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SUMMARY

The goals in clinical and cohort studies often include evaluation of the association of a time-dependent
binary treatment or exposure with a survival outcome. Recently, several impactful studies targeted the
association between initiation of aspirin and survival following colorectal cancer (CRC) diagnosis. The
value of this exposure is zero at baseline and may change its value to one at some time point. Estimating
this association is complicated by having only intermittent measurements on aspirin-taking. Commonly
used methods can lead to substantial bias. We present a class of calibration models for the distribution of
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the time of status change of the binary covariate. Estimates obtained from these models are then incor-
porated into the proportional hazard partial likelihood in a natural way. We develop non-parametric,
semiparametric, and parametric calibration models, and derive asymptotic theory for the methods that we
implement in the aspirin and CRC study. We further develop a risk-set calibration approach that is more
useful in settings in which the association between the binary covariate and survival is strong.

Keywords: Interval censoring; Last-value-carried-forward; Missing data; Proportional hazard.

1. INTRODUCTION

One benefit of the Cox proportional hazards (PH) model for the analysis of time-to-event data (Cox, 1972)
is the simplicity of including time-dependent covariates, while preserving desirable theoretical properties.
Classical methods assume that time-dependent covariates are measured continuously. However, in practice,
they are often measured intermittently, leading to bias in effect estimates if treated naïvely (Andersen and
Liestøl, 2003; Cao and others, 2015). We consider a time-dependent binary covariate having zero value at
baseline that may change its value to one at some point, and if a change has occurred, the covariate retains
this value for the rest of the follow-up time. Real-life scenarios of this nature are widespread, including the
onset of a irreversible medical condition (e.g., HIV infection, Langohr and others, 2004) or a treatment
with a constant effect that is administrated in a different time for each patient (Austin, 2012). Goggins
and others (1999) described data arising from a clinical trial where the goal was to study the effect of
Cytomegalovirus (CMV) shedding on the risk of developing active CMV disease.

In the problems motivating this article (Chan and others, 2009; Liao and others, 2012; Hamada and
others, 2017), the researchers were interested in the association between initiating aspirin use and survival
after colorectal cancer (CRC) diagnosis. The data were obtained from two cohort studies: the Nurses’
Health Study (NHS) and the Health Professionals Follow-Up Study (HPFS). Following their enrollment
to the studies, participants have been receiving questionnaires biennially and answering questions about
life-style and other characteristics. Patients diagnosed with CRC who had been taking aspirin typically
stop taking aspirin at the time of diagnosis as part of their preparations for surgery. Post-diagnosis aspirin-
initiation is a time-dependent binary covariate. The time a participant started to take aspirin is known to
lie within the interval between the time of the last questionnaire answered as no aspirin-taking and the
time of the first questionnaire answered as aspirin-taking.

Researchers target the association between aspirin-initiation and survival and not aspirin-use and
survival (Chan and others, 2009; Liao and others, 2012; Bastiaannet and others, 2012; Barron and others,
2015; Hamada and others, 2017) because aspirin-use might be stopped after initiation due to a deteriorating
health status of the participants, resulting in reverse causality. A recently published study (Murphy and
others, 2017) has found that among cancer patients that initiated aspirin use, the probability of continuing
to take aspirin was much lower for those who were nearing death, compared to matched survivors.

The relevant existing literature is limited. Andersen and Liestøl (2003) studied the attenuation in effect
estimates caused by having infrequently measured covariates. Cao and others (2015) developed kernel-
based weighted score methods. Goggins and others (1999) proposed an EM algorithm to estimate the
association between a binary covariate and survival time when the change-time of the binary covariate is
interval-censored, and Kim (2016) proposed a modified estimating equation for the same problem, when
there are no additional covariates affecting the outcome.

In this article, we propose a novel analysis framework for the problem of interval-censored change-
time and suggest a two-stage approach. In the first stage, we fit a model for the change-time of the
binary covariate. This model may be non-parametric, semiparametric or fully parametric, and may include
baseline covariates that affect the change-time. For this first stage, we exploit existing methods, theory
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and efficient algorithms for interval-censored data (Sun, 2007; Huang, 1996; Anderson-Bergman, 2017;
Wang and others, 2016). In the second stage, we incorporate the first-stage model into the main PH model.
We construct a partial likelihood using the conditional hazard with respect to the available history, which,
in the CRC and aspirin dataset, includes the timing of the last questionnaire, corresponding aspirin status
and baseline covariates.

Our goal in this article is 3-fold. First, we develop a conceptual framework for the analysis of time-
to-event data under the common practice of infrequent updates of a binary covariate of interest. Second,
we present a rigorous analysis of data arisen from several impactful studies in the area of CRC. Third, we
provide the R packageICcalib that implements our flexible methodology under a wide range of models.
Unlike existing methods, our flexible approach allows to include variables related to aspirin-initiation,
utilizing the available data and subject-matter knowledge in a novel way.

The rest of the article is structured as follows. In Section 2, we describe the motivating data. In Section
3, we define the main model, and in Section 4, we develop our proposed methods. Section 5 contains
asymptotic properties. In Section 6, we describe our simulation study. In Section 7, we present the analysis
of the CRC data and in Section 8, we reanalyze the CMV data of Goggins and others (1999). We offer
concluding remarks in Section 9.

