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Abstract
The use of intensive sampling methods, such as ecological momentary assessment (EMA), is increasingly prominent in
medical research. However, inferences from such data are often limited to the subject-specific mean of the outcome and
between-subject variance (i.e., random intercept), despite the capability to examine within-subject variance (i.e., random
scale) and associations between covariates and subject-specific mean (i.e., random slope). MixWILD (Mixed model analysis
With Intensive Longitudinal Data) is statistical software that tests the effects of subject-level parameters (variance and
slope) of time-varying variables, specifically in the context of studies using intensive sampling methods, such as ecological
momentary assessment. MixWILD combines estimation of a stage 1 mixed-effects location-scale (MELS) model, including
estimation of the subject-specific random effects, with a subsequent stage 2 linear or binary/ordinal logistic regression in
which values sampled from each subject’s random effect distributions can be used as regressors (and then the results are
aggregated across replications). Computations within MixWILD were written in FORTRAN and use maximum likelihood
estimation, utilizing both the expectation-maximization (EM) algorithm and a Newton–Raphson solution. The mean and
variance of each individual’s random effects used in the sampling are estimated using empirical Bayes equations. This
manuscript details the underlying procedures and provides examples illustrating standalone usage and features of MixWILD
and its GUI. MixWILD is generalizable to a variety of data collection strategies (i.e., EMA, sensors) as a robust and
reproducible method to test predictors of variability in level 1 outcomes and the associations between subject-level
parameters (variances and slopes) and level 2 outcomes.

Keywords Intensive longitudinal data · Ecological momentary assessment · Multilevel · Mixed models ·
Heteroscedasticity · Variance modeling

Introduction

Mixed-effects regression models (aka hierarchical linear
models or multilevel models) have become a popular
method for analysis of longitudinal and clustered (Gold-
stein, 2011; Raudenbush & Bryk, 2002) data. These models
include both fixed effects (standard regression coefficients)
and random effects (terms representing between-subject
heterogeneity). The random location effects, defined as the
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degree to which a subject deviates from the population
mean, are used to account for the non-independence of
observations within subjects (i.e., clusters)—observations
from the same subject will be more similar than observa-
tions from different subjects. Although the language and
examples in this manuscript apply to longitudinal data, the
same models can be used for observations within clusters
such as families, classrooms, and clinics.

In this setting, we are particularly interested in examining
if the characteristics of time-varying data shown by subjects
(both overall average as well as degree of consistency)
during a longitudinal study can predict other, potentially
future, subject-level characteristics. For example, does the
average level of a subject’s positive mood and the amount
of fluctuations around that level predict whether a subject is
obese, or how much time a subject is sedentary. We might
theorize that subjects showing a lot of fluctuations in mood
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would be less likely to be consistently exercising, and more
likely to be obese.

Typically, the intra-individual variability (i.e., error
variance), or the within-subjects (WS) variance, and the
variance of the random effects, or the between-subjects (BS)
variance, are treated as being homogeneous across subject
groups or levels of covariates. However, this may not be the
case, and assumptions of homogeneity of variance can be
relaxed by modeling differences in variances, both between
and within subjects. The study of intra-individual variability
has received increased attention (Fleeson, 2004; Hertzog
& Nesselroade, 2003; Martin & Hofer, 2004; Nesselroade,
2004); these articles describe many of the conceptual issues
and some traditional statistical approaches for examining
such variation.

Modern data collection procedures (i.e., ecological
momentary assessments (EMAs) (Bolger et al., 2003; Stone
et al., 1999; Stone & Shiffman, 1994; Dimotakis et al.,
2013; Feldman & Barrett, 2001; Larson & Csikszentmi-
halyi, 1983; Scollon et al., 2003)) allow for collection
of much richer datasets (sometimes referred to as inten-
sive longitudinal data (ILD) (Walls & Schafer, 2006))
than standard longitudinal studies. As a result of repeated
measurements per day over the course of a study, EMA
procedures allow for more flexibility in modeling. In par-
ticular, the mixed-effects location-scale (MELS) model
(Hedeker et al., 2008) extends the usual mixed-effects
regression model by allowing modeling of both the BS
and WS variances in terms of covariates, in addition to
the usual modeling of the mean in terms of covariates.
Specifically, log-linear sub-models for the BS and WS vari-
ances are specified, allowing covariates to influence both
types of variance. Additionally, a random subject (scale)
effect is added to the WS variance specification, allowing
the WS variance to be subject-specific, as well as influ-
enced by covariates. Thus, MELS models include both
random subject location and scale effects, which are esti-
mated using empirical Bayes methods (Bock, 1989). These
subject-specific estimates indicate a baseline mean level
(random intercept), the effect of a covariate on the mean
(random slope), and the degree of within-subject variabil-
ity (random scale). In some cases, it may be of interest to
examine whether these subject-estimated summaries of the
EMA data are related to other subject-level outcomes. In
MixWILD, the ability to create a variety of stage 1 MELS
models is combined with a stage 2 linear or binary/ordinal
(logistic) regression using the subject random effects esti-
mates from the stage 1 MELS model to predict subject-level
outcomes.

This manuscript describes the use of the software
program MixWILD, which allows estimation of a stage
1 MELS model including random subject location and
scale effects. These random subject effects can be used

as predictors of a subject-level outcome that could be
continuous (linear regression) or binary/ordinal (logistic
regression) in stage 2 of the joint model. Additional subject-
level predictors/covariates can be included, and these can
also interact with the stage 1 random effects in predicting
the stage 2 subject-level outcome.

Since the random subject effects are estimates, we used
the plausible value methodology to repeatedly impute the
random effects in the stage 2 analysis (Mislevy, 1991).
This approach accounts for the uncertainty in the random
effect estimates. The stage 2 analyses are repeated for each
set of imputed random effect estimates, and then averaged
(using Rubin’s rules for multiple imputation) to yield overall
regression estimates. Thus, the full model is estimated in
three separate steps:

1. A stage 1 MELS model is estimated (“Stage 1:
Mixed-effects location scale model”), and subject-
specific random effect estimates and variances are
produced.

2. Datasets of imputed subject-specific random effects are
created.

3. The stage 2 linear or binary/ordinal regression model is
estimated (“Stage 2: linear or logistic regression using
stage 1 estimates”) for each of the imputed datasets, and
averaged estimates are obtained.

Currently, there is only limited statistical software avail-
able for conducting two-stage modeling of the aggregated
effects of intensively time-varying outcomes (stage 1) on
higher-level outcomes (stage 2); therefore, MixWILD will
enhance the toolkit for data analysts faced with under-
standing ILD data. One can estimate such models using
SAS PROC NLMIXED and/or Bayesian software programs
(e.g., WinBUGS, JAGS, or Stan). However, SAS PROC
NLMIXED requires familiarity with syntax and yet cannot
test random intercepts and slopes as predictors, mediators,
and moderators of outcome variables. On the other hand,
Bayesian programs require advanced programming skills
and are not specifically designed for applied researchers.
Also, our two-stage modeling approach differs in important
ways from other approaches of modeling intra-individual
variability. For example, others have proposed calculat-
ing summary statistics of variability for each person, such
as subject-level standard deviations (SD), mean square of
successive differences (MSSD), and probability of acute
change (PAC; (Solhan et al., 2009)). By computing such
summary statistics separately for each subject, these strate-
gies ignore the fact that subjects can vary quite dramatically
in terms of the number of observations that they contribute
to the analyses. In other words, these approaches treat each
summary statistic as if it was equally precise in its estima-
tion across subjects, which is not the case. Our approach
recognizes that subjects can vary in terms of their numbers
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of observations. Furthermore, previous approaches often
then use these summary statistics (SD, MSSD, PAC) in sub-
sequent analyses as fixed quantities, which ignore the fact
that they are only estimates with varying degrees of preci-
sion. As a result, by treating these as fixed and ignoring this
source of variation, the standard errors are too small, lead-
ing to more false positive results. Instead, in our stage 2
modeling, we use the plausible values re-sampling approach
(Mislevy, 1991) to take into account the variability that is
inherent in these estimates. Finally, in our stage 1 model, we
can characterize a person’s data in terms of means, slopes,
and variances, but additionally control for other covariates
in the model. Thus, our subject-level variance estimates can
adjust for mean levels and trends across time, for example,
which is not possible in previously used summary statistic
calculations.

