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Abstract

In this work, we present a computational fluid-structure interaction (FSI) study for a healthy 

patient-specific pulmonary arterial tree using the unified continuum and variational multiscale 

(VMS) formulation we previously developed. The unified framework is particularly well-suited for 

FSI, as the fluid and solid sub-problems are addressed in essentially the same manner and can thus 

be uniformly integrated in time with the generalized-α method. In addition, the VMS formulation 

provides a mechanism for large-eddy simulation in the fluid sub-problem and pressure 

stabilization in the solid sub-problem. The FSI problem is solved in a quasi-direct approach, in 

which the pressure and velocity in the unified continuum body are first solved, and the solid 

displacement is then obtained via a segregated algorithm and prescribed as a boundary condition 

for the mesh motion. Results of the pulmonary arterial FSI simulation are presented and compared 

against those of a rigid wall simulation.
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1. Introduction

We recently derived a unified continuum formulation based on the Gibbs free energy in 

order to construct a well-behaved continuum model in both compressible and 

incompressible regimes [1]. This modeling approach naturally recovers important continuum 

models, including viscous fluids and hyperelastic solids. Importantly, it bridges previously 
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diverging approaches in computational fluid dynamics (CFD) and computational solid 

dynamics (CSD). The residual-based VMS formulation can be applied to the unified 

continuum body. It yields a large-eddy simulation procedure for the incompressible Navier-

Stokes equations [2], which performs equally well for laminar, transitional, and fully 

turbulent flows [3, 4]. On the other hand, when applied to the hyperelastic model, it leads to 

a numerical formulation for finite elasticity that allows equal-order interpolation of all fields. 

This is particularly beneficial for problems with complex geometries and bears similarity to 

some recent works [5, 6, 7, 8]. In our opinion, the unified concept gives rise to promising 

opportunities for designing new numerical methodologies. Recent advances include the 

development of a provably energy-stable scheme for incompressible finite elasticity [9] and 

preconditioning techniques for both solids [10] and fluids [4]. The benefit of the unified 

modeling framework is further evident in the realm of multiphysics coupled problems. Since 

the CFD and CSD implementations only differ in constitutive routines, monolithic FSI 

coupling is dramatically simplified. Furthermore, in comparison with conventional FSI 

modeling approaches [11, 12, 13, 14], the new framework allows one to simulate structural 

dynamics with a Poisson’s ratio up to 0.5, using either the multiscale/stabilized formulation 

or inf-sup stable methods. Since soft tissues typically exhibit nearly incompressible behavior 

under physiologic loading [15], the proposed FSI modeling framework is extremely 

favorable for computational biomechanics and cardiovascular hemodynamics.

In this work, we present a suite of FSI modeling techniques for cardiovascular applications. 

In addition to the unified FSI modeling framework, we discuss mesh generation from 

medical image data as well as a modular approach for implicit coupling of lumped 

parameter network (LPN) models with the three-dimensional (3D) domain [16]. The efficacy 

of the proposed methodology is demonstrated through a numerical study in the pulmonary 

arteries of a pediatric patient. The FSI results are directly compared to those of a rigid wall 

simulation.

2. The unified continuum formulation for fluidstructure interaction

In this section, we present the governing equations for the FSI problem using the arbitrary 

Lagrangian-Eulerian (ALE) method [11, 17]. Here, and in what follows, we use superscripts 

f, s, and m to indicate quantities related to the fluid, solid, and ALE mesh motion in the fluid 

sub-domain.

2.1. Kinematics on moving domains

We first consider the domain occupied by the continuum body in the referential frame 

Ωχ ⊂ ℝ3, an open and bounded set. For FSI problems,Ωχ admits a non-overlapping 

subdivision, Ωχ = Ωχ
f ∪ Ωχ

s , ∅ = Ωχ
f ∩ Ωχ

s , in which Ωχ
f and Ωχ

s  represent the sub-domains 

occupied by the fluid and solid, respectively. Following the notation used in [1], the 

referential-to-Eulerian map at time t is denoted φt( ⋅ ) = φ( ⋅ , t) and maps Ωχ to 