2. DATA DESCRIPTION

The data were formed from two large cohorts: the NHS, to which 121 701 female nurses enrolled in
1976, and the HPFS that began in 1986 with the enlistment of 51 529 males in various health professions.
Description of the studies, and eligibility conditions for inclusion in the CRC survival studies can be found
in Hamada and others (2017).

Participants have been receiving questionnaires biennially. During each questionnaire cycle, partici-
pants returned their answers in varying times. CRC researchers are interested in the first 5 or 10 years
following the diagnosis. In our analyses, we considered 10 years follow-up. We limited our analyses
to participants with Stages 1–3 CRC or missing stage data. In the span of 10 years, 249 CRC-related
deaths were observed. Table A.1 of the supplementary material available at Biostatistics online presents
descriptive statistics of the main variables.

In the three CRC studies that motivated this article (Chan and others, 2009; Liao and others, 2012;
Hamada and others, 2017), evidence was presented for differential association of aspirin-initiation with
CRC mortality across the following molecular subtypes, by considering the interaction terms of the aspirin-
taking status and these molecular subtypes. The three molecular subtypes were PTGS2 (cyclooxygenase-2)
overexpression (Chan and others, 2009), PIK3CA mutation (Liao and others, 2012), and low CD274
(PD-L1) expression (Hamada and others, 2017). These subtype definitions are not exclusive; a tumor may
be included in zero, one, two, or three of these subtypes. The goal of our analyses was to evaluate the
association between post-diagnosis aspirin initiations and CRC-related mortality within the subpopulation
of each tumor subtype.

The post-diagnosis aspirin-initiation time varied. Figure 1 presents estimated time-to-aspirin-initiation
curves, for the entire sample and by pre-diagnosis aspirin-taking status. Patients diagnosed with CRC were
asked to stop taking aspirin to prepare for surgery. It is likely that patients who had been taking aspirin
prior to CRC diagnosis were more inclined to initiate aspirin, once it was possible. This is consistent with
the rapid drop right after the baseline in the curve for pre-diagnosis aspirin-takers.

3. THE MAIN MODEL

Let T be the time to event of interest, e.g., time-to-death following CRC diagnosis. T is possibly right
censored by a censoring time C. Let T̃ = min(T , C) and δ = I {T < C} be the observed time and

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy063#supplementary-data
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Fig. 1. Survival curve estimation of aspirin-initiation time for the entire sample (middle curve) and by pre-diagnosis
(Predx) aspirin-taking status (takers vs non-takers; bottom vs top curves). Solid lines are the NPMLE, dashed lines
are survival curves obtained from Weibull model fitting.

censoring indicator, respectively. Of main interest is the association of the monotone non-decreasing
binary covariate X (t) with T . For presentational simplicity, we henceforth refer to X (t) as the exposure,
although it can be a treatment or any other binary covariate. As explained in Section 1, when studying
aspirin and survival following cancer diagnosis, researchers prefer to study the exposure aspirin-initiation
and not aspirin-taking (e.g., Bastiaannet and others, 2012; Barron and others, 2015; Hamada and others,
2017) to avoid misinterpretation of the results due to reverse causality. Let V be the change-time in the
value of X . That is, V is the first time when X (t) = 1. Let Z be a vector of covariates presumably associated
with T . For simplicity of presentation, we assume that Z is time-independent. The proposed methods can
be straightforwardly applied to time-dependent covariates Z(t). The Cox PH model (Cox, 1972) for the
hazard function of T given X (t) and Z is

λ(t|X , Z) = lim
�→0

�−1P(t ≤ T < t + �|X (t), Z , T ≥ t) = λ0(t) exp(βX (t) + γ T Z), (3.1)

where λ0(t) is an unspecified baseline function and β and γ are parameters to be estimated. We are mainly
interested in β. We refer to this PH model for λ(t|X , Z) as the main model. The partial likelihood for
(β, γ ) is

L(β, γ ) =
n∏

i=1

⎡
⎢⎢⎣ exp(βXi(ti) + γ T Z i)

n∑
j=1

Yj(ti) exp(βXj(ti) + γ T Z j)

⎤
⎥⎥⎦

δi

(3.2)
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where Yi(t) = I {T̃i ≥ t} is an at-risk indicator. If Vi was known, we could simply set the time-dependent
exposure to be equal to zero for all t < Vi and to one after that time, i.e., Xi(t) = I {t ≥ Vi}. However, the
data collected from questionnaires are often limited. The aspirin-initiation status Xi was measured only at
a series of Mi discrete time points: 0 = wi0 < wi1 < · · · < wiMi , with X (wi0) = 0. If Xi was not measured
at any time point before T̃i, then Mi = 0. When the main event is terminal (e.g., death), exposure data are
available only until the event or censoring time; that is, wiMi ≤ T̃i. In other studies, data on the exposure
can be obtained even after the main event has occurred.