The organization of the manuscript is as follows: “Stage
1: Mixed-effects location scale model” describes the stage 1
MELS model, Section “Stage 2: linear or logistic regression
using stage 1 estimates” describes the stage 2 regression
models, Section “MixWILD Software Overview” provides
screenshots and detailed instructions on using MixWILD,
as well as explanation of the output. A simulated intensive
longitudinal dataset incorporating EMA, in which subjects
were measured up to eight times each day during a 7-
day measurement period, is used to demonstrate applied
examples in “Applied examples”. Section “Conclusion and
future work” discusses and summarizes the program.

Stage 1: Mixed-effects location scale model

MixWILD allows a wide variety of models in stage 1
depending on the options chosen. Beginning with a random
intercept model (2.0.1), we consider that model as well as
two possible extensions of that model.

For measurement y of subject i (i = 1, 2, . . . , N
subjects) on occasion j (j = 1, 2, . . . , ni occasions):

yij = x�
ijβ + υi + εij , εij ∼ N(0, σ 2

ε ), υi ∼ N(0, σ 2
υ ),

(2.0.1)

In Eq. 2.0.1 and subsequent equations, xij is the vector
of regressors for the mean (typically including a “1” for the
intercept as the first element) and β is the corresponding
vector of regression coefficients. The regressors can either
be at the subject level, vary across occasions, or be
interactions of subject-level and occasion-level variables.

A traditional multilevel model may be used if covariates
are not expected to predict WS variance. For instance, a
researcher may be interested in the effects of an individual’s
perception of safety on his or her positive affect. Thus, the
random intercept represents the between-subject variability

of affect (i.e., deviation from the overall mean), and
the researcher may be interested in whether perceived
safety is associated with subject-specific means (i.e., does
perceived safety predict positive affect?) and the between-
subject variance (i.e., does perceived safety predict how an
individual’s mean positive affect differs from the overall
mean?).

Since the modeling of individual-level variation is of
particular interest, we can further extend the models to
allow covariates to influence the magnitude of the error
variance, and even further allow each subject to have their
own amount of WS variance, above and beyond the effects
of covariates.

In the following sections, we give more explanation
about those two extended models: a mixed-effects location
scale (MELS) model with the option to model BS variance
in terms of covariates, and a mixed-effects multiple location
scale (MEMLS) model.

When choosing a model, if subjects are only expected
to vary in their intercept and a researcher is interested is
in modeling the effect of various covariates on the WS and
BS variance, then the MELS model should be used (see
Fig. 1 for a visual example). Extending the prior example
examining positive affect and perceived safety, the random
scale (i.e., WS variance) in the model would be the extent
to which a subject’s positive affect deviates from their
own mean positive affect. Thus, a researcher would be
additionally interested in whether perceived safety predicts
the amount an individual deviates from his or her typical
level of positive affect.

An extension of this model in Eq. 2.0.1 is to allow
modeling of the variance of the random intercept with
covariates, rather than requiring it to be constant across

Fig. 1 A visual representation of the mixed-effects location scale
model
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all subjects (2.0.2). As examples, we would expect more
subject heterogeneity in a disease population than in a
healthy one, or we might expect to see more subject
heterogeneity as subjects grew older. This model will
be extended to allow modeling of the WS variance and
expanded on in “MELS model”.

yij = x�
ijβ + υi + εij , εij ∼ N(0, σ 2

ε ),

υi ∼ N(0, σ 2
υi

), σ 2
υi

= exp(u�
i α), (2.0.2)

In Eq. 2.0.2, uij is a vector of regressors (typically
including a “1” for the intercept as the first element) and α

is the corresponding vector of coefficients. The regressors
can either be at the subject level, vary across occasions, or
be interactions of subject-level and occasion-level variables.

If instead subjects are expected to vary not just in
their intercept, but also in their responses to a time-
varying covariate, having a slope random effect will be
advantageous and the MEMLS model should be used (see
Fig. 2 for a visual example). Further extending the prior
example, the relationship between perceived safety and
positive affect could be identified as the random slope.
Hence, a researcher would also be interested in whether
differences in positive affect occur as a result of change in
perceived safety.

A different extension of Eq. 2.0.1 is to allow a random
slope or other random effect in the mean modeling (2.0.3).
An example would be if we wanted to allow subjects to not
only have their own mean, but also differing trends over

Fig. 2 A visual representation of the mixed-effects location scale
model

time. This model will be extended to allow modeling of the
WS variance and expanded on in “Mixed-effects multiple
location scale (MEMLS) model”.

yij = x�
ijβ+z�

ijυi+εij , εij ∼ N(0, σ 2), υi ∼ N(0, �υ),

(2.0.3)

In Eq. 2.0.3, zij is a vector of occasion-level regressors
(typically including a “1” for the intercept as the first
element) and υi is the vector of random location effects
for subject i. These random location subject effects allow
subject-specific differentiation in the response to occasion-
level regressors.

For all three models, samples of the each subject’s
random effect values can then be used as predictors in a
stage 2 model, if desired.

MELSmodel

The mixed-effects location scale model and the correspond-
ing program have been well-explained in Hedeker et al.
(2008). Visually, Fig. 1 shows a simple example of the
model. The average across all subjects is depicted by the
solid line, and the lines of two subjects are shown as dotted
and dashed lines. Here, the average solid line has the same
slope as each subject. In general, there will be a line for each
subject in the dataset, but only two are shown here for sim-
plicity. In this random intercept model, each subject’s line is
parallel to the averaged line based on their covariate values.
The subject shown with a dashed line has a greater random
intercept (location), while the dotted line has a lower ran-
dom intercept (location). A subject’s random location effect
(i.e., the amount that a subject deviates from the mean) is
designated by υi . In the figure, this is represented by the
distance between lines–positive for the dashed line and neg-
ative for the dotted line. The amount of spread across the
lines indicates the BS variance–if the lines are close together
then subjects are more similar (smaller variance) and vice
versa. How much variation the individual points have rel-
ative to each subject’s line indicates the WS variance. In
the figure, the subject with open circles has a low WS vari-
ance, while the subject with filled circles has a larger WS
variance. The WS variance is modeled in terms of covari-
ates as well as a random subject (scale) effect ωi . Thus,
the consistency/erraticism of a subject may be explained by
covariates, as well as a unique individual contribution.

In terms of the statistical model, the measurement y of
subject i (i = 1, 2, . . . , N subjects) on occasion j (j =
1, 2, . . . , ni occasions) is modeled as follows:

yij = x�
ijβ + υij + εij , εij ∼ N(0, σ 2

εij
), υij ∼ N(0, σ 2

υij
),

(2.1.1)
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where

σ 2
υij

= exp(u�
ijα), (2.1.2)

and

σ 2
εij

= exp(w�
ijτ + τlυi + τqυ2

i + ωi), ωi ∼ N(0, σ 2
ω).

