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A B S T R A C T

Background: Rhodomyrtus tomentosa (Aiton) Hassk. has been traditionally used to relieve various diseases.
Rhodomyrtone, a bioactive acylphloroglucinol compound isolated from the leaves of Rhodomyrtus tomentosa, has
been scientifically evidenced as a potential antibacterial agent. This study aimed to assess safety of rhodo-
myrtone in both invertebrate and vertebrate models.
Material and Methods: Safety of rhodomyrtone was determined in an invertebrate model, Galleria mellonella as
well as vertebrate models including zebrafish (Danio rerio) and murine. In addition, toxicity to human ery-
throcytes was also measured.
Results: Treatment of Galleria mellonella with rhodomyrtone at 100 mg/kg body weight up to four days showed
no visible toxic effects (100 % survival). In zebrafish embryo model, at least 80 % survival of embryos was
demonstrated when treated with rhodomyrtone at 0.5 μg/mL for three days. Prior to clinical trial, it is a pre-
requisite that rhodomyrtone has to be evaluated for its biocompatibility with human blood components. The
results displayed that rhodomyrtone at 256 μg/mL did not cause any observable human erythrocyte haemolysis.
Furthermore, preclinical assessment of rhodomyrtone formulation justified potential applications of rhodo-
myrtone in humans. Oral toxicity testing in a mouse model indicated the absence of systemic toxicity when the
animals received up to 5000 mg/kg body weight of rhodomyrtone formulation for a period of fourteen days.
Conclusions: As the minimal inhibitory concentration of rhodomyrtone against most Gram-positive pathogens is
0.5−1 μg/mL, the results suggest that it should produce no toxic effects at concentrations used in human, thus
support further development in pharmaceutical industries and public health applications.

1. Introduction

Increasing antimicrobial resistance and lack of novel antibiotic de-
velopment are key challenges to global health. There is an urgent need
to develop new agents for clinical practice. Natural products and their
derivatives have been of crucial importance in identification and de-
velopment of antibacterial agents [1]. Rhodomyrtus tomentosa (Aiton)
Hassk. has been traditionally used in Southeast Asian countries to re-
lieve various inflammatory symptoms such as diarrhoea, gynaecopathy,
urinary tract infections, and wound infections [2]. Rhodomyrtone, a

bioactive acylphloroglucinol compound isolated from Rhodomyrtus to-
mentosa leaves, has been proposed as a natural antibacterial agent for
the treatment of Gram-positive bacterial infections [3–7]. Moreover,
antioxidant [8], immunomodulatory [9,10], anti-proliferative [11],
anti-acne [12,13], anti-metastatic [14], anti-inflammatory [9,15], anti-
psoriatic [15], and anti-depressant effects [16] of rhodomyrtone have
generated interest among researchers in the development and use of
rhodomyrtone in public health applications.

Medicinal plant-based antimicrobials play a vital role in the devel-
opment of effective therapeutics [17]. In order to reach safe
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applications in human, detailed studies on their toxicity issues have
been reported, for example, Cassia fistula L. [18], Musa sp. [19], and
Rubus fruticosus L. [20]. Similarly, safety assessment of rhodomyrtone is
required for further development as human medicine. Up until now,
very limited information is available on the toxicity of rhodomyrtone.
Previous studies indicated that rhodomyrtone at concentrations higher
than 200 μg/mL revealed very low cytotoxic effects on normal human
fibroblasts [12]. Also, a brief report on the effects of rhodomyrtone on
human erythrocytes has been documented [5]. In addition, rhodo-
myrtone formulation produced no skin irritation in rabbits indicating
that the compound could be a novel candidate for clinical development
[11]. However, there have been no in vivo toxicity tests of systemic
application of rhodomyrtone.

Rodent models have been proposed as the gold standard for toxicity
assessment, however, there are limitations of high costs, inconsistent
responses, and ethical issues [21,22]. Recently, alternative lower hier-
archy animal models such as zebrafish (Danio rerio) [23–25] and insect
larvae (Galleria mellonella) [26–28] have been employed as they offer
various benefits such as reduced ethical concerns, high throughput, and
in some cases, easier genetic manipulation, compared with traditional
rodent models. In addition, both zebrafish [29] and larvae [30,31] have
innate immune system similar as in mammals or jawed vertebrates.
Therefore, assessment of rhodomyrtone toxicity in invertebrate model
may additionally facilitate the identification of organ-specific or sys-
temic toxicity in mammals.