Let wt
i denote the last time Xi was measured before time t; wt

i = 0 if Xi was not previously measured.
If X (wt

i) = 1, then Xi(t) = 1. However, if X (wt
i) = 0, then Xi(t) can be either one or zero. Therefore, the

likelihood (3.2) cannot be calculated from the observed data.
Two common methods for addressing this type of missing data are the last-value-carried-forward

(LVCF) and midpoint imputation (MidI) methods. The LVCF method imputes missing values as the last
observed values, Xi(t) = Xi(w

t
i). That is, a participant is assumed to not initiate aspirin, until the first time

she reports aspirin-taking. The MidI method imputes the change-time (V ) in the middle of the interval in
which the change is known to have occurred. For example, if a participant reported she was not taking
aspirin 1 year after diagnosis, and then reported she is taking aspirin 2.5 years after diagnosis, then MidI
would assume V = 1.75 for that participant; LVCF would assume V = 2.5. These are ad hoc methods
that may lead to substantially biased results. This calls for a new conceptual framework.

First, we can describe the missing data problem in terms of the random variable V . For each participant,
the data available on V include the measurement times and the corresponding exposure status. The data
can be summarized in a form of an interval V is censored into, denoted by (wiL, wiR], where

wiL =
{

0 Mi = 0 or X (wi1) = 1
maxj{wij : X (wij) = 0} Mi > 0 & X (wi1) = 0

,

wiR =
{

minj{wij : X (wij) = 1} Mi > 0 & X (wiMi ) = 1
∞ Mi = 0 or X (wiMi ) = 0

.

If wiL = 0, Vi is left-censored, and if wiR = ∞, Vi is right-censored. Note that data about measurements
of Xi before wiL or after wiR do not add information about Vi.

Let Fit = {Z i, Qi, wt
i , Xi(w

t
i), {Ti ≥ t}} be the history until time t of an at-risk participant i, where Qi

are covariates informative about Vi (and hence on Xi(t)), and {Ti ≥ t} means that participant i has been
event-free so far. In our application, Qi includes, among other covariates, the pre-diagnosis aspirin-use
status, which is clearly informative about Xi(t), as previously demonstrated in Figure 1. If a covariate
affects both Ti and Xi, it is included in both Z i and Qi.

Before turning to our proposed methods, we present our assumptions. For all i = 1, .., n,

ASSUMPTION 1 Conditionally on Z i, Ti, and Ci are independent,

ASSUMPTION 2 Conditionally on Xi(t), Z i and {Ti ≥ t}, the probability of event at time t is independent of
Qi, wt

i , and Xi(w
t
i).

ASSUMPTION 3 P(Vi ≤ v|wiL = wl , wiR = wr , wiL < Vi < wiR) = P(Vi ≤ v|, wl < Vi < wr).

Assumption 1 is the standard independent censoring assumption for the main event time T . Assumption
2 is plausible, as it states that for a participant surviving at least until time t, given all covariates Z i, if
Xi(t) is known, then the history of Xi and timing of past questionnaires are not informative about the event
occurrence at time t. This assumption could be relaxed and replaced with a model for the relationship
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between the history of X and T . Assumption 3 is the standard independent censoring assumption for
interval-censored data (Sun, 2007, Section 1.3.5). It states that wiL and wiR do not contain additional
information about V , other than that V is within interval (wiL, wiR]. This assumption would not exactly
hold when the main event is terminal and X and T are associated (β �= 0). If, for example, aspirin is
strongly protective against death (β < 0 and |β| is large), a finite value of wiR implies that the participant
survived until wiR, and hence it is more likely that this participants started to take aspirin early (i.e., V
close to wiL). This assumption, its validity, and potential solutions to deviations from this assumptions are
discussed in Sections 4.2 and 9.

4. A CALIBRATION APPROACH

To present our methods, we first note that under model (3.1) and Assumption 2, the hazard function of T
conditional on Fit is

λi(t|Fit) = lim
�→0

�−1P(t ≤ Ti < t + �|Fit)

= lim
�→0

�−1EXi(t)|Fit [P(t ≤ Ti < t + �|Ti ≥ t, Xi(t), Z i)]
= λ0(t) exp(γ T Z i)E

[
exp(βXi(t))|Fit

]
.

A similar mathematical derivation was presented for the case of measurement error in a time-dependent
continuous covariate (Prentice, 1982). It is readily seen that λi(t|Fit) is also a PH model (Prentice, 1982)
and therefore we can consider the partial likelihood

LF(β, γ ) =
n∏

i=1

⎡
⎢⎢⎣ exp(γ T Z i)E

[
exp(βXi(ti))|Fiti

]
n∑

j=1
Yj(ti) exp(γ T Z j)E

[
exp(βXj(ti))|Fjti

]
⎤
⎥⎥⎦

δi

. (4.1)

The fact that Xi(t) is binary allows us to explicitly write the expectation in (4.1) as

E
[
exp(βXi(t))|Fit

] = 1 + P(Xi(t) = 1|Fit)(exp(β) − 1), (4.2)

where P(Xi(t) = 1|Fit) can be expressed using the distribution of V as

P(Xi(t) = 1|Fit) =
⎧⎨
⎩

1 Xi(w
t
i) = 1

P(wt
i < Vi ≤ t|Qi, Ti ≥ t)

P(wt
i < Vi|Qi, Ti ≥ t)

Xi(w
t
i) = 0

. (4.3)

In words, the probability of a positive aspirin-initiation status at time t, conditionally on the personal
history, equals to one, if the participant previously reported she is taking aspirin, and if she did not report
aspirin-taking previously, it equals to the probability of a change in the aspirin-initiation status between
the last questionnaire time (wt

i) and time t, conditionally on no aspirin-initiation at time wt
i . Combining

(4.2) and (4.3), it is evident that E
[
exp(βXi(t))|Fit

]
is a functional of the distribution of V conditionally on

Qi and {Ti ≥ t}. If the distribution of Vi|Qi, {Ti ≥ t} was known, we could have obtained valid estimates
for β and γ by substituting (4.2) and (4.3) into LF . However, the distribution of Vi|Qi, {Ti ≥ t} is unknown
for all t.

