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Abstract

Retinotopic mapping, the mapping of visual input on the retina to cortical neurons, is an important 

topic in vision science. Typically, cortical neurons are related to visual input on the retina using 

functional magnetic resonance imaging (fMRI) of cortical responses to slowly moving visual 

stimuli on the retina. Although it is well known from neurophysiology studies that retinotopic 

mapping is locally diffeomorphic (i.e., smooth, differentiable, and invertible) within each local 

area, the retinotopic maps from fMRI are often not diffeomorphic, especially near the fovea, 

because of the low signal-noise ratio of fMRI. The aim of this study is to develop and solve a 

mathematical model that produces diffeomorphic retinotopic mapping from fMRI data. 

Specifically, we adopt a geometry concept, the Beltrami coefficient, as the tool to define 

diffeomorphism, and model the problem in an optimization framework. Efficient numerical 

methods are proposed to solve the model. Experimental results with both synthetic and real 

retinotopy data demonstrate that the proposed method is superior to conventional smoothing 

methods.

Index Terms—

Retinotopic Mapping; Diffeomorphic Smoothing; Beltrami Coefficient

1. INTRODUCTION

Almost half of the human cerebral cortex is dedicated to visual processing. Identifying and 

analyzing visual areas of the human brain is an extremely important topic in vision science 

and neurobiology [1]. Retinotopic mapping via functional magnetic resonance imaging 

(fMRI) provides a noninvasive way of defining the location and size of receptive filed of 

populations of visual neurons on the retina [2]. Typically, cortical neurons are related to 

visual input on the retina using fMRI of cortical responses to slowly moving visual stimuli 

on the retina. The visual stimulus is carefully designed so that the stimulus pattern is unique 

with respect to each retinal location [3, 4]. By recording and analyzing the fMRI signals at 

each cortical location, one can decode the best retinal visual input coordinate that generates 

such fMRI signals [2, 5]. Previous studies have revealed that much of the visual cortex is 

organized into visual regions (e.g., V1, V2) with a retinotopic map in each region [6]. It is 

well known from neurophysiology studies that retinotopic mapping is topology preserving 
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(i.e., local neighborhood relationships are maintained) and diffeomorphic (i.e., smooth, 

differentiable, and invertible) within each visual area [7, 8]. However, the decoded visual 

coordinates from fMRI retinotopic mapping studies are not guaranteed to be diffeomorphic 

or topological preserving. One reason is the signal-noise ratio and spatial resolution of fMRI 

signals are low. Another reason is that the decoding process largely deciphers the fMRI 

signal point by point without considering the local smoothness, although Gaussian spatial 

smoother has been applied to fMRI signal processing [9].

Some have conducted spatial smoothing on retinotopic maps to perform automatic 

delineation of visual regions [10, 7]. However, the smoothing is applied to the visual 

coordinates one dimension at a time, e.g., the x and y visual coordinates separately. There is 

no guarantee of diffeomorphism. Another promising approach is registering the noisy 

retinotopic maps to a diffeomorphic template and assigning the template retinotopic 

coordinates after registration [11]. It relies on diffeomorphic registration of two surfaces, 

which is not easy to achieve. Even if the registration issue can be solved, how to define the 

right template will remain a big problem.

Can we pursuit a spatial smoother specifically designed for retinotopic mapping which 

generates new diffeomorphic visual coordinate close to the raw coordinate? It is easy (e.g., 

use Euclidean distance) to measure coordinate changes during the smoothing process, the 

crucial question is how to define, quantify, and ensure the diffeomorphic condition.

In this work, we adopt the Beltrami coefficient to quantify the diffeomorphism as it also 

quantifies angle deviation. The reason we care angle deviation is that previous work shows 

retinotopic mappings preserve angles to a considerable extent [12, 13]. We further model the 

smoothing process as an optimization procedure with diffeomorphic constraints and 

elaborate the numerical steps to solve the optimization problem. We tested our algorithm on 

a synthetic dataset and a real dataset. The synthetic data is generated using an ideal 

retinotopic mapping model (ground truth) with added noise. The application of our proposed 

method to the synthetic data generates diffeomorphic results without any big deviations, 

while other methods violate the condition. The real dataset is the Human Connectome 

Project 7T retinotopy (HCP) data [14]. We also achieved diffeomorphic retinotopic mapping. 

In addition, we obtained Beltrami coefficients that quantify angle distortions for each 

subject. Our method guarantees diffeomorphic results and minimizes the angle distortion, 

two important conditions for a valid retinotopic mapping research.