Ωx(t) = φ Ωχ, t . We wish to think of Ωx(t) as the current ‘spatial’ domain where the fluid 

mechanics problem can be conveniently formulated. Correspondingly, the current 

configuration admits a subdivision, Ωx(t) = Ωx
f(t) ∪ Ωx

s(t), ∅ = Ωx
f(t) ∩ Ωx

s(t). Conceptually, 
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Ωχ is fixed in time and is associated with a computational mesh. Therefore, φ describes the 

motion of the mesh, and we can correspondingly define the mesh displacement and velocity 

as

Um ≔ φ(χ, t) − φ(χ, 0) = φ(χ, t) − χ, (2.1)

V m ≔ ∂φ
∂t χ

= ∂Um

∂t χ
. (2.2)

One may conveniently push them forward to the current configuration as um ≔ Um ∘ φt
−1 and 

νm ≔ V m ∘ φt
−1.

The initial position of point x ∈ Ωx(t) is denoted as X ∈ ΩX(t), where ΩX(t) is the Lagrangian 

domain. The smooth Lagrangian-to-Eulerian map at time φt(·) = φ(·,t) and maps ΩX(t) to 

Ωx(t). Then the displacement, velocity, deformation gradient, the Jacobian determinant, the 

right Cauchy-Green tensor of the material particle initially located at X are defined as

U ≔ φ(X, t) − φ(X, 0) = φ(X, t) − X,

V ≔ ∂φ
∂t X = ∂U

∂t X
= dU

dt ,

F ≔ ∂φ
∂X , J ≔ det(F ), C ≔ FT F .

The displacement and velocity can be similarly pushed forward to the current configuration 

as u ≔ U ∘ φt−1 and v ≔ V ∘ φt−1. We also introduce the distortional parts of F and C as

F ≔ J− 1
3F , C ≔ J− 2

3C .

2.2. Balance and mesh motion equations

We invoke Stokes’ hypothesis and further consider the isothermal condition on the 

continuum body, allowing the energy equation to be decoupled from the mechanical system. 

The FSI system can thus be viewed as a two-component continuum body governed by the 

following momentum and mass balance equations,

0 = ρ(p)∂v
∂t χ + ρ(p) v − vm ⋅ ∇xv − ∇x ⋅ σdev + ∇xp − ρ(p)b,
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0 = βθ(p)∂p
∂t χ + βθ(p) v − vm ⋅ ∇xp + ∇x ⋅ v,

which are posed in Ωx(t). In the above equations, ρ is the density, p is the pressure, σdev is 

the deviatoric part of the Cauchy stress, b is the body force per unit mass, and βθ is the 

isothermal compressibility factor. The constitutive laws of the material are dictated by the 

Gibbs free energy G(C, p), which was previously shown to adopt a decoupled structure [1, p. 

559],

G(C, p) = Gicℎ(C) + Gvol(p),

where Gich and Gvol represent the isochoric and volumetric parts of the free energy, 

respectively. Given the free energy, the constitutive relations can be written as

ρ(p) ≔
dGvol

dp
−1

, βθ(p) ≔ 1
ρ

dρ
dp = −

d2Gvol
dp2 /

dGvol
dp ,

σdev ≔ J−1F (ℙ:S)FT + 2μdev[d],

ℙ ≔ I − 1
3C−1 ⊗ C, S ≔ 2

∂ ρ0G
∂C

,

d ≔ 1
2 ∇xv + ∇xvT ,

where I is the fourth-order identity tensor, and ρ0 is the density in the Lagrangian domain.

In the solid sub-domain, we consider a purely elastic material and choose the referential 

configuration to be identical to the Lagrangian configuration. Consequently, the balance 

equations in Ωx
s t  can be stated as

0 = ρs ps ∂vs
∂t χ = X − ∇x ⋅ σdev

s + ∇xps − ρs ps b,

0 = βθ
s ps ∂ps

∂t χ = X + ∇x ⋅ vs .
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In the fluid sub-domain, the free energy contains no mechanical contribution, so 

σdev
f = 2μdev[d]. We further assume incompressible flow, which implies ρf (pf) = ρf and 

βθ
f = 0. The balance equations in Ωx

f t  are then

0 = ρf ∂vf
∂t χ

+ ρf vf − vm ⋅ ∇xvf − ∇x ⋅ σdev
f + ∇xpf − ρfb,

0 = ∇x ⋅ vf .