Because the distribution of Vi|Qi, {Ti ≥ t} can be very complicated due to the conditioning on
{Ti ≥ t}, we start with a simple solution. Let Git be Fit without the survival information, i.e.,
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Git = {Z i, Qi, wt
i , Xi(w

t
i)}. Our first proposal is to estimate β and γ by applying two modifications to

LF . First, we replace F by G in the expectations in (4.1) to get E
[
exp(βXi(t))|Git

]
. The second modifi-

cation involves replacing expectations of the form E
[
exp(βXi(t))|Git

]
by estimators Ê

[
exp(βXi(t))|Git

]
.

Our ordinary calibration (OC) estimator β̂OC is the maximizer of

LG(β, γ ) =
n∏

i=1

⎡
⎢⎢⎣ exp(γ T Z i)Ê

[
exp(βXi(ti))|Giti

]
n∑

j=1
Yj(ti) exp(γ T Z j)Ê

[
exp(βXj(ti))|Gjti

]
⎤
⎥⎥⎦

δi

,

with respect to β and γ . Noting the simplicity of this likelihood function, maximization can be done in a
straightforward way, e.g., using the Newton–Raphson algorithm.

The expectation E
[
exp(βX (t))|Gt

]
can be expressed as a functional of the distribution of V |Q, as in

(4.2) and (4.3), with F replaced by G, and omitting {Ti ≥ t} in (4.3). Therefore, we first estimate the
distribution of V |Q and then calculate Ê

[
exp(βXi(t))|Git

]
using the estimated distribution.

4.1. Calibration models fitted from interval-censored data

Let SV (v) = P(V > v) be the survival function of V . We refer to the model for the distribution of V as the
calibration model. Under Assumption 3, the likelihood of interval-censored time-to-event data is (Sun,
2007)

LV =
n∏

i=1

P(wiL < Vi ≤ wiR) =
n∏

i=1

[SV (wiL) − SV (wiR)]. (4.4)

The nonparametric maximum likelihood estimator (NPMLE) estimator has been studied as an extension of
the Kaplan–Meier estimator to interval-censored data. Algorithms suggested to find the NPMLE were pre-
viously developed
(Turnbull, 1976; Groeneboom and Wellner, 1992; Wellner and Zhan, 1997). Consistency and asymptotic
distribution (at a n1/3 rate) were proved by Groeneboom and Wellner (1992).

Parametric or semiparametric models for the distribution of V can also be used, and are especially
appealing when the distribution of V is likely to depend on additional covariates, previously denoted by Q.
In the CRC studies, pre-diagnosis aspirin-taking status is strongly associated with post-diagnosis aspirin-
initiation time (Figure 1). Additional covariates include risk factors for cardiovascular and cerebrovascular
events, because aspirin is often taken to reduce the risk of these events among high-risk patients; see
Section 7.

Let η denote a vector of parameters characterizing the distribution of V . An estimator of η is obtained
by maximizing the equivalent of (4.4) under a model for SV that possibly accommodates the covariates.
See Chapter 2 of Sun (2007) for discussion of parametric models for interval-censored time-to-event data.
A more flexible model is a PH regression model with an unspecified baseline hazard function. Finkelstein
(1986) discussed PH models for interval-censored data and suggested discretization of the baseline hazard
function. Algorithms for computation of the MLE were previously proposed and asymptotic theory was
studied (Huang, 1996; Pan, 1999).

We adopt the recently developed framework of Wang and others (2016), which uses flexible I-splines
(Ramsay, 1988) for the cumulative baseline hazard function. Wang and others (2016) further developed
a fast EM algorithm, which we apply in our simulations and data analysis. Let �V

0 (v) and SV
η,�V

0
(v|Q) be
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the cumulative baseline hazard function and the survival function of V , respectively, which under the PH
model are

SV
η,�V

0
(v|Q) = exp[−�V

0 (v) exp(ψT Q)], �V
0 (v) =

K∑
k=1

αkbk(v), (4.5)

where ψ is a coefficient vector relating the covariates Q to the survival function of V , and where for all
k = 1, ..., K , αk ≥ 0 are unknown parameters and bk(v) ∈ [0, 1] are integrated spline basis functions,
that are non-decreasing. The spline basis functions are calculated according to the user specification of m
interior knots and a polynomial degree for the basic functions. The resulting �V

0 (v) is guaranteed to be
monotone increasing. See Ramsay (1988) and Wang and others (2016) for further details and discussion
about I-splines in general and for the PH model, respectively.

