are set to deliver comprehensive, high-resolution reference maps of individual human cell 

types across diverse developmental stages, providing new opportunities to understand how 

regulatory genetic variation results in cellular and organismal phenotypes.

Efforts to probe the clinical consequences of coding alleles with large phenotypic effects 

(particularly null alleles) in humans53,54 and across diverse animal models116 represent 

powerful strategies for extending functional analyses to the whole-body level. Connections 

between genetic variation and circulating proteomic and metabolomic data provide 

additional mechanistic links between cellular events and whole-body physiology79,80. These 

efforts are paralleled by PheWAS approaches83, which, by mapping variant effects across 

the range of traits available in biobanks and EMRs, can inform priors for cell types and 

pathways at individual loci. Importantly, whereas early studies typically linked GWAS risk 

alleles to data from a single functional assay, the focus is increasingly on maximizing 

biological insight through the multi-dimensional integration of multiple genome-wide data 

types using approaches such as heritability partitioning117, functional enrichment 

analyses60,109, integration of the three-dimensional genome structure118 and deep 

convolutional neural networks119,120.

Although QTL analyses can implicate a haplotype in a molecular, cellular or organismal 

phenotype, they are, in isolation, insufficient to define the specific causal variants 

responsible. To address this, there has been rapid maturation of technologies, such as 

massively parallel reporter assays121–123 and CRISPR genome editing, to support functional 

characterization of targeted sequence perturbations at scale. Variations on these methods 

enable the functional evaluation of genes (via knockout screens124), regulatory elements 
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(using CRISPR interference and CRISPR activation screens125,126), and genetic variants 

(base editors127) at increasing scale and resolution29. Combined with complex readouts–

including high-content imaging128 and single-cell transcriptomics and epigenomics129,130–

these methods can generate empirical ‘truth’ data, supporting the development of in silico 

models to predict causal variants, effector transcripts126 and cellular effects. In due course, 

such models should reduce the need for exhaustive experimental characterization of function 

for all variants across all cell types.

The goal of such efforts is to enumerate the cascade of molecular events that underlie 

observed genotype–phenotype associations using physiologically relevant cellular systems 

(from primary cells to organoids and ‘organ-on-chip’ designs) and whole-body assays 

appropriate to the disease of interest. Collectively, strategies that offer large-scale functional 

evaluation of variants and genes of interest will reduce (but probably not eliminate) the 

intensive effort required for ‘final mile’ validation of disease mechanisms in dedicated 

systems, thereby accelerating downstream translational application.

Clinical implementation

Medical genetics, as applied to rare diseases, has been characterized by the rapid application 

in the clinic of the transformative genomic technologies that drove initial research 

discoveries. There are now targeted genetic tests for nearly all clinical presentations 

attributable to large-impact alleles, alongside more extensive genome-sequencing assays 

that, when necessary, enable interrogation of a longer list of relevant genes. Genetic testing 

for symptomatic individuals and at-risk relatives occurs routinely in many medical 

specialties. In parallel, the use of somatic cancer testing has increased as therapies targeted 

to specific mutational events have entered clinical practice (these developments are reviewed 

elsewhere131,132).

For patients with symptoms that indicate a probable monogenic aeti-ology (such as retinal 

degeneration, hearing loss or cardiomyopathy), targeted panels are typically the platform of 

choice133, although they are increasingly performed on a more extensive sequence 

backbone. For more complex phenotypes–those without a clear match to a specific 

syndrome, such as neurodevelopmental disorders and multiple congenital anomalies–testing 

has gravitated towards early deployment of exome and genome-sequencing platforms that 

offer speedy resolution of what has historically often been a traumatic diagnostic 

odyssey15,134. The power of genomic diagnosis is especially clear for those presenting with 

monogenic neurodevelopmental disorders and critically ill infants135,136. Sequencing of the 

parent–offspring trio can detect de novo variation in dominant disorders and phase biallelic 

rare variants in recessive disease13.