In order to characterize and further justify the potential use of
rhodomyrtone in pharmaceutical industries and public health applica-
tions, this study aimed to assess the safety of rhodomyrtone in an in-
vertebrate model, Galleria mellonella, and vertebrate models including
zebrafish (Danio rerio) and mice. Additional experiments were also
carried out on human erythrocytes.

2. Material and methods

2.1. Rhodomyrtone purification

Rhodomyrtone was isolated from Rhodomyrtus tomentosa leaves by
our research group [3] and the purity of rhodomyrtone was confirmed
by nuclear magnetic resonance and mass spectrometry [32]. Stock so-
lutions of rhodomyrtone were prepared by dissolving 50 mg of the
compound in 1 mL of 100 % DMSO and stored at −20 °C until further
used.

2.2. Preparation of rhodomyrtone formulation

Rhodomyrtone formulation was previously described by Chorachoo
et al. [11]. The composition of the formulation was carbopol ultrez 21
0.2 g, DC RM 2051 2 g, fumed silica 0.5 g, glycerin 20 g, mineral oil 26
g, propylene glycol 30 g, rhodomyrtone 0.01−0.9 g, and distilled water
q.s. to 100 g. The raw materials used in the formulation base were
accurately weighed and the mixture was stirred until congealed at room
temperature.

2.3. Galleria mellonella survival assay

Galleria mellonella larvae were obtained from UK Waxworms Ltd
(Sheffield, UK) and stored at room temperature in darkness with a
nonrestricted diet. Larvae weighing within the range of 250–350 mg
were selected for each experiment and were used within one week of
receipt. Briefly, each group of fifteen randomly-selected larvae was
injected with 10 μL of rhodomyrtone (50 and 100 mg/kg). PBS-injected
and unmanipulated control groups were included with each experi-
ment. Larvae were incubated at 37 °C and the survival rate of larvae
was measured at one day interval over four days incubation.
Experiments were performed in duplicate using larvae from different
batches [33].

2.4. Zebrafish embryo toxicity assay

Zebrafish embryo toxicity was carried out following the method
from Morash et al. [34]. Zebrafish embryos at 24 h post fertilization
were used to determine the toxic effect of rhodomyrtone in 96-well
plates. The embryos were manually dechorionated, placed directly into
E3 medium (15 mM NaCl, 0.5 mM KCl, 1 mM CaCl2, 1 mM MgSO4, 0.05
mM Na2HPO4, 0.7 mM NaHCO3), with or without rhodomyrtone. Rho-
domyrtone was tested on 40 embryos at 0.125, 0.5, 2, and 8 μg/mL for
five days. Twenty microliters of the compound was added in 180 μL of
E3 medium supplemented with 0.01 % methylene blue. The plates were
incubated at 28 °C and monitored for survival at regular intervals using
stereomicroscope. The scoring of living versus dead embryos was as-
sayed by the presence of a heartbeat and circulating blood. Control
embryo with 1 % DMSO was incubated under the same conditions. For
rhodomyrtone injection into zebrafish, dechorionated embryos were
anesthetized with 0.4 % tricaine prior to injection. Two nanoliters of
rhodomyrtone (0.5, 5, 10, 20, and 40 μg/mL) were microinjected into
the yolk circulation valley of the embryos. Injected embryos were re-
turned to E3 medium and monitored for survival as described pre-
viously.

2.5. Erythrocyte haemolysis assay

Haemolytic activity was determined following a modified method of
Lin and Haynes, [35]. Briefly, 5 mL of blood sample was added to 10 mL
of PBS, and then red blood cells (RBCs) were isolated from serum by
centrifugation at 10,000 rpm for 10 min.. The RBCs were further wa-
shed five times with 10 mL of PBS solution. The purified blood was
diluted in 50 mL of PBS. RBCs, incubated with 0.5 % Triton-X and PBS,
were used as positive and negative controls, respectively. Cells were
incubated with 16, 32, 64, 128, 256, and 512 μg/mL rhodomyrtone at
room temperature for 0.5, 1, 2, and 3 h. Finally, the mixtures were
centrifuged at 10,000 rpm for 3 min. and 100 μL of supernatant of all
samples was transferred to a 96-well plate. The absorbance values of
the supernatants at 570 nm were determined using a microplate reader.
The percent haemolysis of RBCs was calculated according to the
equation: percent haemolysis = [(sample absorbance - negative control
absorbance)/(positive control absorbance - negative control absor-
bance)] × 100.