4.2. Risk-set calibration

The OC estimator β̂OC may suffer from asymptotic bias. It is calculated as the maximizer of LG while
the partial likelihood is LF . The degree of divergence between LF and LG depends on how different
E
[
exp(βX (t))|Ft

]
and E

[
exp(βX (t))|Gt

]
are. Recall that Gt was defined by omitting {T ≥ t} from Ft . If

the probability that T ≥ t is close to one, as in the case of rare events, the bias should be attenuated. If
X has no effect on T , X (t) is independent of {T ≥ t} and E

[
exp(βX (t))|Ft

] = E
[
exp(βX (t))|Gt

]
. If X

has a s strong effect on T then the E
[
exp(βX (t))|Gt

]
will not approximate E

[
exp(βX (t))|Ft

]
very well.

In that scenario, the fact that T ≥ t carries information on the distribution of X (t). This implies that as
the absolute value of β0, the true value of β, increases, a larger bias may be expected.

Another source of bias stems from fitting the calibration model under the independent interval-censoring
assumption (Assumption 3). However, in our studies, the time to event, T , is informative about the
censoring in the calibration model. If, for example, aspirin reduces the risk of death, then the aspirin-
initiation time is more likely to be right censored (wiR = ∞) in non-aspirin-taking patients. This may
cause bias in the estimation of η when fitting the calibration model. As before, if the event is rare, the
censoring of V is most likely due to administrative reasons, and hence Assumption 3 approximately holds.
Furthermore, under the null (i.e., when β0 = 0), the censoring interval is independent of V . As before,
larger |β0| typically implies more substantial bias. We investigate this point in the simulation studies in
Section 6 and Appendix C of the supplementary material available at Biostatistics online. In studies with
non-terminal event, Assumption 3 may be more plausible, because data on X can be collected after the
main event has occurred.

In order to reduce potential bias, we propose a risk-set calibration (RSC) procedure, an adaption of
risk-set regression calibration previously developed in the context of error-prone covariates in survival
analysis (Xie and others, 2001; Ye and others, 2008; Liao and others, 2011). This method uses LF , and
estimate the distribution of V |Q, T ≥ t by refitting the calibration model for V |Q at each observed event
time, using only the members of the risk set at that time, so only participants with T ≥ t are used. Then,
at each risk set, we plug-in the estimated distribution of V |Q, T ≥ t in (4.3), leading to P̂(X (t)|Ft) which
is then substituted in (4.2) to obtain Ê

[
exp(βX (t))|Ft

]
for LF .

The RSC is expected to lead to less bias than OC, especially when |β0| is large (Xie and others, 2001).
However, some asymptotic bias in the RSC estimator may be expected, due to model misspecification.
Even if the PH model for the distribution of V |Q, T ≥ t holds at t = 0, it is not likely to hold for all t > 0.
The RSC estimator is also expected to have larger variance, due to increased number of parameters, and
the decreasing (in t) sample size for the RSC models. Therefore, it is advised to use this estimator when
the X -T association is strong, and the sample size is large.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy063#supplementary-data
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5. ASYMPTOTIC PROPERTIES

We focus on the PH model under the I-splines representation for �V
0 of Wang and others (2016). The

results can be straightforwardly extended to parametric models for SV . Let θ = (β, γ ), η = (ψ ,α) and let

S(m)(θ , η, t) = 1

n

n∑
i=1

[
Yi(t) exp(γ T Z i)EPη [exp(βXi(t))|Git]ai(θ , η, t)⊗m

]
,

where ai(θ , η, t) =
(

exp(β)Pη[Xi(t)=1|Git ]
1+(exp(β)−1)Pη[Xi(t)=1|Git ]

Z i

)
and where for any vector x, x⊗0 = 1, x⊗1 = x, and x⊗2 =

xxT . Recall that β̂OC is obtained by maximizing LG , or alternatively, by solving U G(θ , η̂) = 0 where

U G(θ ; η) = 1

n

n∑
i=1

τ∫
0

[
ai(θ , η, t) − S(1)(θ , η, t)

S(0)(θ , η, t)

]
dNi(t),

with τ being the study end-time and Ni(t) the counting process associated with Ti. Under certain regularity

assumptions , θ̂OC
P−→ θ 	. These regularity assumption and the proof are given in Appendix A of the

supplementary material available at Biostatistics online. Furthermore,
√

n(θ̂ − θ 	)
D−→ N (0, V) and V can

be estimated by a sandwich estimator

V̂ = [−∇θU
G
θ (θ̂OC , η̂)]−1

(
1

n

n∑
i=1

r̂i(θ̂OC , η̂)r̂T
i (θ̂OC , η̂)

)
[−∇θU

G
θ (θ̂OC , η̂)]−1 (5.1)

with r̂i being a sample version of ri given in Appendix A of the supplementary material available at
Biostatistics online.

For the RSC estimator, results of similar nature are given and proved inAppendixA of the supplementary

material available at Biostatistics online. Main modifications in the results are that θ̂RSC
P−→ θ 		, where θ 		

is possibly different from θ 	, and that η is replaced by η̃(t), a time-dependent parameter vector.
As explained in Section 4.2, The limiting values θ 	 and θ 		 are not necessarily the true values of θ .

Under the null (β = 0), they are. We investigate the direction and magnitude of the asymptotic bias when
β0 is non-zero in Section 6 and in Appendix C of the supplementary material available at Biostatistics
online.

