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Chronic infection with hepatitis B virus (HBV) has long been recognized as a dominant hazard factor for hepatocellular carcinoma
(HCC) and accounts for at least half of HCC instances globally. However, the underlying molecular mechanism of HBV-linked
HCC has not been completely elucidated. Here, three microarray datasets, totally containing 170 tumoral samples and 181
adjacent normal tissues from the liver of patients suffering from HBV-related HCC assembled from the Gene Expression
Omnibus (GEO) database, were subjected to integrated analysis of differentially expressed genes (DEGs). Subsequently, the
analysis of function and pathway enrichment as well as the protein-protein interaction network (PPI) was performed. The ten
hub genes screened out from the PPI network were further subjected to expression profile and survival analysis. Overall, 329
DEGs (67 upregulated and 262 downregulated) were identified. Ten DEGs with the highest degree of connectivity included
cyclin-dependent kinase 1 (CDK1), cyclin Bl (CCNBI), cyclin B2 (CCNB2), PDZ-binding kinase (PBK), abnormal spindle
microtubule assembly (ASPM), nuclear division cycle 80 (NDC80), aurora kinase A (AURKA), targeting protein for xenopus
kinesin-like protein 2 (TPX2), kinesin family member 2C (KIF2C), and centromere protein F (CENPF). Kaplan-Meier analysis
unveiled that overexpression levels of KIF2C and TPX2 were relevant to both the poor overall survival and relapse-free survival.
In summary, the hub genes validated in the present study may provide promising targets for the diagnosis, prognosis, and
therapy of HBV-associated HCC. Additionally, our work uncovers various crucial biological components (e.g., extracellular
exosome) and signaling pathways that participate in the progression of HCC induced by HBV, serving comprehensive
knowledge of the mechanisms regarding HBV-related HCC.

1. Introduction

Based on the new statistics in 2018, hepatocellular carcinoma
(HCC) has been estimated to be the seventh most prevalent
cancer and the third major cause of tumor-related death
worldwide [1]. One of the leading risk factors for HCC is
hepatitis B virus (HBV). HBV is the primary reason for
HCC in Africa and East Asia, accounting for approximately
80 percent of all cases of HCC associated with the virus
worldwide [2]. As an oncogenic virus, HBV has been known
as a trigger of HCC even in the absence of cirrhosis. However,
the risk of HCC is affected by heredity, infection, and nutri-

tional and lifestyle factors in those infected with HBV [3].
The mechanisms of HBV-related HCC have been proposed
to be linked with chronic inflammation and hepatocellular
regeneration [4]. More importantly, the integration of HBV
DNA into the host genome activates the host genes responsi-
ble for cell survival, proliferation, and immortalization [5]. In
addition, the epigenetic regulation of tumor suppressor genes
by HBV protein is involved in the initiation and progression
of HCC induced by HBV [6]. While many attempts have
been made to comprehend the mechanism for HBV-
triggered HCC, the prevention and treatment of the disease
remain a significant challenge. Effective biomarkers for the
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diagnosis, prognosis, and therapy of HBV-related HCC are
therefore urgently required in order to enhance the survival
rate of patients.

High-throughput sequencing (RNA-seq) and microar-
rays have been commonly used in the molecular diagnosis
and discovery of novel cancer biomarkers [7]. These tech-
niques are excellent options to profile massive gene expres-
sion datasets so that the mechanisms underlying HCC are
interpreted in depth. RNA-seq and microarrays have so
far been used as evidence for hundreds of differentially
expressed genes enriched by various signaling pathways
and biological processes to reveal molecular markers clini-
cally for a specific tumor type [8]. Studies related to com-
parative DEG analysis between HBV-induced tumor and
normal tissues in the liver are limited. The potential molec-
ular mechanisms of HBV-related tumor in the liver may
therefore be clarified through the identification of hub
genes (the genes that possess plenty of interactions with
other genes and typically play vital roles in the regulation
of signaling pathways and biological processes [9]) using
bioinformatic analysis, thus conducing to developing effi-
cient novel diagnostic and therapy strategies.

Since the variability occurs in different projects, bioin-
formatic techniques can assist in acquiring more accurate
biomarkers by integrating information from multiple pro-
jects. In the present study, we integrated three datasets
obtained from the GEO database and attempted to identify
hub genes and pathways and to screen for the potential
therapeutic targets of HCC induced by HBV infection
using bioinformatic analysis.