The transition from targeted gene tests to genomic sequencing enables recursive reanalysis, 

including reinterpretation of individual sequences on the basis of subsequent discoveries 

regarding causal disease alleles and their phenotypic consequences137. However, improved 

molecular diagnostics are required to ensure reliable detection of a subset of genetic 

disorders, including those arising from triplet repeats and complex rearrangements138. Deep 

sequencing of affected tissues for mosaic variants and the use of RNA sequencing to detect 
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noncoding variants that drive early-onset disease (for example, through effects on splicing) 

represent new fronts for clinical diagnostics30.

Other examples of the rapid adoption of new genomic technologies include noninvasive 

prenatal testing (more than ten million tests by 2018 across multiple countries139–141) and 

the use of recessive carrier panels for couples planning pregnancies. Newborn screening is 

now universal in many countries, although it is limited to disorders combining high-

throughput low-cost detection with effective early interventions (such as diet restrictions or 

enzyme replacement)142. Genetic diagnostics are also increasingly applied to newborn 

screening as a reflex test following an abnormal (for example, metabolic) screening test143. 

Over the next decade, the repertoire of disorders captured by neonatal screening and prenatal 

testing is likely to expand markedly. Whereas prenatal testing may be more effective at 

avoiding disease, the associated ethical issues are more complex144.

Although genetic testing for rare disease and cancer has exploded, there has been more 

limited uptake of genetic information in other aspects of healthcare. For example, despite 

multiple examples of clinically important genetic markers related to drug efficacy and side-

effect profile145, the roll-out of pharmacogenetics has been hampered by a range of factors, 

including lack of clinical decision support in electronic medical systems to guide the drug 

choice or dosing by the physician. This has been compounded by challenges in diagnostic 

testing: complex haplotype structures and structural variants at some key drug metabolism 

loci necessitate genome sequencing or specific targeted panels to detect all clinically 

relevant variants.

For common diseases, translational attention is currently focused on the clinical potential of 

polygenic risk scores. The development of robust polygenic scores for several common 

diseases has been catalysed by more precise per-variant effect estimates from larger GWAS 

datasets, improved algorithms for combining information across millions of single-

nucleotide polymorphisms, and large-scale biobanks that support score validation69,146,147. 

For example, a genome-wide polygenic score for heart attack, incorporating 6.6 million 

variants, indicates that 5% of European-descent individuals have a risk of future cardiac 

events equivalent to that seen in those with less frequent monogenic forms of 

hypercholesterolaemia69. Increasingly, the shift from array-based genotyping to sequence-

based analysis is facilitating risk prediction, which integrates information from rare, large-

effect alleles with that from polygenic scores93. By improving the capture of genetic risk, 

particularly in non-European populations, and integrating environmental and biomarker data 

to quantify aspects of non-genetic risk, it should be possible to achieve increasingly accurate 

prediction of individual disease risk, and to use this information to tailor screening, 

prevention and treatment. Success will depend on developing models of risk that robustly 

integrate these diverse data types and on optimizing the strategies deployed to ensure 

effective implementation.

The absence of evidence-based guidelines to support healthcare recommendations continues 

to hinder the clinical applications of genetic data. In some countries, this is compounded by 

confusion over reimbursement and disparities in testing across society148. Many healthcare 

professionals lack experience in genomic medicine and need education and guidance to 
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practice in the rapidly evolving space of genetic and genomic testing149. One consequence 

of these difficulties has been an expanding direct-to-consumer testing market, variably 

controlled by country-specific regulations150, which is moving beyond a focus on ancestry 

and personal traits, towards models in which individuals have direct access to ordering 

physicians and genetic counselors151. The risk of commercial influence in this model 

remains high. There are concerns about the consequences of unfettered release of genetic 

data of dubious or inflated clinical relevance, and limited infrastructure to pull these results 

into mainstream medical systems.