6. SIMULATION STUDY

We carried out simulation studies to assess the finite-sample performance of our methods and to compare
them to the näive methods. We simulated 1000 datasets per scenario.

For the main model, the hazard function of T was λ0(t) exp(βX (t) + γ1Q1 + γ2Q2 + γ3Z3), with
Q1 ∼ Bernoulli(0.5), Q2 ∼ N (0, 0.52) and Z3 ∼ N (0, 1), all independent of each other. We took the
Gompertz baseline hazard function λ0(t) = 0.1 exp(0.25t), and γ1 = log(0.75), γ2 = log(2.5) and
γ3 = log(1.5). For β, we considered the values β = log(1), log(2), log(5), log(7). We simulated time-to-
event data with time-dependent covariate as described in Austin (2012). We took exponential censoring
(mean = 5) and additional censoring at time 5. The resulting censoring rates varied between 42% and
63%, depending on the value of β.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy063#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy063#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy063#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy063#supplementary-data


Calibration framework for survival analysis with an interval-censored covariate change-time e157

Table 1. Simulation study results under a calibration PH model. Methods compared are LVCF, PH cali-
bration model (PH-OC), and PH risk-set calibration models (PH-RSC). The table presents mean estimates
(Mean), empirical standard deviations (EMP.SE), mean estimated standard errors (ŜE), and empirical
coverage rate of 95% confidence intervals (CP95%) for β

β0[exp(β0)] M 	 Method Mean EMP.SE ŜE CP95%

0.000 2 LVCF −0.002 0.141 0.135 0.944
[1.00] PH-OC 0.003 0.183 0.178 0.950

PH-RSC 0.004 0.183 0.177 0.952
5 LVCF 0.003 0.122 0.124 0.955

PH-OC 0.007 0.138 0.146 0.956
PH-RSC 0.007 0.138 0.142 0.956

0.693 2 LVCF 0.462 0.119 0.118 0.498
[2.00] PH-OC 0.680 0.175 0.179 0.936

PH-RSC 0.684 0.177 0.175 0.938
5 LVCF 0.572 0.107 0.110 0.810

PH-OC 0.690 0.132 0.145 0.958
PH-RSC 0.689 0.132 0.137 0.957

1.609 2 LVCF 0.968 0.110 0.109 0.000
[5.00] PH-OC 1.472 0.179 0.210 0.869

PH-RSC 1.516 0.190 0.195 0.897
5 LVCF 1.212 0.096 0.099 0.013

PH-OC 1.577 0.139 0.166 0.951
PH-RSC 1.575 0.137 0.151 0.948

1.946 2 LVCF 1.130 0.112 0.110 0.000
[7.00] PH-OC 1.695 0.182 0.230 0.723

PH-RSC 1.773 0.198 0.205 0.816
5 LVCF 1.410 0.097 0.098 0.000

PH-OC 1.890 0.148 0.187 0.933
PH-RSC 1.890 0.147 0.158 0.929

For the calibration model, we considered a PH calibration model in our main simulation study and
used the setup of Wang and others (2016), with SV (v) = exp[(log(1 + v) + √

v) exp(η1Q1 + η2Q2)],
where η1 = log(2), η2 = log(0.5), and Q1 and Q2 are the same covariates as in the main model. For each
observation, M 	 questionnaire time points were simulated from the intervals on the equally spaced grid
of [0, 5]. For example, under M 	 = 2, the first questionnaire time point was simulated from U (0, 2.5),
and the second from U (2.5, 5). However, to mimic the motivating studies, we considered a terminal main
event, and kept only questionnaire time points before T̃i.

The PH calibration model fitting was done for each simulated dataset with m = 5 equally-spaced
interior knots and a quadratic order for the basic functions of the I-splines. Standard errors were estimated
by (5.1) and confidence intervals were calculated using the asymptotic normal distribution.

Table 1 summarizes the results for the LVCF, the PH calibration model (PH-OC) and PH risk-set
calibration models (PH-RSC), for M 	 = 2, 5. Under the null, all three methods were valid. As the
association between X and T got stronger, a more substantial bias was observed. The OC estimator
preformed generally well, with increased bias and lower coverage rates of the 95% confidence interval
for the combination of β0 > log(2) and M 	 = 2. The RSC estimator had lower bias in these scenarios.
These observed biases were much smaller (in absolute value) than the bias of the LVCF estimator.
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Table 2. The PH calibration model for aspirin-initiation time, using cubic order and m = 11 interior
knots. Covariates include pre-diagnosis aspirin status (Predx-asp, taker vs non-taker), pre-diagnosis BMI
(Predx-BMI), age-at-diagnosis (Age-at-dx), and gender (Female)

Est (ŜE) ĤR CI p-value

Predx-asp 1.135 (0.074) 3.113 [2.692, 3.599] <0.001
Predx-BMI 0.027 (0.006) 1.028 [1.016, 1.039] <0.001
Age-at-dx 0.010 (0.001) 1.010 [1.007, 1.013] <0.001
Female −0.181 (0.073) 0.834 [0.723, 0.963] 0.013

Table A.2 of supplementary material available at Biostatistics online presents more results from this
simulation scenario. It includes the results for M 	

i = 10, β = log(1/2), log(1/5), log(1/7), and the
MidI estimator. In terminal main event scenarios, MidI had a very large bias, even under the null. This
is because a finite interval is only observed for observations with left- or interval-censored exposure
times. Right-censored exposure times are dealt with differently (e.g., using LVCF, as we did) from left- or
interval-censored observations, and a right-censored exposure time is the result of the main event occurring
before a change in X was observed. This creates a negative dependency between the imputed X and T̃ ,
even under the null. In studies with non-terminal events, the MidI method is valid under the null, but not
when β0 �= 0. A small simulation study (not presented here) confirmed these claims.