In this work, we use the pseudo-linear-elasticity algorithm to model the ALE mesh motion 

[18, 19]. Consider a time instant t < t, which is often chosen to be the previous time step in 

numerical computations. Given the identity φ(χ, t) = φ(χ, t ) + U(χ, t) − U(χ, t ), we introduce 

um(φ(χ, t ), t) ≔ U(χ, t) − U(χ, t ). The mesh velocity vm is then completely determined by 

um(x, t) and the relation in (2.2). The mesh motion is solved via the following linear 

elastostatic problem posed in Ωx
f(t ),

∇x ⋅ μm ∇xum + ∇xum T + λm∇x ⋅ umI = 0 .

The boundary of the fluid sub-domain can be decomposed into the luminal, inlet, and outlet 

surfaces. On the luminal surface, the mesh motion follows the motion of the solid body and 

is therefore subject to a Dirichlet boundary condition; on the inlet and outlet surfaces, we 

prescribe homogeneous Dirichlet boundary conditions to fix the mesh. Furthermore, to 

enhance the robustness of the mesh moving algorithm, the Lamé parameters μm and λm are 

chosen to be proportional to the inverse of the Jacobian determinant of the element mapping 

[11, 19].

3. Numerical formulation

3.1. Solid sub-problem

Let Su
s , Sv

s , and Sp
s denote the finite dimensional trial solution spaces for the solid 

displacement, velocity, and pressure in the current solid sub-domain, respectively; let Vv
s

and Vp
s represent the test function spaces; let Γx, ℎ

s (t) denote the Neumann part of the solid 

boundary with traction hs prescribed. The spatial dis-cretization for the solid body is based 

on the variational multiscale formulation [1], which is stated as follows: Find 

uℎ
s(t), pℎ

s(t), vℎ
s(t) ∈ Su

s × Sp
s × Sv

s  such that for ∀ ws, ws ∈ Vv
s × Vp

s,

0 =
duℎ

s

dt − vℎ
s ,
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0 = ∫Ωxs (t)ws ⋅ ρs pℎ
s dvℎ

s

dt dΩx + ∫Ωxs (t) ∇xws:σdev
s uℎ

s dΩx − ∫Ωxs (t) ∇x ⋅ wspℎ
sdΩx − ∫Ωxs (t)ws

⋅ ρs pℎ
s bdΩx − ∫Γx, ℎ

s (t)ws ⋅ hsdΓx,

0 = ∫Ωxs (t)ws βθ
s pℎ

s dpℎ
s

dt + ∇x ⋅ vℎ
s dΩx − ∫Ωx′s(t) ∇xws ⋅ vs′dΩx,

vs′ ≔ − τM
s ρs pℎ

s dvℎ
s

dt − ∇x ⋅ σdev
s uℎ

s + ∇xpℎ
s − ρs pℎ

s b .

In the above formulation, the parameter τM
s  is associated with the subgrid-scale models and 

is defined as

τM
s = τM

s I, τM
s = cm

Δx
cρs ,

where Δx is the diameter of the circumscribing sphere of the tetrahedral element, c is the 

maximum wave speed in the solid material, and cm is a non-dimensional scalar [5]. This 

formulation with a single stabilization parameter is also known as the Pressure-Stabilizing/

Petrov-Galerkin (PSPG) formulation, which has been extensively studied and applied in 

CFD [11, 20]. The formula of c is estimated based on a small-strain isotropic linear elastic 

material. For compressible materials, c is given by the bulk wave speed, i.e., 

c ≔ λs + 2μs/ρ0
s; for incompressible materials, c is given by the shear wave speed, i.e., 

c ≔ μs/ρ0
s [1, 6]. In the above definitions, λs and μs are the Lamé parameters.

3.2. Mesh motion of the fluid sub-domain

Let Su
m denote the trial solution space of the mesh displacement uℎ

m defined on the domain 

Ωx
f(t ), and let Vu

m denote the corresponding test function space. The variational formulation 

of the problem is stated as follows. Find uℎ
m ∈ Su

m such that for ∀wm ∈ Vu
m,

∫Ωx
f(t ) ∇x

s wm: 2μm∇x
s uℎ

m + ∇x ⋅ wmλm∇x ⋅ uℎ
mdΩx = 0.