2. PROBLEM RESTATEMENT

We restate the problem in a biological intuitive and mathematically rigorous way. Assume 

there is a light spot on point v = v(1), v(2) ∈ ℝ2 in the visual field, as shown in Fig. 1. After 

the visual system’s perception, propagation, and dispensation, the light spot will eventually 

active a population of neurons. The main purpose of retinotopic mapping is to find the center 

v and the extent σ ∈ ℝ+ of its receptive field on the retina, for each point P = (X, Y , Z) ∈ ℝ3

on visual cortex.
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fMRI provides a noninvasive way to determine v and σ for P, based on the following 

procedure. (1) Design a stimulus time sequence s (t; v), such that the stimulus sequence is 

unique for every visual coordinate, i.e., s (t; v1) ≠ s (t; v2), ∀ v1 ≠ v2; (2) Present the 

stimulus sequence to an individual and record the fMRI signals from the visual cortex; (3) 

For each fMRI time sequence on a cortical location, y (t; P), determine the corresponding 

receptive field, including its center location v and its size σ on the retina, that most-likely 

generated the fMRI signals. Specifically, given the neurons’ spatial response r (v′; v, σ) (a 

predefined model depicts neural response around v) and the hemodynamic function h (t) (a 

model of the time course of neural activation to a stimulus), the predicted fMRI signal can 

be written as:

y(v, σ) = β ∫ r v′; v, σ s t, v′ dv′ * ℎ(t) (1)

where, β is a coefficient that converts the units of response to the unit of fMRI activation. 

Then the parameters v and σ are given by minimizing the prediction error,

(v, σ) = arg min
(v, σ)

|y(v, σ) − y(P ) |2 . (2)

The retinotopic mapping of the entire visual cortex is obtained when (v, σ) is solved for 

every point on the cortical surface. Previous work has shown that nearby visual cortex will 

share nearby visual coordinates, i.e., topology preserving [15, 11, 16]. The notion retinotopic 

mapping preserves topology means that, if f is the retinotopic mapping, f : P ↦ v, then a 

neighboring point P′ of P, will have visual coordinate v′ close to v. That is, f is 

diffeomorphic in the domain of cortical surface.

Unfortunately, due to the low signal-noise ratio of fMRI, f is not guaranteed to be 

diffeomorphic. We propose a diffeomorphic smoothing on f, such that the new mapping 

f :P v is diffeomorphic and v is close to v. We adopt the Beltrami coefficient [17] to 

quantify the diffeomorphism,

μf = (E − G + 2iF )
(E + G + 2 EG − F2)

, (3)

where g(v) = E(v) F (v)
F (v) G(v)

 is the metric tensor. If ∣μf∣< 1 then f is diffeomorphic. Furthermore, 

the bigger ∣μf∣ is, the larger angle deviation is. Therefore, the diffeomorphism defined in this 

way also provides a measure of angle deviation. We aim to find v = f(P ), such that,

v = arg min
v
∫ |v − v |2ds,  s.t |μf| < 1 (4)
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3. MODEL AND METHOD

3.1. Model in Discrete

In practice, cortical surface S is usually not an analytical function but consists of a bunch of 

vertices VS and triangular faces FS, i.e. S = (FS, VS). Similarly, visual space can also be 

discretized. Instead of taking another discretization, it is beneficial to take the same 

discretization as S. Then, the remaining problem is to find a visual coordinate vi for every 

vertex Pi ∈ VS.

It is easier to discuss and solve problems on 2D instead of the original 3D cortical surface. 

Since diffeomorphism is transitive (If f and c are both diffeomorphic function, then the 

composite function f ○ c is also diffeomorphic), we can compute a conformal mapping 

(diffeomorphic and angle preserving) from the occipital region of the cortex to a parametric 

disk [18] to simplify the problem to 2D. As shown in Fig. 2. the gray colored region is 

mapped to the unit disk by c : P u, u = u(1), u2 ∈ ℝ2. Although conformal mapping is 

angle preserving, it introduces distance distortion. To reduce the distortion, we cut a 

geodesic disk patch: pick a point on the cortical surface that corresponds to the fovea as the 

center point, then we calculate the geodesic distances from all cortical position to the center 

point [19] and only keep the portion of cortical surface whose geodesic distance to the center 

point is within a certain value. If we can solve fc = f ○ c−1 : u ∈ ℝ2 v ∈ ℝ2 with 

constraint |μfc| < 1, then we can obtain diffeomorphic retinotopic mapping by f = fc ○ c. 

Accordingly, we simplify Eq. (4) to,

fc = argmin
fc

∫ fc − fc
2du,  s.t |μf| < 1 (5)

To solve Eq. (5) in discrete, we form the energy as,

E = ∑
i

Fi − F i
2 + λ1|μi|2 + λ2 ∇F i

2
(6)

where Fi = fc (ui) is the raw result from Eq. (2), F i is to be solved, μi = μfc ui  is the Beltrami 

coefficient at ui, λ1 and λ2 are constants. Compared to Eq. (5), gradient of F , ∇F i, is 

introduced to increase smoothness, and ∣μi∣2 is used to reduce non-diffeomorphism as well as 

angle distortion.

