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Abstract

We report a palladium-catalyzed, three-component carbosilylation reaction of internal symmetrical 

alkynes, silicon electrophiles, and primary alkyl zinc iodides. Depending on the choice of ligand, 

stereoselective synthesis of either cis- or trans-tetrasubstituted vinyl silanes is possible. We also 

demonstrate conditions for the Hiyama cross-coupling of these products to prepare geometrically 

defined tetrasubstituted alkenes.

Graphical Abstract

Vinylsilanes have a wide variety of applications in organic synthesis, including Hiyama 

cross-coupling reactions, Tamao-Fleming oxidations, and desilylative halogenations.1 

Despite the development of numerous methods to prepare vinylsilanes,2 the stereocontrolled 

synthesis of tetrasubstituted vinylsilanes remains challenging. Classically, these highly 

substituted vinylsilanes have been prepared by the carbometallation of silylacetylenes; 

however, these methods typically require multiple steps, and often produce products with 

low E/Z selectivity.3 Only three examples of stereoselective tetrasubstituted vinylsilane 

synthesis are known. Itami has reported a copper-catalyzed single-pot carbometallation of 

pyridyl-substituted silylacetylenes.4 This method addresses stereocontrol in the 

carbometallation; however, it requires several steps to implement and is limited to the 

production of pyridyl silanes (Scheme 1A). In 2016, Shintani and Nozaki reported an 
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elegant palladium-catalyzed tandem alkyne silylboration/Suzuki reaction that allows for net 

syn-carbosilylation of alkynes; however, this method is only effective for diarylalkynes 

(Scheme 1B).5 Most recently, Nakamura described a related iron-catalyzed method that, 

while effective for aliphatic alkynes, is limited to benzylic electrophiles and provides only 

the anti-addition products (Scheme 1B).6 Moreover, both of these latter methods require the 

use of nucleophilic silyl reagents, which can be challenging to access due to silicon’s low 

electronegativity.

In the early 1990’s, Murai reported the palladium-catalyzed carbosilylation of terminal 

alkynes using trimethylsilyl iodide and organometallic nucleophiles (Scheme 1C).7 This 

method is attractive because it takes advantage of silicon’s natural electrophilicity. However, 

Murai reported that the method did not work with internal alkynes, and thus did not allow 

access to tetrasubstituted vinylsilanes.

Based upon the continued need for simple protocols that can assess highly substituted 

vinylsilanes, as well as our ongoing interest in developing silyl-Heck-type reactions,8,9 we 

have reinvestigated the use of electrophilic carbosilylation for the preparation of 

tetrasubstituted vinylsilanes. Through identification of both the proper order of addition of 

reagents and the correct ligands, the stereoselective synthesis of syn- and anti- 
tetrasubstituted vinylsilanes via carbosilylation of internal alkynes is now possible. This 

method is applicable to both diaryl- and dialkyl-alkynes, as well as a variety of silyl 

functionalities, allowing for highly general access to tetrasubstituted vinylsilanes. Finally, 

we also report general conditions that allow for the tetrasubstituted vinylsilanes to undergo 

Hiyama-coupling, which also allows for facile synthesis of stereodefined tetrasubstituted 

alkenes.

We began by reproducing the results reported by Murai, which involved the addition of the 

silyl iodide to a solution of Et2Zn and diphenylacetylene. In our case, however, we replaced 

Me3SiI with PhMe2SiI with an eye towards downstream functionalization.10 Consistent with 

Murai’s findings, only traces of the desired product were observed (Table 1, entry 1). 