3.3. Fluid sub-problem

Let Sv
f and Sp

f denote the trial solution space of the fluid velocity and pressure; let Vp
f and 

Vv
f be the test function spaces; let Γx, ℎ

f (t) denote the Neumann part of the fluid boundary 
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with traction hf prescribed. The VMS formulation for the fluid sub-problem can be stated as 

follows. Find pℎ
f(t), vℎ

f(t) ∈ Sp
f × Sv

f such that for ∀ wf, wf ∈ Vv
f × Vp

f,

0 = ∫Ωx
f(t)wf ⋅ ρf ∂vℎ

f

∂t
χ

+ ρf vℎ
f − vℎ

m ⋅ ∇xvℎ
f dΩx − ∫Ωx

f(t) ∇x ⋅ wfpℎ
fdΩx + ∫Ωx

f(t) ∇xwf

:σdev
f vℎ

f dΩx − ∫Ωx
f(t)wf ⋅ ρfbdΩx − ∫Γx, ℎ

f (t)wf ⋅ hfdΓx − ∫Ωx
′f(t) ∇xwf : ρfvf′ ⊗ vℎ

f − vℎ
m dΩx

+ ∫Ωx
′f(t) ∇xvℎ

f : ρfwf ⊗ vf′ − ∇xwf : ρfvf′ ⊗ vf′ dΩx − ∫Ωx
′f(t) ∇x ⋅ wfpf′dΩx,

0 = ∫Ωx
f(t)wf ∇x ⋅ vℎ

fdΩx − ∫Ωx
′f(t) ∇xwf ⋅ vf′dΩx,

vf′ ≔ − τM
f ρf ∂vℎ

f

∂t
χ

+ ρf ∇xvℎ
f vℎ

f − vℎ
m + ∇xpℎ

f − ∇x ⋅ σdev
f vℎ

f − ρfb ,

pf′ ≔ − τC
f ∇x ⋅ vℎ

f,

τM
f ≔ τM

f I,

τM
f ≔ 1

ρf
CT
Δt2

+ vℎ
f − vℎ

m ⋅ G vℎ
f − vℎ

m + CI
μ

ρf
2
G:G

− 1
2

,

τC
f ≔ 1

τMtrG ,

Gij ≔ ∑
k = 1

3 ∂ξk
∂xi

Mkl
∂ξl
∂xj

,

M = Mkl = 23
2

2 1 1
1 2 1
1 1 2

,
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G:G ≔ ∑
i, j = 1

3
GijGij,

trG ≔ ∑
i = 1

3
Gii .

In the above, ξ = ξi i = 1
3  represents the natural coordinates in the parent domain. The values 

of CI and CT are chosen to be 36 and 4 in this study. M is introduced for simplex elements to 

give a node-numbering-invariant definition of τM
f  and τC

f  [21].

3.4. Boundary conditions

For the solid sub-problem, we prescribe homogeneous Dirichlet boundary conditions on the 

annulus surfaces at the inlet and outlets and zero traction on the external surface of the 

arterial wall.

For the fluid sub-problem, we prescribe the no-slip boundary condition on the luminal 

surface. On the inlet surface, we prescribe a Poiseuille velocity profile scaled by a periodic 

volumetric flow waveform. A special mapping technique introduced in [22] is utilized to 

generate the inflow profile. To achieve physiological flows and pressures, we couple LPN 

models to the outlet surfaces as traction boundary conditions mimicking the effect of the 

downstream circulation. For each outlet surface Γout
k  with unit outward normal vector nk, 

where k is the outlet surface index, we prescribe

hf = − Pk(t)nk + βρf vℎ
f − vℎ

m ⋅ nk
−

vℎ
f, (3.1)

where Pk(t) is the spatially averaged normal component of the surface traction on Γout
k , β is a 

positive coefficient between 0.0 and 1.0, and

vℎ
f − vℎ

m ⋅ nk
−

≔ vℎ
f − vℎ

m ⋅ nk if  vℎ
f − vℎ

m ⋅ nk < 0,

0 otherwise.