To investigate the performance of our methods in other settings, we have considered additional simu-
lation studies without any covariates affecting the time-to-exposure (i.e., no Q1 and Q2 in the calibration
model) and compared Weibull and non-parametric calibration models when the true calibration model was
Weibull, and when it was piecewise exponential. The results, presented in the supplementary materials
available at Biostatistics online, generally agreed with the results we have descried in this section.

7. RESULTS OF ASPIRIN AND CRC SURVIVAL ANALYSES

Our first step was to construct a calibration model for the aspirin-initiation time. The 113 participants
without available questionnaire data were not used for fitting the calibration model, and the calibration
model was fitted using the remaining 1258 participants. The baseline potential covariates included gen-
der, age-at-diagnosis, pre-diagnosis body mass index (BMI), pre-diagnosis aspirin-taking status, and the
following tumor characteristics: disease stage (1–3 and missing), differentiation (poor vs well-moderate)
and location (proximal colon, distal colon, or rectum). We considered three PH calibration models: (I) a
model with all the aforementioned covariates, (II) a model with all non-tumor-related baseline covariates
and disease stage, (III) a model with all non-tumor-related baseline covariates. Model (III) minimized
the BIC (Schwarz, 1978). In addition, including strong determinants of the terminal event, such as the
disease stage, is undesired. An association between disease stage and aspirin-initiation could be the result
of violation of Assumption 3. That is, the association of the disease stage with aspirin-initiation could be
only due to an association between disease stage and death.

Model (III) is logically sound from a subject-matter perspective.Aspirin is a preventive care for patients
in high-risk for vascular diseases. Therefore, determinants of vascular diseases would also increase
the probability of aspirin-initiation. The covariates in Model (III), age, gender, and BMI, are all well-
established risk factors for vascular diseases. Therefore, we adopted Model (III) as our calibration model.
Table 2 presents the results of fitting this PH model to the data. We used the same PH calibration model
for all the analyses since there is no reason to believe that the tumor subtype, that was not even known at
the time of diagnosis, informs the aspirin-initiation time.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy063#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy063#supplementary-data
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(a) (b)

Fig. 2. (a) First participant; (b) First 9 participants. P̂(Xi(t) = 1|history) using LVCF, MidI, non-parametric (NP)
calibration, and the PH calibration model, for the first 9 participants. Panel (a) corresponds to the top left corner of
Panel (b).

As suggested by Wang and others (2016), we used BIC to choose the number of equally spaced interior
knots, which led to m = 11. We used the flexible cubic order for the spline basis functions. The number
of interior knots according to the AIC criterion (Akaike, 1974) was m = 25. The final results did not
substantially change when we took m = 25.

The simulation results presented in Section 6 and the Supplementary materials available at Biostatistics
online have shown that when there are covariates affecting the time-to-exposure, the PH-OC estimator is
preferable over the näive methods, namely LVCF and MidI. Figure 2 illustrates the difference between
the methods. On its right panel, we drew the probabilities P̂(Xi(t) = 1|history) vs t, for the first nine
participants in our data. Once Xi(t) = 1 was observed, all methods assign P̂(Xi(t) = 1|history) = 1 for
the rest of the relevant risk sets. The left panel of Figure 2 presents the same probabilities as the right
panel of the figure, but for the first participant only. This person did not report aspirin taking during the
10 years follow-up (T̃ = 10). From the data, this person was a 75 years old (at diagnosis time) male,
who was taking aspirin at baseline. From Table 2, we would expect the probability of this person to take
aspirin to be higher than in the general population. This aligns with this person having larger estimated
probabilities under the PH model comparing to the NP calibration model.

We included in the RSC models the covariates of Model (III). To avoid destabilization of the calibration
model fittings, we grouped the risk sets in intervals of size 0.5. That is, we refitted the calibration model
every 6 months.