These advances have fostered debate about the value of genetics for population screening, 

for both monogenic and complex disorders. Population screening for monogenic disorders is 

most likely to be initiated for conditions for which risk estimates are well-understood and 

there are actionable interventions (for example, Lynch syndrome and familial 

hypercholesterolaemia). Expansion to other disorders requires better understanding of the 

penetrance of pathogenic alleles in unselected populations152 and caution before extending 

screening to longer lists of genes that are less securely implicated in disease causation153. As 

certain countries consider universal capture of genome-wide genetic data at birth or later in 

life, key questions concern the strategies for releasing this information to citizens and their 

medical teams to support individual healthcare.

Ultimately, barriers to genomic medicine are most directly overcome by demonstrating 

clinical utility in disease management and therapeutic decision-making, with evidence for 

improved patient outcomes. Hereditary cancers provide multiple examples, such as the use 

of BRCA1/BRCA2 testing to inform PARP inhibitor treatment in patients with cancer154. 

There is a growing list of diseases for which a molecular diagnosis results in specific 

interventions designed to improve patient outcomes (https://www.ncbi.nlm.nih.gov/books/

NBK1116/) (some examples are listed in Table 1), and there are currently more than 50 

FDA-approved drugs for genetic disorders155. Although gene therapy has been slow to 

evolve since its early introduction, recent advances in gene editing are reinvigorating 

approaches to treat disorders by manipulation of the underlying genetic defects156.

Looking forward

Over the coming decade, the challenge will be to optimize and to implement at scale, 

strategies that use human genetics to further the understanding of health and disease, and to 

maximize the clinical benefit of those discoveries. Realizing these goals will require the 

concerted effort of researchers in academia and industry to bring about transformational 

change across a range of highly interconnected domains, for example, through the auspices 

of the recently established International Common Disease Alliance (https://www.icda.bio). 

Such efforts will be directed towards establishing: (a) comprehensive inventories of 

genotype–phenotype relationships across populations and environments; (b) systematic 

assays of variant-and gene-level function across cell types, states and exposures; (c) 

improved scalable strategies for turning this basic knowledge into fully developed molecular, 

cellular and physiological models of disease pathogenesis; and (d) application of those 

biological insights to drive novel preventative and therapeutic options.
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The first of these will involve documenting the full spectrum of natural genetic variation 

across all human populations, including capture of structural variants, and somatic mutations 

that accumulate with aging157,158, and associating these variations with the ever-richer 

disease-related intermediate and clinical traits available through biobanks and electronic 

health records. It will be particularly important to include populations historically under-

represented in genomic research, following the pioneering work of the H3Africa 

consortium159. As over time, clinically sequenced genomes will outnumber those collected 

in academia, research and healthcare communities will need to develop a harmonized 

approach to genomics to transcend historical boundaries. Progress will be critically 

dependent on platforms and governance that lower barriers to the integration of genetic and 

phenotypic data across studies and countries, along with technical standards that are reliable, 

secure and compatible with the international regulatory landscape160.

Mechanistic interpretation of genetic associations, particularly those in regulatory regions, 

will be driven by the systematic annotation of sequence variants and genes for functional 

impact across disease-relevant cell types, enabling mapping of processes contributing to 

disease development with respect to place (tissue and cell type), time (developmental stage) 

and context (external influences)161.Accelerating efforts to characterize the cellular 

composition of tissues through single-cell assays115 will increase the granularity of these 

observations. Large-scale perturbation studies across diverse cellular and animal models 

will, together with analyses of coding variants in humans53,54, provide confidence in causal 

inference. Large-scale proteomic and metabolomic analyses (in tissues and biological fluids) 

will provide a bridge to downstream pathways79,80. Research access to such functional data, 

generated at scale, should lower the barriers to mechanistic inference, provide system-wide 

context and enable researchers to focus wet-laboratory validation on the most critical 

experiments. Collectively, these efforts will support compilation of a systematic catalogue of 

key networks and processes that influence normal physiology and disease development and 

inform a revised molecular taxonomy of disease.