Backflow divergence is a well-known issue in cardiovascular flow simulations and can arise 

from either bulk flow reversal in both healthy and diseased states, or local flow reversal as 

local velocity fluctuations are convected out of the computational domain. The second term 

in (3.1) introduces energy dissipation in the case of backflow and is critical for maintaining 

the overall numerical stability. It can be shown that taking β = 1.0 guarantees energy 

stability for the numerical scheme. While this backflow stabilization term adds a convective 

traction to the outlet surface and is therefore intrusive to the flow field, its impact on the 

flow field can be minimized by choosing β to be smaller than 1.0. Furthermore, adding only 

a fraction of this convective traction allows for improved stability at larger time steps. In this 
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work, β is fixed to be 0.2 [23]. We also note that there exist several approaches for 

preventing backflow divergence. For a survey on this topic, interested readers are referred to 

[24].

Given a LPN model, Pk(t) can be implicitly determined from the flow rate 

Qk(t) ≔ ∫Γoutk vf ⋅ nkdΓ . In this study, we consider the three-element Windkessel model,

dΠk(t)
dt = − Πk(t)

Rd
kCk + Qk(t)

Ck , (3.2)

Pk(t) = Rp
kQk(t) + Πk(t) + Pd

k(t) . (3.3)

In (3.2)-(3.3), Rp
k, Ck, and Rd

k respectively represent the proximal resistance, compliance, and 

distal resistance of the downstream vasculature; Πk represents the pressure drop across the 

distal resistance; Pd
k denotes the distal reference pressure. Although one may obtain an 

analytical representation of Pk in terms of Qk for this model, we solve the ordinary 

differential equations (3.2)-(3.3) for Pk(t) via the fourth-order Runge-Kutta method [16]. 

This approach enables the solution of more complex LPN models with satisfactory 

numerical robustness.

3.5. Solution strategies for the coupled problem

The semi-discrete problem stated in Sections 3.1–3.3 is discretized in time by the 

generalized-α method [25, 26]. We advocate collocating the pressure at the intermediate 

time step to achieve second-order temporal accuracy [1]. This is in contrast to the 

conventional approach, which we have recently found to be only first-order accurate for 

pressure [27].

For the fully discrete problem in the solid sub-domain, block factorization can be performed 

on the resulting tangent matrix [1, 6], allowing the consistent Newton-Raphson procedure to 

be performed in a segregated manner. In this approach, the velocity and pressure are first 

solved implicitly. The solid displacement is then explicitly updated using the velocity. This 

segregated solution procedure naturally leads to a coupling algorithm for the FSI system. In 

each Newton-Raphson iteration, the velocity, pressure, and solid displacement are solved in 

the segregated manner just described; the solid displacement is prescribed as the Dirichlet 

data on the luminal surface for the ALE mesh motion; the mesh velocity is then computed 

for use in the fluid sub-problem in the next Newton-Raphson iteration. This coupling 

strategy should still be considered a monolithic approach, as we seek solutions that 

minimize the residual of the whole FSI system. It is, however, closely related to the ‘quasi-

direct’ coupling approach [11, 28].

The Newton-Raphson procedure involves solving a matrix problem with a two-by-two block 

structure. In particular, the outflow boundary condition (3.1) contributes a weighted sum of 

rank-one matrices to the tangent matrix [4]. These rank-one matrices are dense and 

necessitate a non-trivial assembly procedure in the finite element code. Although a “matrix-
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free” technique was previously suggested to handle the rank-one modifications [29, p. 3547], 

it may not offer the most efficient or scalable performance due to the absence of a 

preconditioner. In this work, we assembled the rank-one matrices into the tangent matrix to 

enable preconditioning. The system is preconditioned by our nested block preconditioner, 

which has been demonstrated to be robust, efficient, and scalable for both hyperelasticity 

[10] and viscous fluids [4].

4. Model construction and mesh generation from patient-specific medical 

image data

Using the open source software package SimVascular (SV) [30, 31], we generated a healthy 

patient-specific pulmonary arterial model from clinically available magnetic resonance 

imaging (MRI) data of a nine-year-old subject with congenital heart defects in the systemic 

circulation. All retrospective clinical data collection was approved by the Institutional 

Review Board for modeling purposes. Our steps constitute a complete pipeline for robust 

vascular wall (the solid sub-domain) and luminal (the fluid sub-domain) mesh generation 

from medical image data for FSI modeling of blood flow.

Path points along the centerlines of all arteries of interest were first manually identified. 

