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Abstract

Recent advances in imaging and biotechnology have tremendously improved the availability of 

quantitative imaging (radiomics) and molecular data (radiogenomics) for radiotherapy patients. 

This big data development with its comprehensive nature promises to transform outcome modeling 

in radiotherapy from few dose-volume metrics into utilizing more data-driven analytics. However, 

it also presents new profound challenges and creates new tasks for alleviating uncertainties arising 

from dealing with heterogeneous data and complex big data analytics. Therefore, more rigorous 

validation procedures need to be devised for these radiomics/radiogenomics models compared to 

traditional outcome modeling approaches previously utilized in radiation oncology, before they 

can be safely deployed for clinical trials or incorporated into daily practice. This editorial 

highlights current affairs, identifies some of the frequent sources of uncertainties, and presents 

some of the recommended practices for radiomics/radiogenomics models’ evaluation and 

validation.
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Introduction

Models by their own nature are mathematical approximations of reality as conveyed in the 

statement that “All models are wrong but some are useful.” Their usefulness in radiotherapy 

(RT) is highlighted by the roles outcome models perform to improve the quality and efficacy 

of radiation treatment of tumors by predicting response, individualizing prescriptions, 

optimizing and ranking planning options. These models are generally categorized into those 

for tumor response prediction by tumor control probability (TCP) and those for predicting 

radiation-induced toxicities by normal tissue complication probability (NTCP). 

Traditionally, these models were simplistic and included few dose and volume metrics 

summarizing the delivered treatment and baseline patient-specific prognostic risk factors, 

rendering them less powerful but also less prone to overfitting pitfalls [1].

Recent advances in multi-modality imaging and biotechnology have improved the 

availability of imaging and molecular profile data resulting in tremendous growth in patient-

specific information that can be informative for guiding radiation treatments. This additional 

information can be incorporated into classical or new TCP/NTCP outcome models to 

improve their predictive power and bring them closer to providing a more realistic and 

possibly comprehensive representation of radiation response. Large-scale quantitative 

analysis of anatomical and functional imaging data has yielded the radiomics domain [2], 

while that of related high-throughput molecular profiles (genomics, transcriptomics, 

proteomics, metabolomics, etc.) has delivered the radiogenomics field into radiation 

oncology [3]. However, in this context of complex data-driven (big data) modeling, it’s 

important to remember the parsimony principle “Everything should be made as simple as 
possible, but not simpler.” Radiomics/radiogenomics models are largely phenomenological 

(data-driven) and more complex than traditional TCP/NTCP, therefore, their clinical value 

should be carefully evaluated using rigorous statistics and scientifically sound methods. This 

includes addressing the following two pertained questions: (i) whether these more 

complicated models of TCP/NTCP are statistically and scientifically valid? And (ii) is the 

gain in the predictive power/radiobiological understanding over classical models of TCP/

NTCP worth the added complexity?

This editorial aims to highlight current affairs in radiomics/radiogenomics modeling, with 

special focus on identifying frequent sources of uncertainty, and presenting some best 

practices for model evaluation and validation in this RT big data era, before such models can 

be adopted in clinical trials or deployed into radiation oncology practice[4].

Main sources of uncertainty

Source data uncertainties

RT data (e.g., dose, clinical endpoints, imaging, molecular markers) are usually collected in 

heterogeneous conditions that may lead to various uncertainties like noise interference, 

calibration error, sparse datasets, inconsistent measurement, redundant variables/dimensions, 

wrong labeling and missing outcomes, to name a few. An important lesson from the 

QUANTEC project is that the sparsity of quality outcomes data, not the weakness of the 

existing models, was a major impediment in developing and validating models of outcomes 
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that may have clinical utility [5]. This issue is even more significant problem when 

developing more complex models based on heterogeneous data from radiomics and 

radiogenomics. The complexity of a useful prediction model (e.g., number of parameters or 

variables) is determined by the size and quality of the outcomes data used for model 

development. Specifically, this complexity is determined in practice by the number of cases 

with clinical events of interest that a model can properly fit, and not by the number of 

features extracted from radiomics and radiogenomics data that may be lost in the process as 

a result of limited sample size. For instance, a fundamental challenge related to 

radiogenomics (e.g., genome-wide associations) is the very large number of sequence 

alterations (~11 million SNPs) and small sample sizes available. Therefore, adjustments for 

multiple testing and appropriate dimensionality reduction techniques are imperative when 

building such radiogenomics models [6,7] and the same is true in the case of radiomics 

models [8].

Model selection uncertainties

The modeling approach used for any specific TCP/NTCP endpoint may be subject to 

selection bias. For instance, the model complexity may be inappropriate for the RT data that 

were collected resulting in over-trained or under-fitted model. Moreover, the assumed model 

may not faithfully reflect the original data behavior or temporal information may not be 

carefully captured. This is particularly challenging in the case of radiomics/radiogenomics, 

where the data suffers from multi-collinearity (i.e., the variables are inter-correlated) 

problem, and model selection needs to account for minimum redundancy while maximizing 

relevance as part of its construction [9]. To handle such data, computer algorithms based on 

artificial intelligence techniques such as machine learning (ML) are being frequently utilized 

instead of traditional regression models for their ability to learn from data and generalize to 

samples that have not been seen before (external data) by the algorithm. In such case of ML 

modeling of radiomics/radiogenomics, the model is developed by first representing the 

regularities of observation data based on a presumed formulation of the model. Then, given a 

reasonable collection of training data, one would optimize a metric of interest and estimate 

these ML model fitting parameters. The trained model is expected to generalize well to 

unseen test data, however, this cannot be guaranteed unless data uncertainties are accounted 

for during the training phase and the model has undergone a rigorous validation process to 

ensure that the ML model can handle existing noise in the data[10]. Therefore, the modern 

RT outcome models should tackle the issue of model regularization and accommodate or 

compensate for a variety of uncertainties and weaknesses in the model construction by 

providing adequate examples to the ML algorithm of such noisy cases during the training 

phase, for instance.