(2.1.3)

In Eq. 2.1.3, wij is a vector of regressors for the WS
variance (typically including a “1” for the intercept as
the first element) and τ is the corresponding vector of
regression coefficients. These could be the same or different
variables as in xij , and can be at the subject level, vary
across occasions, or be interactions of subject-level and
occasion-level variables.

Also in Eq. 2.1.3, the random scale effect (ωi) allows the
WS variance to vary across subjects beyond the contribution
of covariates. Similar to the random location effect in
Eq. 2.0.1, the covariates entered in a model may not account
for all of the reasons that subjects differ from each other.

The variances are subscripted by i and j to indicate
that their values change depending on the values of the
covariates uij and wij (and their coefficients). The number
of parameters associated with these variances does not vary
with i or j . The exponential function is used to ensure
that the resulting variances are strictly positive. Note that
although we have used different letters to represent the
covariates in the different models, there is no restriction and
the same covariates could be used.

The model also allows the random intercept (the random
location effect υi) to influence theWS variance. A quadratic
relationship could be useful for rating scale data with ceiling
and/or floor effects, where subjects that have mean levels
(i.e., random intercept) at either the maximum or minimum
value of the rating scale also have near-zero variance (i.e.,
scale). For example, if the rating scale goes from 1 to
10, then any subject with a mean level near either 1 or
10 would almost certainly have a small variance, giving
rise to the potential for a quadratic relationship between
the mean and variance. In this regard, MixWILD allows
for three possibilities to describe the relationship between
random intercept and random scale: (1) no association (τl =
τq = 0); (2) linear association only (τl �= 0, τq = 0);
and (3) linear and quadratic association (τl �= 0, τq �=
0). For a given program run, the user can select one of
these three possibilities using the NCOV option, described in
“MixWILD Software Overview”.

As described in Hedeker and Nordgren (2013), the
parameters of this model (β, α, τ , τl , τq , and σ 2

ω) are
estimated using maximum likelihood and the Newton–
Raphson algorithm. Once the model has converged to

a solution, empirical Bayes methods (Bock, 1989) are
used to obtain subject-specific estimates for υi (random
location intercept) and ωi (random scale), along with the
variance-covariance matrix associated with these estimates,
which are saved for use in stage 2. These correspond
to estimates of the mean and variance-covariance of the
posterior distribution of the random effects.

Mixed-effects multiple location scale (MEMLS)
model

Extending the model presented in the previous section,
a researcher may be interested in understanding how
the slopes of the lines vary by subject for time-varying
covariates. Such random slopes can be used to generalize
the above model, allowing for a vector of random location
effects instead of only a random intercept.

Visually, Fig. 2 shows a simple example. Unlike Fig. 1,
the rate of change can vary by subject. The average across
all subjects is depicted with the solid gray line, and the
location averages (mean plus slope) of two subjects are
presented as dashed lines. Hypothetical data points for these
two subjects are also included in the plot. In a given dataset,
there will be as many dashed lines as there are subjects, but
for simplicity only two subjects are plotted.

Relative to the overall (solid) line, the position of each
dashed or dotted line when the covariate is equal to zero
is indicative of a person’s random intercept location effect
υ1i , which indicates how a subject deviates from the mean
response. Relative to the solid line, the difference in slope of
each dashed or dotted line shows the effect of that subject’s
random slope effect υ2i .

In this example, the subject shown with a dotted line has a
lower value (negative υ1i) when the covariate value is small,
but increases at a faster rate (larger υ2i). How close together
the lines are, and how similar the slopes are is indicative
of how much subject heterogeneity is observed. Finally, the
amount of variation of a subject’s data points (i.e., relative
to the dashed or dotted lines) is indicative of that subject’s
WS variance. In the example, the subject with open circles
is much more tightly clustered (smaller ωi) than the subject
with closed circles.

The measurement y of subject i (i = 1, 2, . . . , N
subjects) on occasion j (j = 1, 2, . . . , ni occasions) can be
modeled as follows:

yij = x�
ijβ+z�

ijυi+εij , εij ∼ N(0, σ 2
εij

), υi ∼ N (0, �υ) ,

(2.2.1)

where

σ 2
εij

= exp(w�
ijτ + τυυi + ωi), ωi ∼ N(0, σ 2

ω). (2.2.2)
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As shown above, the random effects and errors are
assumed to follow normal distributions, and errors are
assumed to be independent of the random effects.

In Eq. 2.2.2, wij is a vector of regressors for the WS
variance (typically including a “1” for the intercept as
the first element) and τ is the corresponding vector of
regression coefficients. These could be the same or different
variables as in xij , and can be at the subject level, vary
across occasions, or be interactions of subject-level and
occasion-level variables.

Also in Eq. 2.2.2, the random scale effect (ωi) allows the
WS variance to vary across subjects beyond the contribution
of covariates. Similar to the random location effect in
Eq. 2.0.1, the covariates entered in a model may not account
for all of the reasons that subjects differ from each other.

As in Hedeker and Nordgren (2013), an association
between the location and scale random effects can be
induced by including the location random effects as
predictors in the within-subjects variance model, using
τυ , which are terms from the Cholesky decomposition of
the variance/covariance matrix. In this regard, MixWILD
allows for two possibilities to describe the relationship
between random location and random scale: (1) no
association (τυ = 0) or (2) association (τυ �= 0). For
a given program run, the user can select one of these
two possibilities using the NCOV option, described in
“MixWILD Software Overview”.

As in the MELS model, empirical Bayes methods (Bock,
1989) are used to obtain estimates of the multiple random
location effects υi and random scale effect ωi , along
with the variance-covariance matrix associated with these
estimates. These correspond to estimates of the mean and
variance-covariance of the posterior distribution of the
random effects. These are saved for use in stage 2.

Stage 2: linear or logistic regression using
stage 1 estimates

Once the subject-specific location (intercept and/or slope)
and scale estimates for the random effects have been
obtained, they may be used in subsequent stage 2
analyses. However, since these are estimates, the degree of
certainty/uncertainty in these estimates needs to be included
in the stage 2 analyses. For this, similar to the concept of
multiple imputation for missing data, a number of datasets
are created (i.e., re-sampled) using the mean and variance
estimates augmented by random number generation. Since
the random effects are assumed to have come from a
normal distribution, multiple imputed values are obtained
from a multivariate normal distribution with means and
variance/covariance as estimated. This results in multiple
datasets, each with a single set of imputations of the random

effects. The number of datasets created is set by the reader;
generally it is wise to use a large number, say 500, to ensure
more precise results.

These stage 1 random effects can then be used to model
a stage 2 subject-level outcome that is either continuous
(linear regression) or binary/ordinal (logistic regression).
Additionally, other subject-level covariates can be included
as main effects and interactions with the random effects in
the stage 2 model. The stage 2 analyses are repeated for
each set of imputed random effect estimates, and after all the
analyses have been performed, overall means and standard
errors are obtained (similar to what is done in multiple
imputation) to produce the stage 2 output.

MixWILD Software Overview

The MixWILD software is used to assist users in adding
model parameters and displaying output of the analysis
without relying on a command-line interface. It allows users
to select the data file to process, assign missing value codes,
add or remove regressors from different levels, and adjust
other miscellaneous parameters specific to model execution.
Figure 3 illustrates the flow of parameter selection in
MixWild and how the selection of random location effects
and stage 2 outcome impacts the execution of the various
modeling stages.MixWILD software implements a model-
view-controller (MVC) framework (Burbeck, 1992), with
the MixWILD graphical user interface (GUI) acting as the
view and its interactive components as the controller. The
variable definition library, acting as the model, specifies
parameters and exposes getter and setter functions to the
view and controller. The defined parameters are then saved
to disk to be accessed by MixWILD binaries for execution
of statistical procedures. The MixWILD GUI has been
developed using JAVA and is compatible with both the
Windows and macOS operating systems. Figure 3 illustrates
a model flowchart of differentMixWILD components.