Two-dimensional (2D) image segmentations were generated along the vessel centerlines and 

subsequently lofted into a 3D model of the arterial lumen. To generate a model of the arterial 

wall, we adopted the common assumption that the arterial wall thickness is approximately 

ten percent of the effective lumen diameter [15]. Therefore, we scaled each of the 2D 

segmentations such that the distance between every segmentation point and the centroid was 

increased by twenty percent. An ‘enlarged’ model encompassing both the arterial wall and 

lumen was thereby generated by lofting these scaled segmentations. Finally, the model of the 

arterial wall itself was obtained via a boolean operation provided by Parasolid (Siemens 

PLM Software, Plano, TX, USA), in which the previously generated lumen model was 

subtracted from the enlarged model. Our approach led to a physiologically accurate 

geometric model with variable wall thickness. With the arterial wall and lumen models 

constructed, we meshed the solid and fluid domains using MeshSim (Simmetrix Inc., Clifton 

Park, NY, USA) and TetGen [32], respectively, with linear tetrahedral elements, ensuring 

that the luminal surface mesh remained identical in both domains. In particular, we chose the 

isotropic mesh size to ensure at least two layers of elements along the radial direction. The 

resulting mesh (Figure 1) consisted of 7.0 × 105 elements in the fluid sub-domain and 7.4 × 

105 elements in the solid sub-domain.

5. Computational results

Unless otherwise specified, all parameters and results are presented in the centimeter-gram-

second units.

The fluid density and viscosity were set to be 1.06 and 0.04, respectively. The arterial wall 

was modeled as a fully incompressible Neo-Hookean material with the following form for 

the Gibbs free energy,
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G(C, p) = μs

2ρ0
s (trC − 3) + p

ρ0
s .

The density ρ0
s and shear modulus μs of the arterial wall were chosen to be 1.0 and 6.7 × 105. 

The material parameters are adopted from [33] and are representative for pediatric patients. 

The flow rate on the inlet surface (2) was measured by phase-contrast MRI (PC-MRI). 

Resistance and capacitance values used in the three-element Windkessel models were taken 

from our previous study [33], in which the total resistance and capacitance values for the 

right and left pulmonary arteries were first determined by a simplified LPN model of the 

pulmonary circulation to match target clinical pressures. These total values were then 

distributed to each outlet with an assumption of parallel circuits and an area rule [33]. The 

resistance and capacitance values are documented for all outlets in Appendix A. In addition 

to the FSI simulation, we simulated the same problem under the rigid wall assumption with 

identical inlet and outlet boundary conditions.

The spatially averaged pressure on the inlet surface and two representative outlet surfaces 

are plotted over time in Figure 3. The rigid wall assumption clearly overestimates the 

pressure on all three surfaces. The pressure difference between the FSI and rigid wall 

simulations is most pronounced on the inlet surface at peak systole, at approximately 13 mm 

Hg. The pressure overestimation of the rigid wall assumption is consistent with our prior 

experiences and can be even larger for diseased pulmonary arteries. In Figure 4, the wall 

mesh at early diastole and peak systole are superposed and colored by the wall displacement 

at peak systole. The cross-sectional area of a slice in the main pulmonary artery increased by 

18% from diastole to peak systole, which agrees favorably with our PC-MRI measurement. 

Figure 5 depicts the volume rendering of the velocity magnitude at peak systole. Comparing 

the FSI and rigid wall simulations reveals the largest deviation in the distal branches, where 

the rigid wall assumption yields a higher velocity magnitude prediction. The flow rates over 

time in two outlet surfaces are plotted in Figure 2. It reveals that the rigid wall assumption 

leads to 25% and 17% overpredictions of the flow rates on the two outlet surfaces, 

respectively. In addition, the FSI simulation yields phase shifts of 0.035 s and 0.045 s from 

the inlet to the outlet surfaces B and C, respectively. This is in contrast to the in-phase 

behavior of the rigid wall simulation, reflecting the finite wave speed in deformable vessels. 

Figure 6, which depicts the in-stantaneous wall shear stress (WSS) on the luminal surface at 

peak systole, also suggests that the rigid wall assumption overpredicts the WSS, especially 

in the distal branches. For example, near the outlet surface B (refer to Figure 1 for its 

location), the spatially averaged WSS in the rigid wall calculation gives a 52.6% 

overestimation in comparison with the FSI result. The overestimation of WSS from rigid 

wall simulations was also previously reported in cerebral aneurysm simulations [13, 34]. 