2. Materials and Methods

2.1. Data Collection. The workflow of this study is presented
in Figure 1. The dataset search was performed by using terms
(“HCC” [Description] OR “tumor” [Description] OR “hepa-
tocellular carcinoma” [Description]) AND (“HBV” [Descrip-
tion] OR “hepatitis B virus” [Description])) AND “Homo
sapiens” [Organism]) AND “Expression profiling by array”
[DataSet Type] in the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) founded by
the National Center for Biotechnology Information. The
datasets were required to fulfill the following criteria: (1)
the data were obtained from a clinical study, not the study
focusing on a cell line or specific immune cells; (2) the sample
size of the dataset had to be greater than one hundred; and
(3) the comparison subjects had to be HBV-related tumoral
vs. adjacent nontumoral liver tissues. Three microarray data-
sets represented different racial populations (France, United
States, and Singapore) including GSE47197, GSE55092, and
GSE121248 which were finally selected from the search
results. Data from GSE47197 was based on GPL16699 plat-
forms (Agilent-039494 SurePrint G3 Human GE v2 8x60K
Microarray 039381) and contained 63 nontumoral and 61
tumoral samples of the liver infected with HBV (last update
date: 23 April 2018). Gene expression profiling from
GSE55092 and GSE121248 were based on GPL570 platforms
([HG-U133_Plus_2] Affymetrix Human Genome U133 Plus
2.0 Array). The GSE55092 dataset (last update date: 25

International Journal of Genomics
Data collection from the GEO database
(GSE47197, GSE55092, and GSE121248)
Data preprocessing with
GEO2R and DEG analysis
Function and pathway enrichment analysis of
DEGs (GO and KEGG analysis)
Integration of the PPI network and identification
of hub genes and modules
Verification of the 10 hub genes in
the Oncomine database
Performing survival analysis of hub genes by
Kaplan-Meier plotter

F1GURE 1: The workflow diagram of data acquisition, preprocessing,
analysis, and validation.

March 2019) included 81 and 39 samples, respectively, from
nontumor and tumor areas of liver tissues from HBV-
associated HCC patients, while the GSE121248 dataset (last
update date: 25 March 2019) contained 37 adjacent normal
tissues and 70 tumoral samples of liver tissues from patients
suffering from HCC induced by HBV infection.

2.2. Data Preprocessing and DEG Analysis. GEO2R (https://
www.ncbi.nlm.nih.gov/geo/geo2r/), an interactive internet
instrument provided by the National Center for Biotechnical
Information, was used 5for identifying DEGs between non-
tumoral and tumoral liver samples from HCC patients with
HBYV infection. The principle of GEO2R is based on using
the GEOquery and limma R packages from the Bioconductor
project which carries out a comparison on processed data
tables of microarray data provided by an initial submitter
[10-12]. As a cutoft criterion, adjusted P value < 0.05 and |
logFC | >1.0 were used for identifying aberrantly expressed
genes which were visualized by a volcano plot. The final data-
set of DEGs was achieved through the overlapping of the
three datasets using an online tool that generates a textual
and graphical output (http://bioinformatics.psb.ugent.be/
webtools/Venn/).

2.3. Function and Pathway Enrichment Analysis of DEGs.
The enrichment analysis of DEG-associated functions
and pathways was evaluated by the Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
databases. The GO project provides a useful approach in
which biological functions are interpreted and displayed,
and it covers three concepts including Biological Process
(BP), Cellular Component (CC), and Molecular Function
(MF). The KEGG pathway represents the integration of
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biological molecular interaction and reaction networks,
curated from academic literatures. GO and KEGG analyses
were performed with the Database for Annotation, Visual-
ization and Integrated Discovery (DAVID, version 6.8)
(https://david.ncifcrf.gov/) [13] and ClueGO (version
2.5.4) [14], an app operated in Cytoscape (version 3.7.1,
https://cytoscape.org/) [15]. A P value < 0.01 and gene
counts > 8 (for KEGG analysis: >6) were considered statis-
tically significant (the gene count is an arbitrary value that
can be set to as low as 3 under the premise of preserving
important terms judged by a user). To connect the terms
in the network, ClueGO utilizes kappa statistics in which
the kappa score was set as >0.4 in the current study.

2.4. Integration of the PPI Network and Identification of Hub
Genes and Modules. The protein-protein interaction (PPI)
network was constructed by submitting a DEG list to the
STRING (Search Tool for the Retrieval of Interacting Gene-
s/Proteins) database (http://string-db.org/, version 11.0)
[16]. The minimum required interaction score was 0.7 (high
confidence). Posteriorly, the PPI network was displayed with
Cytoscape software (version 3.7.1). By calculating the con-
nectivity degree (the number of other nodes that interact
directly with one specific node) of each protein node using
CytoHubba (a plugin in Cytoscape) [17], the top ten genes
with the highest connectivity degrees were recognized as
hub genes for HBV-associated HCC. The modules in the
PPI network were evaluated with an MCODE plugin of
Cytoscape software [18] by using the default parameter,
followed by a pathway analysis with Reactome [19] (https://
reactome.org/) Pathway Browser version 3.6.

2.5. Verification of the Hub Genes in the Oncomine Database.
The ten candidate hub genes were validated by Oncomine
(https://www.oncomine.org/) which is a microarray cancer
database with a web-based data mining platform to support
the analysis of genome-wide expression [20]. Datasets were
filtered by cancer type (liver cancer) and analysis type (cancer
vs. normal analysis) and then were set a threshold by a P
value less than 1 x 107* and genes ranked top 10%. Accord-
ing to the sample size, patient type, and overexpression/copy
number gain gene rank, results from Roessler et al. [21] and
Guichard et al. [22] displayed in Oncomine were selected
for the evaluation of the hub gene expression levels in liver
tissues from HBV-related HCC patients, compared with
those in normal liver tissues. Oncomine offers statistical sig-
nificance by using Student’s ¢-test. The thresholds were set to
“lE -4, 2, and 10%,” respectively, for the P value, fold
change, and gene rank.