As shown in the figure, users first specify how random
location effects will be modeled, either as intercept only
or as intercept and slope(s). This specification informs
how the software proceeds to the stage 1 configuration,
providing the model-specific user interface for MELS or
MEMLS as needed. In the same configuration menu,
users specify the type of outcome at stage 2, which
leads to a customized user interface at stage 2 for
dichotomous/ordered logistic regression or linear regression
if a user specifies dichotomous/ordinal or continuous,
respectively. If the user indicates no stage 2 outcome, the
stage 2 configuration menu is bypassed and no stage 2
model is executed. A total of four permutations of models
exist in the version v1.0-beta.7, with output from models
separated by stage 1 and stage 2.
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Fig. 3 A model flowchart ofMixWILD components

Creating a newmodel

To create new models, users can access the New Model
option under the File menu. Prior to specifying model
parameters, users are asked to identify the location of their
data. In order to ensure that the file is compatible with
MixWILD, users can click on the instructions on the top of
the window as shown in Fig. 4. For a dataset to be valid for
MixWILD, it must:

1. be saved as a valid comma-separated (.csv) file,
2. not contain blank missing values,
3. contain only real, non-zero numeric missing value

codes (if missing values are present),
4. be sorted by the unique level 2 identifier (e.g., ID

variable), and
5. contain variable names in the header.

Once a valid data file is imported, model specification
options are enabled. Users can assign a short custom title

to identify their model for future reference. A subtitle is
automatically generated to distinguish models written by
users and those automatically generated byMixWILD. The
title and subtitle are displayed as headers in the definition
file (explained in a subsequent section).

Users first specify whether they would like to include
random slopes in addition to an intercept for the random
location effects in the stage 1 model. Selecting Intercept
Only assumes the mean of the response does not differ
between subjects as a result of some covariate and engages
the MELS model, allowing users to specify covariates for WS
and BS variances. On the other hand, selecting Intercept and
Slope(s) engages the MEMLS model, allowing users to test for
differences in the association between the response and time-
varying covariates (i.e., random slope). Note that this option
does not permit the BS variances to be modeled in terms
of covariates. As an additional option, users may choose
to disable random scale (i.e., WS variance which varies by
subject) when running more traditional multilevel models at
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Fig. 4 Create a new model by importing the data file and setting model parameters

stage 1 or when there is insufficient within-subject variation
to allow for it to vary at the subject level.

Next, users are asked to specify whether the stage
2 outcome will be continuous or dichotomous/ordinal;
alternately, users may forgo a stage 2 model entirely. If the
model includes a stage 2 outcome, then MixWILD allows
users to set a seed that varies between 1 and 65,000. Users
can edit the default seed randomly chosen by MixWILD.
Finally, users may specify a non-zero numeric code that
matches the missing value codes in the dataset, if any exist.
MixWILD defaults to no missing values to emphasize that
it does not recognize the presence of missing values on its
own, and therefore, users must be aware of the missing value
codes used in their datasets. After specifying the new model
parameters, users are asked to configure the stage 1 and
stage 2 models.

Stage 1 configuration

Prior to proceeding with stage 1 configuration, users
may choose to validate their data using the View Data
tab. Figure 5 provides a screenshot of the stage 1
model configuration. For reference, the selected model

configuration, as specified in the New Model window, is
displayed on this screen. First, users can define their ID
variable (i.e., the unique identifying value for each subject
in the study) and the stage 1 outcome variable from the
drop-down boxes. By default, the interface uses the first
and second column to automatically choose ID and stage
1 outcome, respectively. Next, users are able to select
regressors from their data using the Configure Stage 1
Regressors button.

Add stage 1 regressors

From the stage 1 configuration window, users are able to
add or remove regressors used in the model as shown in
Fig. 6. Level 1 variables are time-varying variables and level
2 includes time-invariant variables. It is important to note
that the software does not validate whether a variable is
time-varying or time-invariant. Once a variable is added to
either the level 1 or level 2 list, it is hidden from the main
variable list to ensure that there are no duplicate variables in
both the level 1 and level 2 variable lists. Users can revert
a variable to the variable list by removing them from the
added list. Once the variables are selected, users can submit
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Fig. 5 Stage 1 configuration that allows adding variables to level 1 and level 2 of stage 1. Level 1 and level 2 regressors are added from stage 1
regressor window (explained in the next section)

Fig. 6 Add regressors from the data file to level 1 and level 2 of stage 1
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their choices to go back to stage 1 configuration. The reset
button allows users to restore all variables on the regressor
configuration window.

Configuremodel-specific attributes

MixWILD allows additional model run time parameters
that users can specify using the Options button under stage 1
Configuration. Table 1 (Appendix) summarizes the options
offered by MixWILD, including default values and valid
ranges, where applicable.

Users are then able to submit changes or reset to default.
If the software detects that a user is running a Windows
operating system, an option appears allowing the user to
execute MixWILD statistical binaries in an experimental
mode for 32-bit operating systems. Figure 7 shows how
users can enable different advanced attributes to be included
in their models.

Stage 2 configuration

MixWILD validates stage 1 configuration once either the
stage 2 configuration tab, the Configure stage 2 button,
or the Run Stage 1 button (when no stage 2 outcome
is specified) are pressed. Users then proceed to stage 2
configuration, where they are asked to select the time-
invariant stage 2 outcome and regressors. Users should
note that if a time-varying variable is selected, the subject-
level mean will be used throughout the stage 2 model, but
the program will not output warning messages to indicate
this transformation. If a dichotomous or ordinal stage 2
outcome is specified, an option to check categories will
be presented as a convenience feature for users to verify
that their variable is valid. Once stage 2 regressors are

added, users can specify main effect and two-way and three-
way with random location and random scale (if applicable)
from stage 1 (as seen in Fig. 8). The regressor by random
location interaction may be either a single regressor by
random intercept interaction or two interactions: regressor
by random intercept and regressor by random slope.
However, in both cases, the three-way interaction will only
use the random intercept component of the random location
(i.e., regressor by random intercept by random scale). An
interaction of location by scale is automatically specified in
every stage 2 model, but may be disabled by checking the
box Suppress All Interactions, which limits the model to
the main effects of stage 2 regressors, random location, and
random scale (if applicable).

Specify model parameters

As seen in Fig. 6, the stage 1 regressor configuration
window allows users to specify the contribution of
previously selected variables in level 1 (time-varying) and
level 2 (time-invariant) tables. For each variable in level
1 and level 2, users can select their contribution to the
stage 1 outcome using appropriate checkboxes. Under level
1, users are able to disaggregate the pooled effects of
time-varying covariates into between- and within-subject
components by generating a level 2 subject mean centered
variable and a level 1 deviation from the subject mean
variable, respectively (see Appendix). The stage 1 user
interface changes dynamically to conform to specifications
in the MELS and MEMLS models. If a user indicates a
MELS model, they are asked to specify whether a linear
or quadratic relationship between the mean and within-
subject variance will be included in the model. Further,
MixWILD will request specification of mean-level model

Fig. 7 Advanced options to add to the model
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Fig. 8 Configure regressors for stage 2 analysis

(i.e., betas), BS variance, and WS variance regressors.
If a multiple location effects model is selected, the user
has the option to allow for an association between the
random location (intercept and slope(s)) and within-subject
variance. MixWILD will then present the user with the
option to specify mean, random slope, and scale regressors.
Note, random slope specification is excluded from level
2 regressors because level 2 observations have no within-
subject variance. A reset button allows users to reset all the
changes and restart model configuration.