Furthermore, we determined the volume change of the tissue over time in the FSI 

simulation. The maximum volume difference relative to the initial tissue volume in one 

cardiac cycle is 0.52%, indicating that the incompressibility constraint was well satisfied.
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6. Conclusion

We have presented a general framework for patient-specific FSI simulations of blood flow. 

This involves mesh generation from medical image data, a VMS formulation for low-order 

finite elements and both compressible and incompressible materials, boundary conditions 

involving coupled LPN models of the downstream circulation, and a time integration scheme 

offering second-order accuracy for the entire system.

More specifically, the numerical formulation is constructed from the unified continuum 

model, which uses the Gibbs free energy as the thermodynamic potential and is thus well-

behaved in the incompressible limit [1]. It further makes use of the VMS technique to 

provide a simple, stable FSI formulation using low-order elements. Together, these two 

attributes of our numerical formulation allow us to model the arterial wall as a fully 

incompressible material without resorting to mixed elements; the formulation is particularly 

well-suited to complex geometries such as those found in the arterial system. The treatment 

of our fluid and solid sub-domains as a single continuum body governed by the same first-

order balance equations facilitates time integration of both domains in a uniform way. 

Importantly, while the generalized-α method has been established as an accurate and robust 

temporal scheme for structural dynamics, fluid dynamics, and FSI, the conventional 

approach has been to collocate pressure at the time step tn+1. We have fine-tuned the 

temporal treatment of pressure such that pressure is evaluated at the intermediate time step 

no differently from velocity. This fine-tuned temporal scheme has been demonstrated to 

yield second-order accuracy for the entire system [4]. Interestingly, when used in 

conjunction with first-order structural dynamics, the generalized-α method has been found 

to enjoy better dissipation and dispersion accuracy and avoid the ‘overshoot’ phenomenon 

[26]. These attributes together yield a stable numerical FSI scheme that not only exhibits 

higher accuracy, but also is more convenient in implementation.

In our study, we performed an FSI simulation of a nine-year-old subject’s healthy pulmonary 

arterial tree and compared results against those of a rigid wall simulation. The rigid wall 

assumption was found to consistently overestimate hemodynamic quantities, including 

velocity, pressure, and WSS, compared to FSI. The differences are sufficiently large to 

necessitate the use of FSI for blood flow simulations. Limitations of our current study must 

be addressed. First, we followed the procedure introduced in [35, p. 209] to initialize the FSI 

simulation. In the diastolic configuration acquired from medical images, there are internal 

stresses, commonly known as the prestress, that balance the external blood pressure and 

viscous traction. Our initialization procedure does not account for the zero stress-state of the 

arterial wall and thus yields a slightly inflated arterial configuration. In order to obtain more 

physiological predictions of biomechanical quantities in our future FSI work, we plan to 

incorporate prestress modeling by estimating the zero-stress state of the arterial wall [36, 37, 

38]. Additionally, our simulations have thus far only been performed on an isotropic mesh. 

We are currently working on an anisotropic meshing procedure to enable more wall elements 

in the radial direction and boundary layer meshing in the fluid sub-domain without 

drastically increasing the number of elements. This improved meshing capability will also 

allow us to perform mesh convergence studies on the vascular FSI problem. Finally, we plan 

to further improve the arterial wall model by incorporating anisotropy and viscoelasticity 
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[15]. To evaluate its predictive capacity in the context of clinically significant hemodynamic 

quantities, validation of this FSI methodology will also be performed using a combination of 

clinical and experimental data.
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Appendix A.: Outflow boundary conditions

Here we report details of the outflow boundary conditions used for the simulations. The 

outlet surfaces are numbered in Figure A.7. The values of Rp
k, Ck, and Rd

k are listed in Table 

A.1, and the distal reference pressure Pd
k(t) is fixed at 9.33 × 103 over time for all outlets.