3.2. Numerical Method

Unfortunately, it is hard to minimize the energy in Eq. (6) directly, as it mixes the Beltrami 

coefficient and the mapping function together. The solution is to alternatively solv with 

respect to function and Beltrami coefficient in separate steps. Unavoidably, we need tools to 

convert the mapping function and Beltrami coefficient back and forth.

3.2.1. Beltrami Coefficient—Since we have a parametric coordinate u for the cortical 

surface S, the definition, Eq. (3), can be simplified to,
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μf = ∂f
∂u(1) + i ∂f

∂u(2) / ∂f
∂u(1) − i ∂f

∂u(2) . (7)

Given the explicit form of function f(u), we can compute μf according to Eq. (7). In the 

discrete case, fc is interpreted linearly on each triangle. As shown in Fig. 3(a), for u within 

the triangle Δuiuj uk, fc (u) = αivi + αjvj + αkvk, where vi = fc (ui), vj = fc (uj), and vk = fc 

(uk). The coefficients αi, αj, and αk are called barycentric coefficients. Specifically, αi 

(similarly for αj and αk) is the area portion of triangle Δuujuk to Δuiujuk, i.e. αi = Area 
(Δuujuk) /Area (Δuiujuk). Now we can compute the Beltrami coefficient μfc according to Eq. 

(7). It is easy to see that μfc is a constant for each triangle.

3.2.2. Linear Beltrami Solver (LBS)—We briefly introduce the LBS to recovery 

function f = (f(1), f(2)) for the given Beltrami coefficient μ = ρ + iτ .It was first introduced in 

[20, 21]. According to the definition in Eq. (7), we have,

∂f
∂u(1) + i ∂f

∂u(2) / ∂f
∂u(1) − i ∂f

∂u(2) = ρ + iτ . (8)

After re-organizing Eq. (8) and eliminating f(2), we derive,

∇ ⋅ A∇f(1) = 0, (9)

where A =
α1 α2
α2 α3

, α1 = (ρ − 1)2 + τ2
1 − ρ2 − τ2 , α2 = −2τ

1 − ρ2 − τ2  and α3 = 1 + 2ρ + ρ2 + τ2
1 − ρ2 − τ2 , ∇f(1) = (∂f(1)/

∂u(1) + ∂f(1)/∂u(2)), and the divergence ∇ on vector G = A∇f(1) = (G(1), G(2)) is defined as ∇ · 
G = ∂G(1)/∂u(1) + ∂G(2)/∂u(2). By solving the partial equation Eq. (9) with certain boundary 

conditions, we can solve f(1). Similarly, f(2) can be solved.

In the discrete case, the function is linearly interpreted on each triangle. The gradient of f, ∇f 
(u), can be written out. For the divergence on vector G, ∇ · G, it is approximated on the dual 

cell of each vertex (a cell consisted of circumcenters of neighboring triangles). As shown in 

Fig. 3(b), consider the vertex ui with its neighbors N(ui), the divergence on vector G is 

approximated by,

∇ ⋅ G = 1
D ∫

∂D
Gds = 1

D ∑
Tj ∈ N ui

GTj ⋅ uk − uj (10)

Applying the approximations, we have a linear equation for each fi together with its 

neighboring vertices, according to Eq. (9). Finally, we can solve f efficiently by collecting all 

the equations and write them in a matrix form.

3.2.3. Laplacian Smoothing and Chopping—Now we can convert between the 

function and Beltrami coefficient. Our purpose is to make a smooth result. We apply the 

smooth operation on the function and Beltrami coefficient by the Laplacian smoothing. For 

instance, to get a smooth Beltrami coefficient v, we solve the following,
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v = argmin
v ∫ | ∇v |2 + λ |v − μ |2ds (11)

where λ is a constant. Eq. (11) can be efficiently solved by its Euler-Lagrange equation (−∇ 
· ∇ + 2λI) ν = 2λμ.

Although we penalize the non-diffeomorphism in Eq. (6), if there is a consistent point whose 

∣μ∣ > 1, it breaks the diffeomorphic result. To avoid this situation, we shrink ν′ = ν/ ∣ν∣, if 
∣ν∣ > 1. This process is called Chop.