Variable definition library

The MixWILD variable definition library performs a final
validation on stage 1 and stage 2 configuration prior to
generating an intermediate definition file (.def) that is saved
to the working directory. The intermediate file is generated
by translating each parameter from the MixWILD model
to a plain-text format readable by statistical binaries. The
external definition file is subsequently accessed by the
MixWILD interface to present users with a preview of the
definition file prior to proceeding with model execution (as
shown in Fig. 9).

Executable models

The GUI relies on packaged executables, which correspond
to the four permutations of statistical procedures available
inMixWILD: Stage 1 MELS models with linear or logistic
stage 2 regressions (MixregLS Mixreg and MixregLS
Mixor, respectively) and stage 1 MEMLS models with
linear or logistic stage 2 regressions (MixregMLS Mixreg
and MixregMLS Mixor, respectively). On model execution,

MixWILD selects the appropriate executables to read the
intermediate definition file and run the selected models. The
progress, executed in a background command-line shell, is
presented during execution in plain-text for troubleshooting
logging purposes. If the model fails, the log is not
deleted to allow the user to identify the source of the
error.

MixWILD copies these executables in a local folder
of the user’s system, where folder name is generated in
real-time using a system time stamp as a float value in
milliseconds since January 1st, 1970 (i.e., Unix epoch time).
This process allows for logging of all analyses performed
using MixWILD based on the time stamp of when the
program was accessed. More importantly, it reduces errors
and allows for troubleshooting in the event that a model
fails. By generating output and definition files in isolated
folders, MixWILD prevents conflicts across different
sessions as a result of identically-named files. Limiting the
redundancy in the MixWILD work folder as a result of
multiple filenames allows users to troubleshoot models in-
depth when errors are encountered. In addition to viewing
progress after a model is complete, users can see model
execution progress in a pop-up window as shown in the
image below. As soon as the analysis is complete and
successful, the copied executables are deleted from the local
folder. As a result, if the model fails, the user can implement
command-line tools to quickly rerun binaries in order to
identify the cause of errors. The user may also choose to
archive the folder and send the persistent session to others
for additional support.

To create optimized MixWILD executables, preproces-
sor directives are read at compile-time to indicate whether
the OS is a 32-bit or 64-bit Windows machine. If neither is
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Fig. 9 Variable definition preview. Users can save the .def file for later reference

detected, macOS is assumed and 64-bit Unix binaries are
generated instead. This method allow for streamlined devel-
opment using a single source code, with differences only
in file-system-specific lines where the command-line shell
(i.e., command prompt vs. bash) is called. There are descrip-
tive statistics and three sets of sub-model results in the stage
1: the first sub-model does not include scale parameters (i.e.,
standard multilevel model), the second sub-model includes
scale parameters but not random scale parameters, and the
third sub-model includes both the scale and the random
scale parameters. The simulated subject-specific random
effects are saved to a data file with the suffix ebvar.dat. The
stage 2 output includes descriptive statistics and final model
summary from either the linear or logistic regression.

Model output

When models are executed successfully, the output of stage
1 and stage 2 analyses are displayed in their respective
tabs in MixWILD (as shown in Fig. 10 top and bottom).
Users can choose to save the output files outside of
the working directory, as well as specify alternate file

extensions. As a convenience, MixWILD also allows
users to copy the output text directly from the output
window to the system clipboard. A GitHub-hosted website
(github.com/reach-lab/MixWildGUI) is available for users
to sign up for prompt updates to the application.

Applied examples

To better understand the types of questions that can be
addressed using the two-stage mixed effects approach,
two examples will be illustrated, covering both the MELS
model and the MEMLS model. In the first example,
the software first estimates a mixed-effects location scale
model in stage 1, including a random subject intercept
and a random subject scale effect. As stated prior, a
random subject intercept effect reflects a subject’s mean (or
location), whereas a random scale effect reflects a subject’s
variability. For this example, the stage 2 component is a
single-level linear regression model predicting a continuous
subject-level outcome using the random subject effects
from the stage 1 model as regressors, with the option of
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Fig. 10 Stage 1 (top) and stage 2 (bottom) analysis output

including random effects as main effects and interactions
with other subject-level regressors. This second example
first estimates a MEMLS model in stage 1, including a
random subject intercept and slope, as well as a random
subject scale effect. Hence, the random subject intercept and

slope are considered location effects because they reflect
a subject’s mean response, while the random subject scale
effect reflects a subject’s variability. In this example, the
stage 2 component is a single-level logistic regression model
that predicts a binary or ordinal subject-level outcome using

1415Behav Res (2020) 52:1403–1427



the random subject effects from the stage 1 model as main
effects or interactions with other subject-level regressors.
Neither of the examples presented here were formally
preregistered. They are presented here for the purpose of
demonstratingMixWILD software’s use for the analysis of
EMA data for behavioral research. However, the data and
code for the software can be made available to researchers
on request.

Does subject-level change in positive affect (PA)
and variation in PA predict daily sedentary time?

The first applied example is in the context of a multi-method
longitudinal study utilizing momentary self-reports of pos-
itive affect collected from smartphones and physical activ-
ity data collected from waist-worn accelerometers (Maher
et al., 2019). The primary aim of the study is to determine
whether within-subject mean (i.e., random intercept) and
within-subject variance (i.e., random scale) of momentary
positive affect (a within-subject, continuous, time-varying
variable) predicts between-subject average sedentary hours
per day (a between-subject, continuous, time-invariant vari-
able), after controlling for sex (a between-subject, categor-
ical, time-invariant variable) and day of the week at stage
1 and age (a between-subject, continuous, time-invariant
variable) at stage 2. Day of the week is coded as a con-
tinuous, within-subject, time-varying variable coded such
that Monday = 0 and Sunday = 6, hence a linear asso-
ciation can be interpreted as each day approaching the
end of the week. Further, the study seeks to understand
whether subjects’ age (a continuous, between-subject, time-
invariant variable) moderates the effect of subjects’ mean
(i.e., random intercept) and variance (i.e., random scale) in
momentary positive affect in predicting subject-level aver-
age hours per day of sedentary behavior, after controlling for
sex and day of week. The study will employ a MELS model
using MixWILD, followed by a stage 2 linear regression
using estimates of random components from stage 1.

For stage 1, subjects i = 1, 2, . . . , N , occasions j =
1, 2, . . . , ni :

paij = β0 + β1dowij + β2sexi + υi

+εij , εij ∼ N(0, σ 2
εij

), υi ∼ N(0, σ 2
υij

), (5.1.1)

where

σ 2
υij

= exp(α0 + α1sexi ), (5.1.2)

and

σ 2
εij

= exp(τ0 + τ1sexi + τlυi + ωi), ωi ∼ N(0, σ 2
ω).

(5.1.3)

For stage 2, subjects i = 1, 2, . . . , N :

adshi = β∗
0 + β∗

1agei + β∗
2 υ̂i + β∗

3 (υ̂i × agei ) + β∗
4 ω̂i

+β∗
5 (ω̂i × age)i + β∗

6 (υ̂i × ω̂i) + ε∗
i ,

ε∗
i ∼ N(0, σ 2

ε∗). (5.1.4)

β∗ is used to designate the fixed effects in stage two
(Eq. 5.1.4) as different from those in stage one (Eq. 5.1.1)
and ε∗ is used to distinguish the error terms.