2.6. Acute oral toxicity study in mouse model

In accordance to Organisation for Economic Co-operation and
Development (OECD) guidelines no. 425 [36], animal experiments
were approved by the Ethics Committee for Animal Experiments of
Thailand Institute of Scientific and Technological Research (No. TS-
59001). Thirty mice from Institute of Cancer Research (ICR) were em-
ployed and acclimatized to the laboratory environment for one week,
then the mice were divided into three groups with ten mice per group.
Animals were fasted for 8 h prior to dosing but had access to water. A
single dose of each formulation was administered via oral gavages ac-
cording to body weight (approximately 0.5 mL/animal). Groups were
treated as follows: group I; normal control mice treated with distilled
water, group II; treated with a single dose of 2000 mg/kg body weight
of rhodomyrtone formulation, and group III; treated with a single dose
of 5000 mg/kg body weight of rhodomyrtone formulation. The animals
were closely observed for the first 30 min., then for 1 and 3 h. Food was
withheld after 3−4 h of dosing. Each group was noticed closely for any
toxic effects within the first 4 h and then at regular intervals for a total
period of fourteen days. Body weights of animals were taken on day 1,
7, and 14. At the end of the study, surviving animals were sacrificed and
both internal organs including kidney and liver were removed for his-
topathological evaluation.
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3. Results and discussion

3.1. Toxicity of rhodomyrtone in Galleria mellonella

Caterpillars of the Greater Wax moth, Galleria mellonella represents
a useful preliminary model for assessing in vivo efficacy of new anti-
bacterial agents before proceeding to mammalian studies. The in-
vertebrate model Galleria mellonella is simple to use, inexpensive, and
no ethical approval is required [26]. Use of a Galleria mellonella model
to determine compound toxicity revealed a strong positive correlation
with data obtained from mammalian models, for example, mice [28]
and rats [27,28]. In this study, Galleria mellonella larvae were used to
study acute systemic toxicity of rhodomyrtone. The larvae were in-
jected with 50 and 100 mg/kg of the compound and monitored for a
four-day period. As shown in Fig. 1, the compound at both concentra-
tions did not exert any toxic effects in the larvae up to four days post-
treatment (100 % survival). A number of works confirmed strong an-
tibacterial potency of rhodomyrtone against a wide range of Gram-
positive bacteria with low minimal inhibitory concentration values
(0.5−1 μg/mL), comparable to vancomycin [3,5].

3.2. Toxicity of rhodomyrtone on zebrafish embryos

Zebrafish is a prominent vertebrate model for research in genetics,
development, regeneration, and toxicology. In addition, zebrafish has
become a popular and powerful model over other vertebrate species
because of its small size, easy husbandry, and prolific breeding [23,25].
In this study, zebrafish embryos provide a rapid approach to determine
cytotoxicity of rhodomyrtone. Early development of zebrafish embryos
corresponds to the most sensitive phase to external stimuli such as
toxicants, chemicals, and mechanical stress [37]. As shown in Table 1,
embryos kept in E3 medium with rhodomyrtone at 0.125 and 0.5 μg/

mL for five days showed no toxicity (100 % survival). However, in
higher concentrations of rhodomyrtone (2 and 8 μg/mL), it was noted
that E3 medium became highly turbid which directly affected the
overall activity of the zebrafish embryos after certain period. It is well-
documented that water turbidity can affect fish behaviour [38]. In
addition, it has been clearly demonstrated that zebrafish kept in water
of higher turbidity displayed lower activity level, lower aggression, and
higher shoaling tendency [39]. Therefore, in the next series of experi-
ments, we directly injected rhodomyrtone (0.5, 5, 10, 20, and 40 μg/
mL) and 1 % DMSO as a control, into the yolk cells. One day post-
fertilization, 82.5–90 % survival embryos in rhodomyrtone treatment
group were observed (Table 2). With 1 % DMSO in the control group,
77.5 % were detected. Other works have reported similar percentage of
spontaneous early mortality [40,41]. Up to 70 % is acceptable for fer-
tilization rate (OECD guidelines no. 236 [42]). Rhodomyrtone at
0.5−20 μg/mL resulted in 75–90 % survival of embryos throughout the
treatment period (4 days) (Table 2). However, similar survival rate in
rhodomyrtone and 1% DMSO were noted on day 4 which may due to
external stimuli [37].