This knowledge will reinforce the essential contribution of human genetics to the 

identification and prioritization of targets for therapeutic development89,162. Insights into the 

efficacy of target perturbation and potential for adverse events, allied to characterization of 

translatable biomarkers, provide ways to boost the efficiency of drug-development 

pipelines162. Given the clinical importance of slowing disease progression163, target-

discovery efforts will increasingly need to embrace the genetics of disease progression and 

treatment response, as these may involve processes distinct from those captured by studies of 

disease onset.

In parallel, the clinical use of human genetics will benefit from progress towards universal 

determination of individual genome sequences built through a combination of biobank 

expansion and direct access within healthcare systems. This will power clinical applications 

that extend beyond the current focus on neonatal sequencing, Mendelian diagnostics and 

somatic tumour sequencing164. In particular, improvements in polygenic score derivation 

will boost risk prediction for multifactorial traits, provide a molecular basis for disease 

classification, support biomarker discovery and therapeutic optimization and contribute to 

understanding of the variable penetrance of monogenic conditions69. Implementing genomic 
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medicine as a routine component of clinical care across diverse healthcare environments will 

inevitably require investment in the training of healthcare professionals and attention to 

optimal strategies for returning genetic findings to patients.

The limited heritability of many multifactorial traits constrains the clinical precision 

available from genetic data alone. This will drive efforts to integrate information on personal 

environment, lifestyle and behaviour, and to combine prognostic, predictive information on 

disease risk with longitudinal measures of molecular and clinical state that track an 

individual’s journey from health to disease. Human genetics will also, given its unique 

potential for causal inference, support identification of the non-genetic risk factors (often 

modifiable) that directly contribute to disease predisposition and development165. As 

polygenic score performance improves, analysis of individuals who show marked divergence 

between genetic predisposition and real-world clinical outcomes should define exposures 

(such as lifestyle choices or gut microbiome) the contribution of which to disease causation 

remains unclear166.

Collectively, these developments can be expected to accelerate personalization of healthcare 

delivery. Provided costs are sustainable, a more preventative perspective on health could 

emerge, managed through proactive genomic, clinical and lifestyle surveillance using risk 

scores, complex biomarkers, liquid biopsies and wearables. Improved understanding of 

aetiological heterogeneity, patterns of sharing of genetic risk across diseases, variation in 

therapeutic response and risk of adverse events will enhance targeting of preventative and 

therapeutic interventions167. At the population level, intervention strategies will seek to 

combine population-wide and targeted strategies to best effect168. It will be critical to ensure 

that these benefits are available to as many as possible, so that genomics reduces, rather than 

exacerbates, national and global health disparities55,169 (Box 1).

The developments described above, represent variations on the theme of ‘reading’ the 

genome. The emerging capacity to block this reading (for example, through siRNA 

therapies170) or even to ‘write’ the genome (through CRISPR editing) promises to be 

equally transformative, providing new opportunities to correct, and even cure, Mendelian 

disease. Spectacular advances in developing novel therapeutic strategies are likely for many 

diseases, based, for example, on ex vivo cellular manipulation171 or in vivo somatic cell 

editing172.

Importantly, developments in genomic medicine need to proceed in a bioethical framework 

for research and clinical use that recognizes the personal relevance of human genetics and 

the critical importance of autonomous consent and the protection of privacy, while 

minimizing the adverse consequences of genetic exceptionalism. Governance needs to 

reaffirm the rights of citizens to make individual contributions to scientific progress through 

research participation and encourage the responsible exchange of data for clinical and 

research purposes.
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Future prospects

Over the past two decades, understanding of the genetic basis of human disease has been 

transformed by a combination of spectacular technological and analytical advances, 

collaborative commitment to the development of foundational resources and the collection 

and analysis of vast amounts of genetic, molecular and clinical data. The biological insights 

derived from these data are, increasingly, drivers of translational innovation, and widening 

personal access to large-scale genetic and molecular data promises to reshape medical care.