How to learn from uncertainties?

Although there has been tremendous growth in patient-specific information, the number of 

patients receiving RT has not increased proportionally, leading to limited-size high-

uncertainty datasets with a lot more variables to evaluate. This trend leaves the traditional 

statistical analysis more susceptible to the data dredging (p-hacking or inflated significance) 
phenomenon with spurious associations [11]. Moreover, it is necessary to ensure that the 
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samples used for RT model development and validation are representative of the general 

population characteristics that are under investigation, both in number and diversity (e.g., 

race, sex, age, staging, technique, etc.). Differences in such characteristics may define the 

scope that a radiomics or radiogenomics may or may not apply. For instance, it is less likely 

that a radiomics model developed for predicting local control on an early stage lung cancer 

patients’ population treated with hypofractionation will work on another locally advanced 

population treated with conventional fractionation, due to the different feature patterns that 

may be captured in the model. This does not necessarily preclude the fact that there can be 

prognostic radiomics models, independent of the treatment type, or pan-cancer models 

across different sites, but this needs to be specified and evaluated as part of the original 

model’s design itself [12].

The fields of statistics and machine learning have offered several approaches for dealing 

with data modeling uncertainty [13]. For instance, in Bayesian methods the uncertainties in 

data or an assumed model can be represented by prior probability distributions and the 

model is calculated as a marginal likelihood by integrating over the randomness or 

uncertainty of parameters or algorithms. These priors can be chosen empirically based on 

past information or constructed mathematically based on desired statistical properties [14]. 

Another approach to alleviate the adverse effects of uncertainty and other quality issues in 

radiomics/radiogenomics data by applying data integration methodologies, which has been 

particularly effective in “omics” applications using networks or graph-based models. This is 

generally successful because the uncertainty and other quality issues in one dataset are 

allayed by the complementary information in the others and can reinforce the consensus 
signal for modeling the clinical endpoint of interest in the various datasets. Due to these 

advantages, integrative approaches have been effective for addressing several biomedical 

problems, such as biomarker discovery [15], molecular interactions [16], as well as RT 

outcomes with radiomics and radiogenomics data [17,18].

Model validation

An essential part of the model inference process, particularly, when dealing with more 

complex models of radiomics or radiogenomics, is performing a rigorous validation process 

to assess the goodness of an outcome model and its ability to generalize to external (out-of-

sample) data. Goodness can be defined in many terms, such as prediction performance, 

model complexity and/or robustness (e.g., Akaike/Bayesian information criterion, false 

discovery rate, or free energy principle). A conventional method to select or reject a model 

for a given outcome and set of data is by conducting a likelihood ratio test to measure the 

goodness-of-fit as in the case of traditional TCP/NTCP models [19]. However, this may not 

be plausible in the case of more complex radiomics or radiogenomics models with ML and 

heterogeneous datasets, where the goal is redefined to balance bias (model fit) with variance 

(generalizability to out-of-sample data). Therefore, methods based on statistical resampling 

(e.g., cross-validation and bootstrapping) are more appropriate [20]. More formally, the 

Transparent Reporting of a multivariable prediction model for Individual Prognosis Or 

Diagnosis (TRIPOD) recommendation developed a 22 item checklist for the reporting of 

studies developing, validating, or updating a predictive model, such as radiomics/ 

radiogenomics RT outcome models [21]. The checklist includes items related to study 
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design and data quality, in addition to issues related to validation and performance reporting 

of multivariate models. For validation, the TRIPOD recommendations emphasize the 

importance of internal validation (e.g., resampling) as a necessary part of the model 

development and external validation on an independent test set(s), which is the gold standard 

for evaluating generalizability, which can be done centrally by collecting all the data into 

one database or by utilizing distributed learning to facilitate data sharing [22].

Another critical component of the evaluation process is the metric(s) used to measure the 

(prediction) performance of these models. For continuous/real-valued outcomes, the most 

commonly used metrics for this regression purpose are mean squared error (MSE) and 

(Pearson’s or Spearman’s) correlation coefficients. In the case of discrete-valued outcomes 

(classes/labels), where the model inference task is termed classification, the most commonly 

used metrics are accuracy, cross-entropy error and Area Under the Receiver Operating 

Characteristic (ROC) Curve (AUC) score [23]. However, in many scenarios, the numbers of 

samples included in the various classes may be (severely) imbalanced, such as when 

counting the number of patients of a specific type of cancer versus healthy individuals in the 

general population. Since accuracy and AUC score are not reliable in such scenarios, class-

specific measures sensitive to class imbalance, especially the precision-recall-F-measure 
trio, are recommended [23,24].

Conclusions

The emergence of radiomics and radiogeneomics provides new opportunities to develop 

more informative outcome models for radiotherapy. However, by the same token, these 

opportunities present new profound challenges for mitigating uncertainties and validating 

these models rigorously for clinical trials or daily practice. The best existing “classical” 

models include dose and volume metrics summarizing the delivered treatment and baseline 

patient-specific prognostic risk factors. Indices extracted from radiomics and radiogenomics 

big data are not expected to replace those conventional model covariates but rather, if 

incorporated, may add to the model predictive power and its understanding. Therefore, 

specific demonstrations and more rigorous validation are needed to guarantee that these new 

models are robust with the ultimate judgement being clinical assessment of benefits versus 

costs.
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