3.3. Haemolytic property of rhodomyrtone on human erythrocytes

Haemolytic property is a major factor limiting the clinical use of
antimicrobial compounds. The use of human erythrocytes as a test to
evaluate cytotoxicity of new antimicrobial agents is commonly em-
ployed. The erythrocyte model is fast, reproducible, and inexpensive
and thus contributes to decreasing, refining, and replacing studies
conducted with animals [35,43]. A previous study demonstrated the
safety of rhodomyrtone at 64 μg/mL in human erythrocytes after 30
min. [5]. In this study, extended studies on human erythrocytes were
set up. Human erythrocyte haemolysis assay after exposure to rhodo-
myrtone at 16, 32, 64, 128, 256, and 512 μg/mL for 0.5, 1, 2, and 3 h
was performed and is shown in Fig. 2. Compared to a positive control of

Fig. 1. Survival rate of Galleria mellonella larvae following feeding with different concentrations of rhodomyrtone (50 and 100 mg/kg) at one day interval over four
days of incubation. Experiments were performed in duplicate using larvae from different batches.

Table 1
Survival rate of zebrafish embryos (n = 40) after treatment with rhodomyrtone.

Treatment Zebrafish embryos survival (%)

1 h 1 Day 2 Day 3 Day 4 Day 5 Day

Rhodomyrtone (μg/mL)
0.125 100 100 100 100 100 100
0.5 100 100 100 100 100 100
2 100 NA NA NA NA NA
8 100 NA NA NA NA NA
1% DMSO 100 100 100 100 100 100

1% DMSO was used as a negative control.
NA: not applicable.

Table 2
Survival rate of zebrafish embryos (n = 40) after rhodomyrtone injection.

Treatment Zebrafish embryos survival (%)

1 Day 2 Day 3 Day 4 Day

Rhodomyrtone (μg/mL)
0.5 87.5 82.5 80 75
5 90 82.5 77.5 72.5
10 90 80 77.5 72.5
20 87.5 75 75 75
40 82.5 77.5 75 65
1% DMSO 77.5 70 67.5 67.5
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0.5 % Triton X-100 where 100 % haemolysis was observed, rhodo-
myrtone did not cause any observable haemoglobin release even at 256
μg/mL. In addition, after 3 h incubation, rhodomyrtone caused less
than 11 % haemolysis even at the highest concentration tested. Dif-
ferent degrees of cytotoxicity are classified as non-toxic (0–9 %),

slightly toxic (10–49 %), toxic (50–89 %), and highly toxic (90–100 %)
[32].

3.4. Mortality and histological findings after oral treatment of
rhodomyrtone formulation in a mouse model

Mouse models have been used as predictors of human responses as
they have genetic and physiological similarities between both species
[44,45]. Mice offer a number of benefits, for instance, small, in-
expensive to maintain, and easy to ship. In addition, they have short
generation times and produce large numbers of offspring [44]. Safety
assessment of rhodomyrtone formulation obtained from the mouse
model provides further evidence that development of rhodomyrtone for
possible use in humans is warranted. In this study, oral administration
of rhodomyrtone formulation at single doses of 2000 and 5000 mg/kg
for fourteen days indicated no significant abnormal change in beha-
vioral properties of mice and no mortality. Moreover, the body weight
of tested animals of both control and treated groups increased gradually

Fig. 2. Haemolytic property of rhodomyrtone on human erythrocytes. The percent haemolytic of red blood cells (RBS) of various concentrations of rhodomyrtone (A)
and images of RBCs treated with rhodomyrtone (B). The positive and negative controls used in this study were 0.5 % Triton-X and PBS, respectively. Values are
expressed as mean ± SEM.

Table 3
Effects of rhodomyrtone formulation on body weight and mortality of mice in
acute toxicity study.

Groups Body Weight (g) Mortality

1 Day 7 Day 14 Day

Rhodomyrtone formulation
2000 mg/kg 31.7 ± 0.74 34.1 ± 0.85 35.6 ± 0.77 Not found
5000 mg/kg 31.2 ± 0.65 32.9 ± 0.72 34.7 ± 0.60 Not found
Vehicle control 31.6 ± 0.68 34.2 ± 0.81 36 ± 0.60 Not found

Values were presented as mean ± SEM. (n = 10).
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throughout the study period as presented in Table 3. The difference in
body weight between the control and the tested groups were not sta-
tistically significant. Regarding the histopathological evaluation, all
internal organs including kidney and liver did not show any gross pa-
thological changes (Fig. 3). The results clearly demonstrated that rho-
domyrtone formulation was safe up to 5000 mg/kg in mice.

4. Conclusions

The findings revealed that rhodomyrtone did not cause any signs of
toxicity in both invertebrate and vertebrate models. It is evident that
the compound did not produce any interaction with red blood cells.
This study provides valuable information to support the development of
rhodomyrtone in pharmaceutical industries and public health applica-
tions.
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