Model specification

The model is configured in MixWILD using the following
parameters after specifying a data file location and title (see
Fig. 11):

1. Random Location Effects: Here, Intercept is speci-
fied, thus telling the software to assume only a random
subject intercept, but allowing modeling of covariates
on between-subject variance.

2. Random Scale: Random scale is left enabled by default
as the study question examines how the outcome varies
within subjects.

3. Stage 2 Outcome: The stage 2 outcome in this model
is a continuous variable, hence Continuous is specified.

4. Contains Missing Values and Missing Value Code:
The data contains missing values, specified as -999 in
the supplementary dataset.

Next, the ID variable is selected at stage 1, and positive
affect is specified as the stage 1 time-varying outcome
variable as indicated in Fig. 13 (Appendix). Day of the week
(shortened to DOW) is added as a time-varying covariate
and is allowed to affect the mean-level model without
disaggregation of its effects. Sex (male = 1, female = 0)
is added as a time-invariant covariate and is allowed to
affect the mean model, the BS variance model, and the
WS variance model. Further, the model allows for a linear
relationship between the random intercept of the outcome
(i.e., WS mean) and random scale (i.e., WS variance).
Subjects may report relatively high positive affect based on
prior literature, and there is expected to be less variation
in these subjects (i.e., ceiling effects (Eid & Diener,
1999)). However, some scales may exhibit floor and ceiling
effects, in which case a quadratic relationship may be more
appropriate to account for low variance in low valence
responses. The model options are left at defaults, therefore
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assuming intercepts in the mean model, BS variance, and
WS variance equations. Once stage 1 is configured, average
sedentary hours per day is set as the subject-level stage 2
outcome and regressors are selected as indicated in Fig. 14
(Appendix). For this specific research question, age is
entered in the model and selected to interact with random
intercept and random scale, without specifying a three-way
interaction. Once the model configuration is accepted and
executed, the resulting output is displayed, shortened for
readability in subsequent blocks of text.

Stage 1 results

Excerpted results from stage 1 are shown below, with
only the final sub-model shown. A series of three models
(with the subsequent model using the previous model’s
coefficients as starting values) is run to increase stability
and allow comparisons with and without random scale. The

final model shows that as day of the week increases by
1 unit, mean positive affect increases by 0.39 units (z =
8.58, p < .001), while sex does not have a significant effect
on mean positive affect (z = −1.21, p = .23). There
is also no significant effect of sex on either the between-
subject variability (z = −1.32, p = .19) or the within-
subject variability (z = −1.08, p = .28), after adding the
random scale effect. There is significant variability in scale
across subjects, as indicated by the random scale standard
deviation; a significant random scale standard deviation
indicates that subjects differ from each other in their degree
of WS variance (i.e., scale) (z = 19.58, p < 0.001).
Further, the final sub-model shows that, as anticipated,
the random scale is negatively associated with the random
intercept (z = −6.45, p < 0.001). Hence, subjects with
overall higher mean positive affect had less WS variability
in their momentary responses, likely as a result of a ceiling
effect in the affect response scale.

Log Likelihood = -47914.216

Akaike’s Information Criterion = -47923.216

Schwarz’s Bayesian Criterion = -47945.843

Variable Estimate AsymStdError z-value p-value

------------------------- ------------ ------------ ------------ ------------

BETA (regression coefficients)

Intercept 42.57868 0.55031 77.37179 0.00000

DOW 0.39158 0.04563 8.58138 0.00000

SEX -0.73865 0.60904 -1.21281 0.22520

ALPHA (BS variance parameters: log-linear model)

Intercept 4.28473 0.09386 45.65031 0.00000

SEX -0.14654 0.11109 -1.31913 0.18713

TAU (WS variance parameters: log-linear model)

Intercept 4.78679 0.03843 124.56564 0.00000

SEX -0.04782 0.04447 -1.07528 0.28225

Random scale standard deviation

Std Dev 0.40712 0.02080 19.57251 0.00000

Random location (mean) effect on WS variance

Loc Eff -0.14581 0.02253 -6.47252 0.00000

Stage 2 results

The results from stage 2 are presented below. The stage 2
results table contains the intercept, subject-level regressors
(in this case, age) predicting the outcome (average hours
per day in sedentary time), the effect of the subject-level
mean (i.e. random location denoted as Locat 1) and any
interactions (denoted as scale) on sedentary time, the effect
of within-subject variance (i.e., random scale) and any

interactions on sedentary time, and the interaction between
random intercept and random scale on sedentary time,
any specified three-way interactions (in this case, none),
and the residual variance. After controlling for all other
variables, age was positively associated with average daily
sedentary time, such that older subjects spend more time
being sedentary (z = 4.07, p < 0.001). Neither a subject’s
mean nor variance predicts their average daily sedentary
time, nor are these associations moderated by age (p >

0.05).
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Average Log Likelihood = -2106.858 (sd= 0.754)

Akaike’s Information Criterion = -2113.858

Schwarz’s Bayesian Criterion = -2131.457

Variable Estimate AsymStdError z-value p-value

------------------------- ------------ ------------ ------------ ------------

Intercept 9.37497 0.06913 135.61136 0.00000

Age 0.01809 0.00445 4.06683 0.00005

Locat_1 0.07526 0.06594 1.14148 0.25367

Locat_1*Age -0.00311 0.00362 -0.86029 0.38963

Scale 0.03044 0.08354 0.36436 0.71559

Scale*Age -0.00054 0.00475 -0.11386 0.90935

Locat_1*Scale -0.00667 0.08898 -0.07493 0.94027

Residual_Variance 2.45392 0.10338 23.73673 0.00000

Do day of week differences in positive affect predict
obesity risk?

The second applied example is in the context of a
longitudinal study utilizing momentary self-reports of
positive affect collected from smartphones and exploring
affect-related obesity risk among subjects (Maher et al.,
2019). The primary aim of the study is to examine whether
within-subject mean (i.e., random intercept) and within-
subject variance (i.e., random scale) of momentary positive
affect (a within-subject, continuous, time-varying variable)
predicts subject-level obesity risk (a between-subject,
dichotomous, time-invariant variable), after controlling for
sex (a between-subject, categorical, time-invariant variable),
whether a momentary response was provided on the
weekday or weekend (a within-subject, dichotomous, time-
varying variable) at stage 1, and age (a between-subject,
continuous, time-invariant variable) at stage 2. Additionally,
the study seeks to understand whether subjects differ from
each other in the extent to which positive affect changes
on weekends as compared to weekdays, after controlling
for subject-level mean and subject-level variance (i.e., the
random slope of weekend/weekday in terms of positive
affect) at stage 2. The last set of aims seek to understand
whether: (a) the variability between subjects in the
association (i.e., random slope) between weekday/weekend
and momentary positive affect predicts subject-level obesity
risk, (b) the age of a subject moderates the associations
between mean levels (i.e., random intercept) and variances
(i.e., random scale) in positive affect in predicting obesity
risk, and (c) the age of a subject could moderate weekend-
positive affect association (i.e., random slope) in predicting
obesity risk. The study will employ a MEMLS model using
MixWILD, followed by a stage 2 logistic regression using
estimates of random components from stage 1.

For stage 1, subjects i = 1, 2, . . . , N , occasions j =
1, 2, . . . , ni :

paij = β0 + β1w endij + β2sexi + υ1i + υ2iw endij

+εij , εij ∼ N(0, σ 2
εij

), υi ∼ N(0, �υ), (5.2.1)

where

σ 2
εij

= exp(τ0 + τυ1υ1i + τυ2υ2i + ωi), ωi ∼ N(0, σ 2
ω).