3.2.4. Algorithm—The overall smoothing process is summarized in Alg. 1.

4. RESULTS

4.1. Synthetic Data

We first evaluate the performance of the algorithm on synthetic data. The ground truth 

mapping is given by,

u(1) + iu(2) = log v(1) + iv(2) (12)

We choose log function as it is a good approximation of the retinotopic mapping from visual 

space to the flattened cortical surface, introduced by Schwartz [12]. As shown in Fig. 4(a), 

the visual domain is mapped to the parametric space Fig. 4(b). We also show the mapping 

with a small amount of noise in Fig. 4(c) and a large amount of noise in Fig. 4(d). We apply 

several smoothing methods on the synthetic mapping data in both small and big noise cases 

including Average Smoothing, Median Smoothing, and Laplacian Smoothing [22]. The 

result for the big noisy case is shown in Fig. 5. All of them are spatial smoothing procedures. 

Average Smoothing takes the average around each neighborhood. Median Smoothing takes 

the median value of each neighborhood. Laplacian smoothing is the so-called “Perfect 

Smoothing”. Except for the proposed method, all smoothing procedures process the 

coordinates u(1) and u(2) separately. We list the performance metric of all the methods in 

Table 1.
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We found that (1) all the smoothing methods helped reduce the noise, and reduce flipped 

triangles (i.e. triangle violates the topology preserving condition); (2) with a small amount of 

added noise, the topology violation problem is not severe, average smoothing can also 

achieve almost diffeomorphic results; (3) however, with a large amount of added noise, only 

our method can achieve diffeomorphic result.

4.2. HCP Data

With 7-Tesla MRI systems, the signal-to-noise ratio of retinotopic mapping has been 

dramatically improved. Still, the mapping is noisy and non-diffeomorphic. We apply our 

smoother on data from a 7T MRI system. The details of the dataset can be found in [14]. 

Because we only interested in smoothing, we took publicly available data of the decoded 

retinotopic coordinate for each cortical vertex of five subjects [23], and evaluate the 

performance of our method. The total number of flipped triangles for raw data is 1313, for 

the average, median, and Laplacian methods are 1289, 1312, and 1337, respectively. 

Proposed method has no flip triangles.

For a more persuasive and intuitive comparison, Fig. 6 shows the retinotopic mapping of the 

left hemisphere of the a subject, and the smoothed results of different methods. The original 

mapping is not diffeomorphic. Although all smoothing methods improved the smoothness, 

only our method can generate diffeomorphic result, especially near the fovea.

5. CONCLUSION AND FUTURE WORK

We adopted Beltrami coefficient to quantify diffeomorphism of retinotopic mapping and 

formed a mathematical model to generate diffeomorphic maps. The proposed smoother 

guarantees diffeomorphism and minimizes angle distortion. In future, we will (1) apply the 

method to the data from all subjects of the HCP cohort, and provide reliable angle distortion 

measures; (2) use the Beltrami coefficient to improve coregistrations of noisy retinotopic 

maps.
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Fig. 1. 
Illustration of visual system to the visual cortex.
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Fig. 2. 
Illustration of several spaces and relations between them.
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Fig. 3. 
(a) Illustration of approximate the mapping in discrete. (b) The divergence approximation on 

the vertex ring.
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Fig. 4. 
Function domain, its mapping result and mapping results with noise: (a) mapping domain on 

the visual field; (b) mapping result without noise; (c) mapping result with weak noise under 

Peak Signal-Noise Ratio (PSNR) is 20 dB; (d) mapping result with strong noise (PSNR = 10 

dB).
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Fig. 5. 
Smoothing results for map with big noise: (a) average smoothing; (b) median smoothing; (c) 

Laplacian smoothing; (d) the proposed smoothing.
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Fig. 6. 
A subject’s left retinotopic mapping: (a) raw retinotopic mapping; (b)-(e) smoothing results 

of average, median, Laplacian, and proposed smoothing methods; (f) the raw mapping on 

cortical surface; (g)-(j) smoothing results on inflated surface of each method, in the same 

order of (b)-(e); (k) The left inflated cortex.
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Table 1.

Comparing different smoothing methods by four metrics, mean value deviation of function, the max of the 

function deviation, and the number of overlapped triangles (non-diffeomorphic triangles). Value deviation 

means error to the ground truth. For cells with two values like “A/B”, “A” is the result for the map with a 

small added noise (PSNR = 20 dB); while “B” is the result for the map with a big added noise (PSNR = 10 

dB).

Method
Value Deviation

# Flipped Triangles
Mean Max

Before Smoothing 0.25/0.40 0.64/1.05 19/56

Average Smoothing 0.18/0.24 0.62/0.77 3/8

Median Smoothing 0.22/0.28 0.69/0.83 2/24

Laplacian Smoothing 0.23/0.36 0.66/0.92 11/43

Proposed 0.19/0.22 0.65/0.75 0/0
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