Turning to the main model, we included baseline covariates that are known to be associated with
CRC-related death. These included age-at-diagnosis, pre-diagnosis BMI, family history of CRC, and
the following tumor characteristics: stage, differentiation, and location. Table 3 shows estimates and
corresponding standard errors, confidence intervals, and p-values for the association between aspirin-
initiation and survival in the three motivating studies and in the entire data. Compared to LVCF, stronger
protective associations were estimated by our methods in all three subtype-specific analyses. Compared to
the OC estimates, the RSC estimates were only slightly further from null. This could be partially explained
by the high censoring rate (>80%). Even though the sample sizes and case numbers were low to moderate,
there was evidence for strong protective effect of aspirin for PIK3CA subtype CRC. The point estimates

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy063#supplementary-data
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Table 3. Results for the main model in the three CRC studies and in all data. Results presented for the
aspirin effect. The main model also included family history of CRC, pre-diagnosis BMI, age-at-diagnosis,
gender, disease stage, differentiation, and location

Study Method Est (SE) ĤR CI 95%(for HR) p-value

All data LVCF −0.34 (0.15) 0.71 [0.53, 0.95] 0.020
(n = 1371) PH-OC −0.32 (0.18) 0.73 [0.51, 1.03] 0.072
(No. of events = 249) PH-RSC −0.32 (0.18) 0.73 [0.51, 1.03] 0.073

Low CD274† LVCF −0.64 (0.35) 0.53 [0.26, 1.05] 0.067
(n = 278) PH-OC −0.77 (0.40) 0.46 [0.21, 1.01] 0.054
(No. of events = 50) PH-RSC −0.79 (0.40) 0.45 [0.21, 1.00] 0.049

PIK3CA‡ LVCF −2.13 (0.64) 0.12 [0.03, 0.41] 0.001
(n = 171) PH-OC −2.22 (0.65) 0.11 [0.03, 0.39] 0.001
(No. of events = 28) PH-RSC −2.23 (0.66) 0.11 [0.03, 0.39] 0.001

PTGS2§ LVCF −0.30 (0.20) 0.74 [0.50, 1.10] 0.138
(n = 672) PH-OC −0.32 (0.24) 0.73 [0.45, 1.16] 0.185
(No. of events = 125) PH-RSC −0.32 (0.24) 0.72 [0.45, 1.16] 0.181

†Hamada and others (2017)
‡Liao and others (2012)
§Chan and others (2009)

for aspirin in low CD274 subtype imply negative association between aspirin and death, but, possibly due
to limited power, the null hypothesis was not rejected.

8. REANALYZING THE DATA IN Goggins and others (1999)

The motivating application of Goggins and others (1999) was an analysis of AIDS Clinical Trial Group
(ACTG) 181 (Finkelstein and others, 2002). The event of interest, active CMV disease, was non-terminal.
Their binary covariate was CMV shedding. Based on the joint likelihood for β and the distribution of
V (W in their notation), they proposed an EM algorithm where the E-step is carried out with respect to
the ordering of CMV shedding among the study participants. They further developed a Gibbs sampler to
improve computational efficiency.

Our methodology has several improvements over the method of Goggins and others (1999). First, we
exploit modern and fast procedures for estimating the distribution of V , by the NPMLE. Second, we can
(but do not have to) include parametric modeling assumptions on the distribution of V , if appropriate.
Third, since we fit the calibration and main models separately, we can include in our analysis participants
without data about the covariate of interest. Finally, and most importantly, we can include measured
covariates affecting the time-to-exposure V .

We analyzed the ACTG 181 data (Finkelstein and others, 2002) using our non-parametric calibration
method. The results are presented in Appendix D of the supplementary material available at Biostatistics
online. We observed a divergence between the OC and RSC estimates. The RSC estimates were further
away from the null, and similar to those obtained by Goggins and others (1999). The confidence intervals
were quite wide, as one may obtain for hazard ratios of strong effects when the sample size is moderate.

9. CONCLUSION

We have presented a novel calibration approach for studying the association between a time-dependent
binary exposure and survival time, when the data about the monotone time-dependent exposure is only

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy063#supplementary-data
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available intermittently. Our proposed approach allows for a wide range of calibration models. In practice,
an adequate model should be chosen by combination of subject-matter knowledge and the available data.
The R package ICcalib implementing our methods is available from CRAN. The package is described
in Appendix B of the supplementary material available at Biostatistics online. The simulations and CMV
data analysis can be reproduced using the Github repository ICcalibReproduce.

When the association between exposure and survival is strong, and a terminal event is non-rare,
our calibration framework may suffer from bias, that can be reduced, though not eliminated, by RSC.
Unlike regression calibration methods for error-prone covariates, additional data (e.g., reliability or val-
idation data) is not needed to fit the calibration model, as the covariate measurements are inherently
part of the available data. To address deviations from Assumption 3, future research may incorporate
methods for analyzing data subject to dependent interval-censoring (Sun, 2007, Section 10.5) into our
approach.

The problem described in this article and the proposed conceptual framework open the way for further
research. A main question of interest is whether β can be estimated consistently from the data, and what is
the nature of further assumptions and methods to ensure consistency. Our model is a type of a joint model
for time-to-event and longitudinal data (Rizopoulos, 2012). Potential alternative methods may model
the binary covariate directly (Faucett and others, 1998; Larsen, 2004; Rizopoulos and others, 2008).
Additionally, in scenarios the binary variable may change its value again, from 1 to 0, a potential approach
would model the transition times between the two stages, although the assumptions and data needed for
such an approach might be different from what we described in this article. Finally, future research may
consider the case of a non-terminal main event that is assessed at the same time as the covariate. Then,
both the main event time and the covariate change-time are interval-censored.

In conclusion, we presented a new conceptual framework accompanied by flexible and simple method-
ology to preform time-to-event analysis under the problem of infrequently updated binary covariate, a
common problem in medical and epidemiological research.

SUPPLEMENTARY MATERIAL
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