Surprisingly, however, when the order of addition was switched and Et2Zn was added to a 

solution of alkyne and silyliodide, noticeably more product was formed (entry 2). As 

described by Murai, the major byproduct was phenyldimethylethylsilane resulting from 

alkylation of the silylhalide by Et2Zn. Murai suggested that this byproduct results from the 

direct reaction of the two reagents;7b however, control experiments in our lab revealed that 

this side reaction is also palladium-catalyzed.11 Combined, these results led us to investigate 

the slow addition of Et2Zn, which further improved the yield (entry 3). Extending the time 

of slow addition, in combination with switching the precatalyst to (PPh3)2PdCl2, the 

addition of Et3N to the solution,12 and adjustment of the stoichiometry resulted in nearly 

quantitative formation of the desired product (entries 4–6). Finally, to increase the utility of 

the method with more complex nucleophiles, we also investigated the use of alkylzinc 

halides as nucleophiles. This change resulted in an equally efficient reaction (entry 7). In all 

cases, only the product of syn-addition was observed.

The scope of the reaction, with respect to diaryl acetylene, alkylzinc iodide, and iodosilane 

is broad (Scheme 2). High yields and outstanding syn-selectivity were generally observed. 
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Functional group compatibility is also high, and includes aryl ethers (3), trifluoromethyl 

groups (4), aryl halides (5–7), heterocycles (9), increased steric bulk (8, 11, 12), alkenes 

(13), and alkyl boronic esters and silanes (14–15). As a general trend, lower syn-selectivity 

was observed with increased electron-density on the alkene β to silicon.13

Our attention then turned to alkyl-substituted alkynes. We were initially disappointed to find 

that the conditions developed in Table 1 lead to poor syn/anti mixtures of products (Table 2, 

entry 1). To address this issue, we investigated the role of the ligand in stereoselection. Less 

electron-rich triarylphosphines gave poor reactivity (not shown). More electron-rich 

phosphines provided similar yield of product, but with low levels of selectivity (entry 2). 

Gratifyingly, however, we found that by using DrewPhos [(3,5-tBu2C6H3)3P],11a which 

features tert-butylated phenyl groups, dramatically improved selectivity for syn-addition 

product 16 was achieved (entry 3). Equally surprising, with even larger ligands, a reversal in 

selectivity was observed and anti-addition product 17 was observed as the major product 

(entry 4). Ultimately, JessePhos [(3,5-tBu2C6H3)2P(tBu)]8d proved superior in this regard, 

providing both high yield and outstanding selectivity for 17 (entry 5). Thus, depending upon 

the choice of ligand, either the syn- or anti-addition product can be selectively prepared.

After additional optimization, which included use of preformed Pd(II)I2 precatalysts and 

adjustment of the stoichiometry,14 the scope of both the syn- and anti-selective conditions 

were explored (Scheme 3, top and bottom, respectively). Similar to the scope of the reaction 

with aryl-substituted alkynes, the reaction of alkyl-substituted alkynes was tolerant to a 

range of substitution on the silicon center (16–19, 24, 25). In addition, a range of functional 

groups were tolerated, including alkyl chlorides (23, 26), trifluoromethyl-groups (27), 

boronic esters (21), alkenes (20), and aromatic groups (22, 23).

With the discovery that JessePhos leads to anti products, we also investigated its use in the 

carbosilylation of diarylalkynes. We found that (JessePhos)2PdCl2 is a suitable palladium 

precatalyst and leads to good yields of aryl-substituted tetrasubstituted vinylsilanes with 

excellent anti-selectivity (Scheme 4).

The newly discovered ability to prepare tetrasubstituted vinylsilanes using this method, 

particularly in the context of the earlier results reported by the Murai group, can be 

understood in the context of two competing silyl-Heck-like and silyl-Negishi reactions. Both 

proceed via oxidative addition of Pd(0) to the silyl halide. As proposed by Murai,7b the 

carbosilylation pathway (Figure 1, pathway A) proceeds via migratory insertion of the 

alkyne, transmetallation, and reductive elimination. With terminal alkynes, migratory 

insertion is evidently fast, and pathway A dominates. With internal alkynes, however, 

migratory insertion is slower, and direct transmetallation of the Pd(II)(SiR3)I (31) can 

compete. With high concentration of organometallic nucleophile, this latter pathway 

dominates, resulting in silyl-Negishi alkylation.11a However, by holding the concentration of 

the nucleophile low, the rate of transmetallation is suppressed and the carbosilylation 

pathway proceeds.