(5.2.2)

For stage 2, subjects i = 1, 2, . . . , N :

logit (P [obesei = 1]) = β∗
0 + β∗

1agei + β∗
2 υ̂1i + β∗

3 (υ̂1i × agei )

+β∗
4 υ̂2i + β∗

5 (υ̂2i × agei )

+β∗
6 ω̂i + β∗

7 (ω̂i × agei ) + β∗
8 (υ̂1i × ω̂i )

+β∗
9 (υ̂1i × ω̂i × agei )

+β∗
10(υ̂2i × ω̂i ) + β∗

11(υ̂2i × ω̂i × agei ).

(5.2.3)

As in the previous section, β∗ is used to designate the
fixed effects in stage two (Eq. 5.2.3) as different from those
in stage one (Eq. 5.2.1).

Model specification

The model is configured in MixWILD using the following
parameters after specifying a data file location and title (see
Fig. 12):

1. Random Location Effects: Here, Intercept and
Slope(s) is specified, thus telling the software to con-
strain the modeling of effects on between-subject vari-
ance, but allow for modeling of multiple random loca-
tion effects (intercept and one or more slopes).

2. Random Scale: Random scale is left enabled by default
as the study question examines how the outcome varies
within subjects.
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Fig. 11 Configure model parameters for a two-stage MELS model

3. Stage 2 Outcome: The stage 2 outcome in this
model is a dichotomous variable, hence Dichotomous is
specified.

4. Contains Missing Values and Missing Value Code:
The data contains missing values, specified as -999 in
the supplementary dataset.

Next, the ID variable is selected at stage 1, and positive
affect is specified as the stage 1 time-varying outcome
variable as indicated in Fig. 15 (Appendix). Whether an
observation takes place on a weekday (coded as 0) or
weekend (coded as 1) is added as a time-varying covariate
and is allowed to affect the mean and random slope without
disaggregation of effects. Sex (male = 1, female = 0) is
added as a time-invariant covariate and is allowed to affect
the mean only. The model has no regressors on the WS
variance (i.e., random scale). However, the model tests for
association between person-level mean and within-subject
variance of the outcome, as is indicated by the specified
association of the random location and random scale effects.
The model options are left at defaults, therefore assuming
intercepts in the mean, BS variance, and WS variance
equations. Once stage 1 is configured, whether or not a
subject is obese (obese = 1, not obese = 0) is set as the

person-level stage 2 outcome and regressors are selected as
indicated in Fig. 16 (Appendix). For this specific research
question, age is entered in the model and selected to interact
with random location and random scale. A three-way
interaction is specified between age, random location, and
random scale on obesity risk. Once the model configuration
is accepted and executed, the resulting output is displayed,
shown in abbreviated form in subsequent text blocks.

Stage 1 results

Excerpted results from stage 1 are shown below, with
only the final sub-model shown. A series of three models
(with the subsequent model using the previous model’s
coefficients as starting values) is run to increase stability
and allow comparisons with and without random scale. The
final model shows that there was greater positive affect
on the weekend as compared to weekdays, and no sex
differences for positive affect in the example (z = 7.06, p <

0.001 and z = −1.15, p = 0.25, respectively). There is
significant variability in scale across subjects, as indicated
by the random scale standard deviation (z = 19.26, p <

0.001). In other words, subjects differ from each other in
their degree of within-subject variability. It also shows that
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subjects differed significantly between each other based
on mean levels of positive affect (i.e., random location
intercept) and differed in their association between weekend
and positive affect (i.e., random slope as indicated by the
weekend regressor) (z = 18.33, p < 0.001 and z =
5.54, p < 0.001, respectively). The random intercept and
random slope were negatively associated with each other

(Covariance12), indicating that subjects with higher mean
levels of positive affect on weekdays (i.e., higher levels of
the intercept) did not show as much increase in positive
affect on weekends, relative to subjects with lower positive
affect on weekdays (z = −4.16, p < 0.001). Lastly, there
was no significant association between random slope and
WS variance (i.e., random location effects on WS variance);
in other words, erratic positive affect in a subject was not
associated with change in positive affect on weekend days
relative to weekdays (z = −1.05, p = 0.29).

Log Likelihood = -49747.866

Akaike’s Information Criterion = -49757.866

Schwarz’s Bayesian Criterion = -49783.190

Variable Estimate AsymStdError z-value p-value

------------------------- ------------ ------------ ------------ ------------

BETA (regression coefficients)

Intercept 42.96071 0.50136 85.68796 0.00000

WEEKEND 1.67701 0.23744 7.06279 0.00000

SEX -0.65533 0.56931 -1.15108 0.24970

Random (location) Effect Variances and Covariances

Intercept 71.74435 3.91378 18.33122 0.00000

Covariance12 -9.81601 2.35683 -4.16493 0.00003

WEEKEND 14.26340 2.57335 5.54274 0.00000

TAU (WS variance parameters: log-linear model)

Intercept 4.71828 0.01968 239.78506 0.00000

Random location effects on WS variance (log-linear model)

Intercept -0.12884 0.02304 -5.59199 0.00000

WEEKEND -0.03716 0.03530 -1.05270 0.29248

Random scale standard deviation

Std Dev 0.40514 0.02103 19.26143 0.00000

Stage 2 results

The stage 2 results table contains the intercept, subject level
regressors (in this case, age) predicting the subject-level
outcome (obesity, as a dichotomous variable), the effect of
the subject-level mean (i.e., random intercept denoted as
Locat 1) and any interactions on obesity risk, the effect of
the within-subject association (i.e., random slope denoted
as Locat 2) between weekday/weekend and positive affect
and any interactions on obesity risk, the effect of within-
subject variance and any interactions on obesity risk, and
the interaction between random intercept and random scale
on obesity risk, and any specified three-way interactions (in
this case, with age). After controlling for all other variables,
age was positively associated with increased obesity risk
(i.e., older subjects are more likely to be obese than younger
subjects)(z = 6.25, p < 0.001). The random intercept for

positive affect negatively predicts obesity risk when age
equals zero (equivalent to age of 29 years) and the random
scale and random slope are zero (z = −2.66, p < 0.01).
Since the random effects are centered around zero, a random
scale of zero represents the average scale. For subjects
with average scale of positive affect, higher levels of mean
positive affect are associated with reduced obesity risk.
In this model, random slope did not significantly predict
obesity risk (z = 0.26, p = 0.80). Finally, the interaction
between age and random scale was significant in predicting
obesity risk, suggesting that the positive association of age
and obesity risk is more pronounced for subjects that are
more erratic or less stable in their momentary positive affect
response (z = 3.17, p < 0.005). In other words, subjects
who are older and who have higher variability in positive
affect are more likely to be obese. All other interactions
were not significant.
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Average Log Likelihood = -633.437 (sd= 3.667)

Akaike’s Information Criterion = -643.437

Schwarz’s Bayesian Criterion = -668.761

Variable Estimate AsymStdError z-value p-value

------------------------- ------------ ------------ ------------ ------------

Intercept -0.24106 0.13037 -1.84905 0.06445

Age 0.05172 0.00828 6.24617 0.00000

Locat_1 -0.26560 0.09986 -2.65974 0.00782

Locat_1*Age 0.00534 0.00599 0.89198 0.37241

Locat_2 -0.02665 0.13925 -0.19139 0.84822

Locat_2*Age 0.00258 0.00913 0.28207 0.77789

Scale 0.16841 0.12401 1.35805 0.17445

Scale*Age 0.02499 0.00788 3.17250 0.00151

Locat_1*Scale 0.16108 0.15288 1.05363 0.29205

L*S*Age -0.00128 0.00977 -0.13116 0.89565

Conclusion and future work

This paper presented MixWILD, a GUI implementation
of a novel statistical software that can be used to enhance
inferences made from intensive longitudinal data, such
as those gathered using EMA. Although MixWILD may

Fig. 12 Configure model parameters for a two-stage MEMLS Model

be used as a basic hierarchical modeling tool to test
hypotheses in clustered data with many observations,
researchers interested in how variability of predictors
affects their outcome of interest will benefit most from
this approach, as illustrated in the applied examples.
Other permutations of MixWILD cover additional study
hypotheses. For instance, a researcher interested in physical
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activity may examine whether moderate-vigorous physical
activity (MVPA) has significantWS variability (i.e., random
scale) across the week at stage 1, and then examine
whether this variability of MVPA predicts obesity risk
at stage 2. Similarly, a researcher interested in mood
disorders may hypothesize that subjects vary in their
relationship between momentary anhedonia and sedentary
behavior at stage 1, and subsequently examine whether this
association (i.e., random slope) predicts change over time
in a standard depression inventory. However, the interactive
component and statistical back-end of MixWILD have
several limitations.