However, for the full potential of genomic medicine to be realized, there will need to be 

sustained collaborative endeavour on several fronts to ensure that the capacity to generate 

ever more detailed maps of the relationships between sequence variation and biomedical 

phenotypes delivers a comprehensive understanding of disease mechanisms that can be 

translated into the medicines of tomorrow.
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Box 1

Global genomics

Present and future advances in genetics and genomics have the potential to provide 

benefits to individuals and societies across the world, but equitable and fair access to 

those benefits will require proactive measures to address entrenched disparities in 

scientific capacity and clinical opportunities. This includes:

1. Global characterization of genetic variation. Systematic catalogues of human 

genome variation from a broad range of global populations will maximize the 

genetic diversity available for genetic discovery and clinical implementation. 

This will support more accurate imputation, enable more effective use of 

polygenic scores, and improve detection and interpretation of rare large-effect 

alleles.

2. Genetic discovery for diseases with restricted geographical coverage. Genetic 

studies conducted in diverse populations will support genetic discovery as 

well as functional characterization of hitherto-neglected diseases with 

disproportionate regional impact and may lead to novel preventative and 

therapeutic strategies.

3. An ethical framework for global research. Genetic research needs to proceed 

on the expectation that the benefits of research will be available to those who 

have participated, and that relationships between researchers and patients are 

based on robust expressions of accountability and governance. Participation 

should be based on appropriate informed individual consent in the context of 

community involvement, with mechanisms to support equitable data sharing 

with researchers in participating countries.

4. Support for local research capacity. Collection of biological specimens and 

data are dependent on adequate support for data collection, generation and 

analysis in participating countries, with infrastructure, training and career 

structures in place to support local researchers and equitable credit for shared 

research outputs.

5. Equitable translation. Participants and their communities should have fair and 

equitable access to the biomedical information arising from the studies in 

which they are involved to support population-relevant clinical diagnostics 

and implementation (for example, of polygenic scores). There should be 

commitment to the development of technologies and strategies that enable the 

clinical benefits of genomic medicine to be accessible to those in less-

developed healthcare environments.
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Fig. 1 |. Growth in the discovery of disease-associated genetic variation.
The cumulative numbers of genes harbouring variants causal for rare, monogenic diseases 

and traits and of significant GWAS associations implicated in common, complex diseases 

and traits are shown. Left, the advent of high-throughput sequencing technologies and 

availability of reference genomes from diverse populations has supported a fourfold increase 

in the discovery of rare disease-causing genes between 1999 and 2019. Right, international 

efforts such as the Human Genome Project and the HapMap Project, combined with GWAS 

and sequencing studies, have supported identification of more than 60,000 genetic 

associations across thousands of human diseases and traits. Centre, more recent 

developments have brought a synthesis of the rareand common-variant approaches based 

around the combination of sequence-informed analyses in large cohorts. Key events 

contributing to these themes are depicted in the timeline. GA4GH, Global Alliance for 

Genomics and Health160; ExAC, Exome Aggregation Consortium5.
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Fig. 2 |. Genetic discovery is paralleled by advances in functional genomics technologies.
Top, the growth in the number of genetic loci associated by GWAS with human traits and 

diseases (bars) and of variant-to-function studies (area under line, not to scale). Bottom, 

foundational technological and computational advances over the last decade that enabled (1) 

development of systematic, genome-wide catalogues of functional elements across multiple 

cell types and tissues (blue); (2) mapping of QTLs in the context of gene expression, 

metabolites, proteins and regulatory elements (red); (3) engineering of genes, genetic 

elements and genetic variation at increasing scale (orange); and (4) systematic tissue-specific 

surveys of regulatory elements and transcription (grey). scRNA-seq, single-cell RNA-

sequencing analysis; ChIA-PET, chromatin interaction analysis by paired-end tag 

sequencing; ChIP–seq, chromatin immunoprecipitation followed by sequencing; FAIRE-seq, 

formaldehyde-assisted isolation of regulatory elements with sequencing; DHS-seq, DNase I-

hypersensitive sites sequencing; ATAC-seq, assay for transposase-accessible chromatin 

using sequencing; MPRA, massively parallel reporter assay; STARR-seq, self-transcribing 

active regulatory region sequencing; CNN: convolutional neural networks. For further details 

and primary literature on many of these assays, see ref.173.
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