The ability to select syn- or anti-addition products based upon ligand appears to be 

predominately due to relative strength of the π-bond in intermediate 32. Electron-donors β 
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to silicon are expected to weaken the bond. Simultaneously, larger ligands sterically 

destabilize this intermediate. When rupture of the π-bond (k4) is faster than transmetallation 

(k3), isomerization to the anti-product occurs.15

Lastly, we wished to demonstrate the utility of the tetrasubstituted vinylsilanes by converting 

them to stereodefined tetrasubstituted alkenes using a Hiyama reaction. Although 

Denmark’s tetrasubstituted vinylsilanolates can undergo cross-coupling,16,17 there is only a 

single example of a cross-coupling of a non-activated tetrasubstituted vinylsilane bearing all-

carbon groups on silicon.18,19 Unfortunately, those conditions failed to result in cross-

coupling of the tetrasubstituted vinylsilanes prepared in this study.14

Anderson has demonstrated that all-carbon-bearing trisubstituted vinylsilanes can undergo 

Hiyama coupling with aryl iodides in the presence of 18-crown-6 and KOSiMe3 using 

Pd2(dba)3 as the catalyst.20 Unfortunately, those conditions also failed to cross-couple the 

more substituted tetrasubstituted vinylsilanes (Table 3, entry 1). However, by combining the 

use of 18-crown-6 and KOSiMe3 with the use of SPhos as ligand (as identified in the 

Denmark studies),16,21 we were able to cross-couple both aryl iodides and aryl bromides in 

good yield (entries 2 and 3).14 As all-carbon-substituted vinylsilanes are easier to manipulate 

than the corresponding silanolates, these conditions should prove to be a useful advance in 

Hiyama cross-coupling.

In conclusion, we have developed a three-component carbosilylation reaction for the 

synthesis of tetrasubstituted vinylsilanes directly from readily available or easily synthesized 

starting materials. This method allows for the formation of either the syn- or anti-addition 

vinylsilane products depending on the ligand choice. In addition, we have demonstrated the 

utility of the reaction through the development of a Hiyama cross-coupling reaction, which 

allows for the formation of stereodefined tetrasubstituted alkenes directly from these 

vinylsilane products. Current studies are focused on carbosilylation reactions on non-

symmetric internal alkynes.
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Figure 1. 
Mechanistic Discussion
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Scheme 1. 
Formation of Tetrasubstituted Vinylsilanes
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Scheme 2. 
Scope of Aryl-Substituted Vinylsilanes

aIsolated yields, syn/anti ratios (reported in parentheses) were determined by GC analysis of 

the crude reaction mixture. b((C6F5)P)2PdCl2.
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Scheme 3. 
Scope of Alkyl-Substituted Tetrasubstituted Vinylsilanesa

aIsolated yields, syn/anti ratios determined by GC analysis of the crude reaction mixture and 

reported in parentheses.
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Scheme 4. 
Anti-Addition of Aryl Alkynes

aIsolated yields, syn/anti ratios determined by GC analysis of the crude reaction mixture 

(reported in parenthesis).
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Table 2.

Effect of Ligand on Selectivity of Alkyl-Substituted Vinylsilanes

Entry Ligand Combined Yield and Ratio 16/17a

1 Ph3P 88%, 65:35

2 (4-OMeC6H4)3P 66%, 60:40

3 (3,5-tBu2C6H3)3P 76%, 90:10

4 (o-tol)3P 65%, 18:82

5 (3,5-tBu2C6H3)2P(tBu) 67%, <5:95

a
Yields and syn/anti ratios determined by GC.
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Table 3.

Hiyama Cross-Coupling Conditions

Entry X [Pd] Ligand Yield (%)

1 I Pd2(dba)3 none 0

2 I [(allyl)PdCl2 SPhos 50a

3 Br [(allyl)PdCl2 SPhos 62b

a
Yield determined by GC.

b
Isolated yield.
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