Table A.1:

The values of Rp
k, Ck, and Rd

k used for the outflow boundary conditions.

k Rp
k Ck Rd

k

0 8.76 × 101 7.99 × 10−5 9.18 × 102

1 7.78 × 101 8.99 × 10−5 8.16 × 102

2 1.04 × 102 6.71 × 10−5 1.09 × 103

3 2.63 × 102 2.66 × 10−5 2.76 × 103

4 2.16 × 102 3.25 × 10−5 2.26 × 103

5 2.36 × 102 2.96 × 10−5 2.48 × 103

6 3.36 × 102 2.08 × 10−5 3.53 × 103

7 2.51 × 102 2.78 × 10−5 2.63 × 103

8 4.72 × 102 1.48 × 10−5 4.95 × 103

9 1.91 × 102 3.66 × 10−5 2.00 × 103

10 2.10 × 102 3.33 × 10−5 2.20 × 103

11 4.81 × 102 1.45 × 10−5 5.04 × 103

12 4.37 × 102 1.60 × 10−5 4.58 × 103

13 3.71 × 102 1.89 × 10−5 3.89 × 103

14 4.16 × 102 1.68 × 10−5 4.36 × 103

15 1.54 × 102 4.54 × 10−5 1.62 × 103

16 3.60 × 102 1.95 × 10−5 3.77 × 103

17 2.90 × 102 2.41 × 10−5 3.04 × 103

18 3.03 × 102 2.31 × 10−5 3.18 × 103

19 1.57 × 102 4.45 × 10−5 1.65 × 103

20 2.72 × 102 2.57 × 10−5 2.85 × 103

21 1.89 × 102 3.71 × 10−5 1.98 × 103

22 3.44 × 102 2.03 × 10−5 3.61 × 103

23 4.23 × 102 1.65 × 10−5 4.43 × 103
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k Rp
k Ck Rd

k

24 3.31 × 102 2.11 × 10−5 3.47 × 103

25 2.81 × 102 2.49 × 10−5 2.94 × 103

26 3.71 × 102 1.88 × 10−5 3.89 × 103

27 3.19 × 102 2.19 × 10−5 3.35 × 103

28 5.20 × 102 1.35 × 10−5 5.45 × 103

29 6.86 × 102 1.02 × 10−5 7.19 × 103

30 3.08 × 102 2.27 × 10−5 3.23 × 103

31 2.90 × 102 2.41 × 10−5 3.04 × 103

32 2.25 × 102 3.10 × 10−5 2.36 × 103

33 3.47 × 102 2.02 × 10−5 3.63 × 103

34 3.52 × 102 1.99 × 10−5 3.69 × 103

35 5.54 × 102 1.26 × 10−5 5.81 × 103

36 5.49 × 102 1.27 × 10−5 5.76 × 103

37 4.67 × 102 1.50 × 10−5 4.90 × 103
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Figure A.7: 
The outlet surfaces are identified by the index k.
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Highlights

• The variational multiscale formulation is constructed based on a unified 

continuum model for fluid-structure interaction simulation of blood flow in a 

pulmonary arterial tree.

• The arterial wall is modeled by a fully incompressible hyperelastic material 

model.

• The patient-specific geometry is constructed from medical images with 

variable wall thickness.

• The outflow boundary conditions are modeled by the lumped parameter 

network to achieve physiological flow and pressure.

• The simulation results are compared against those of a rigid wall simulation.
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Figure 1: 
The mesh for the pulmonary arterial wall (blue) and lumen (red), with detailed views at the 

inlet and a representative outlet.
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Figure 2: 
(a) The volumetric flow rates over time in one cardiac cycle on surfaces A (red), B (green), 

and C (blue), where the waveform for A was used to prescribe the velocity on the inlet 

surface. The flow rates on outlet surfaces B and C are calculated from simulation results and 

plotted in solid and dashed lines for FSI and rigid wall simulations, respectively. The 

locations of the surfaces are indicated in Figure 1. (b) Detailed view of the flow rates on 

surfaces B and C.
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Figure 3: 
The pressure over time in one cardiac cycle on the surfaces A (red), B (green), and C (blue). 

Results from the FSI and rigid wall simulations are plotted in solid and dashed lines, 

respectively. The locations of the three surfaces are indicated in Figure 1.
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Figure 4: 
The relative wall displacement between peak systole and early diastole.
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Figure 5: 
Volume rendering of the velocity magnitude at peak systole.
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Figure 6: 
Wall shear stress (WSS) at peak systole.
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