The interactive component of MixWILD is still in
active development, with features such as the ability to
open MixWILD archives (i.e., previously run models)
and automatically generated models with regressors (under
View Model) expected to be implemented soon. The
statistical component of MixWILD is limited by its
inability to run three-level models at stage 1, run two-level
models at stage 2, or use count outcomes at stage 2, the
latter two of which is currently under development. The
software currently provides Maximum Likelihood (ML)
estimates, a further addition would be to add Restricted
Maximum Likelihood (REML). Moreover, MixWILD and
its statistical models do not support R, SAS, and STATA
procedures and we hope to develop them as part of our
future work.

We have proposed a two-stage modeling approach in
MixWILD, however simultaneous joint modeling can also
be used in some cases for similar purposes. However,
as pointed out by Murawska et al. (2012), if only the variables
in the first stage mixed model (and not the second stage out-
come model) provide information about the random effects,
then it is more appropriate to separate the estimation. Con-
ceptually, we can imagine a case where the first stage is
estimated using the first wave of an EMA dataset, and the
second stage is based on the second wave. It could be argued
that a joint model may not be appropriate in this case,
because they are from non-overlapping periods of time.

The supplemental data file allows users to replicate
results presented in this manuscript. A website is available
at https://reach-lab.github.io/MixWildGUI/ for users to
download the latest release sign up for update notices, as
well as download additional documentation that includes an
updated user guide. All analyses presented in the manuscript
were conducted in MixWILD Soft Release v1.0-beta.7;
some user interface elements may change over time.
Change logs and source code for interactive components
of MixWILD is available at https://github.com/reach-lab/
MixWildGUI and source code for the statistical procedure
is available at https://github.com/reach-lab/MixWild. The
version control system also serves a primary point for
users to submit issues and feature requests for the

program. A separate Git repository for the statistical
component of the code is accessible by contacting the
corresponding authors or any member of the development
team. Finally, researchers, programmers, and statisticians
can also contribute new features toMixWILD by accessing
our open-source code. All software is licensed under GNU
General Public License v3.0 (GPL-3).
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org/licenses/by/4.0/.

Appendix A: Terminology

The following section defines terms relevant to intensive
longitudinal data analysis that will be referenced throughout
the manuscript, the user interface, and program output.

MixWILD assumes a standard two-level model with a
continuous level 1 outcome at stage 1, where i represents
each subject and j represents each timepoint.

Consider the model

Yij = β0 + υ0i + εij (A.0.1)

Grand mean refers to the mean of the outcome across all
time points and subjects, ignoring clustering, as indicated
by the intercept in the model (β0).

Subject-level mean is the mean of the outcome across all
time points for a given subject, and specified by including
the subject deviation from the intercept in the model
(β0 + υ0i).

Between-subject variance is defined as the variance
across subject-level mean (σ 2

υ ). In a homogeneous
sample of subjects, this value would approach 0.

Within-subject variance is defined as the error variance
for a given subject (σ 2

εij
). This value would be near 0 in a

subject whose outcomes are extremely well modeled.

Themeanmodel can then be expanded to allow for the addi-
tion of covariates. Note that the interpretation of β0 is now the
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overall mean when the value of all covariates is 0. β0 + υ0i
is the subject level mean when all covariates equal 0.

Yij = β0 + υ0i + (β1 + υ1i )Xij + β2Wi + eij (A.0.2)

Definitions of terms that are relevant to covariates in
MixWILD can be defined by addition of components to the
means model:

Time-invariant covariates are level 2 variables mea-
sured once per subject, such as socio-demographic vari-
ables (Wi).

Time-varying covariates are level 1 variables measured
multiple times per subject, including temporal variables
such as time of day and day of week (Xij ). Given
that time-varying covariates produce pooled effects in
multilevel models, for those variables that are continuous
or binary, additional statistical transformation can be
used to disaggregate between- and within-subject effects.
Within-subject covariates are created when time-varying
covariates are centered at their subject-level mean (Xij −
X̄i), and those subject-level means become additional
variables (X̄i). The disaggregation procedure allows for
interpretation of within- and between-subjects effects of
covariates on the outcome.

Mean effect refers to the relationship between a covariate
and the mean of the outcome, this is the equivalent

of a fixed effect coefficient in a traditional multilevel
model (β1 or β2). For example, physical activity may
negatively associated with age or positively associated
with concurrent positive affect.

Subject-level mean effect refers to the relationship
between the covariate and the mean of the outcome for a
specific subject. (β1 + υ1i).

Between-subject variance effect is defined as the rela-
tionship between a covariate and the variance of the
subject-level means. [Only in MELS model]

Within-subject variance effect refers to the relationship
between a covariate and within-subject variance of the
outcome.

Random scale effect allows different subjects to have
different amounts of within-subject variance, beyond
that modeled by covariates. The variance of the random
scale effect may be influenced by that subject’s location
random effects. For instance, subjects with high mean
levels of physical activity may be more consistent in
their positive affect, or subjects may be less erratic (i.e.,
low WS variance) in their positive affect when they are
engaged in physical activity.

Appendix B: Tables

Table 1 Advanced options to configure the model

Advanced option Interaction mode Usage in models

Mean intercept, BS Check-boxes (checked by Include submodel intercepts

variance intercept, WS default)

variance intercept

Convergence criteria Spinner (between 0 and 1, To set the accuracy level of the model

with 0.00001 as default)

Quadrature points Spinner (between 1 to More quadrature points results in more accurate

1,000, with 25 as default) estimate of integral, but takes more time to execute

Adaptive quadrature Check-box (checked by default) To personalize quadrature to each subject

Maximum number of Spinner (between 1 to 1000, To prevent the model from running

iterations with 200 as default) indefinitely

Ridge Spinner (between 0 and 1, To improve convergence for computationally

with 0.1 as default) challenging data

Standardize all regressors Check-box (off by default) To set variables on the same scale if needed

Discard subjects with no Check-box (off by default) Subjects with identical values for all

variance observations of the outcome variable can cause

estimation problems for the model with

random scale; This option excludes such subjects

Resample stage 2 Check-box (checked by To account for the uncertainty in the EB

default), followed by the estimates

number of resamples

(between 1 and 10,000,

with 200 as default)
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Appendix C: Figures

Fig. 13 Configure stage 1 regressors for a two-stage MELS Model

Fig. 14 Configure stage 2 regressors for a two-stage MELS Model with a continuous outcome in stage 2
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Fig. 15 Configure stage 1 regressors for a two-stage MEMLS Model

Fig. 16 Configure stage 2 regressors for a two-stage MEMLS Model with a categorical outcome in stage 2
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