2.6. Survival Analysis of Hub Genes. Survival analysis was
conducted in a Kaplan-Meier plotter online tool (http://
kmplot.com/analysis/) [23, 24]. As highlighted by Goel
et al. [25], the Kaplan-Meier prediction is one of the best
methods for calculating the proportion of individuals who
live after treatment for a period of time. This method previ-
ously has been widely used in the survival analysis for multi-
ple cancer types including hepatocellular carcinoma [26, 27],
breast cancer [28], ovarian cancer [29], pancreatic carcinoma

[30], and gastric cancer [31]. Based on multiple databases
handled by the integration of gene expression and clinical
data, a Kaplan-Meier survival plotter enables survival predic-
tion over time, even when patients quit or are observed for
different durations [25]. It provides the comparison of the
survival rate between patient cohorts with low and high
expression level of a particular gene and calculates the log-
rank P value and hazard ratio (HR) with 95% confidence
intervals. In hepatitis virus-infected liver cancer patients,
the Kaplan-Meier plotter mRNA liver cancer database
[24] was implemented to estimate prognostic values for
hub genes. Patients were split by autoselect best cutoff
(all potential cutoff values are assessed from the lower to
upper of the quartiles, and the most effective threshold is
used as a cutoff). Hepatitis virus as a risk factor was
included in the analysis. Meanwhile, an alcohol consump-
tion factor was eliminated.

2.7. Statistical Analysis. The adjusted P values of data from
the GEO DataSets were calculated with GEO2R software.
Data with an adjusted P value less than 0.05 was regarded
as statistically significant. The GO terms and the KEGG path-
ways were considered significantly enriched with a value of
P <0.01. For the Kaplan-Meier analysis, hazard ratios (HR)
with 95% confidence intervals and logrank P values were
calculated. A logrank P value less than 0.05 was taken as a
statistically significant difference.

3. Results

3.1. Identification of DEGs in HBV-Associated HCC. Gene
expression profiles of HBV-induced tumor and adjacent nor-
mal liver tissue were obtained from GSE47197, GSE55092,
and GSE121248. In total, the three datasets contained 181
nontumoral and 170 tumoral samples of the liver infected
with HBV. Following the cutoff criterion (adjusted P value
< 0.05 and |logFC|>1.0), 709 DEGs (137 upregulated and
572 downregulated DEGs) were attained from GSE47197,
1743 DEGs including 699 upregulated and 1044 downregu-
lated DEGs were identified from GSE55092, and 879 DEGs
(310 upregulated and 569 downregulated DEGs) were
extracted from GSE121248. The distribution of DEGs was
illustrated by volcano plots as shown in Figure 2(a). The
Venn diagrams showed the number of overlapping genes
across the three datasets. A total of 329 genes overlapping
with 67 upregulated and 262 downregulated DEGs were
found within the common region (Figure 2(b) and Table 1).

3.2. Gene Ontology Enrichment Analysis of DEGs in
HBV-Related HCC. To gain a more profound understanding
of the function of DEGs, GO function analysis was carried
out using both DAVID and ClueGO. According to the results
from DAVID (Figure 3(a) and Table S1), the GO annotation
regarding biological processes significantly regulated by the
DEGs included “cell division,” “mitotic nuclear division,”
and “inflammatory response” (P < 0.01). The category from
cellular components was associated with “extracellular
exosome,” “blood microparticle,” “extracellular space,”
“mitochondrion,” and “extracellular region” (P < 0.01). The
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FIGURE 2: Volcano plots and Venn diagrams of differentially expressed genes (DEGs) selected from three Gene Expression Omnibus (GEO)
datasets. (a) Volcano plots of DEGs in normal and tumoral liver samples of HCC patients with HBV infection in GSE47197, GSE55092, and
GSE121248. DEGs were filtered by adjusted P value < 0.05 and |log, (fold change) | >1. The red and green dots display the distribution of all

the significant upregulated (red dots) and downregulated (green dots) DEGs in the three datasets, respectively. (b, ¢) The Venn diagrams of
overlapping DEGs from an intersection of upregulated and downregulated genes in the three datasets.

ontology source from molecular functions of DEGs was
involved in “heme binding,” “chemokine activity,”
“oxidoreductase activity,” “iron ion binding,” “pyridoxal
phosphate binding,” and “identical protein binding”
(P<0.01). Based on the analysis of ClueGO, the resulting
terms and their network connections are shown in
Figure 3(b) (detailed information in Supplementary PDF file
1), and the percentage of core terms for each group is
displayed in Figure 3(c).

3.3. KEGG Pathway Enrichment Analysis in HBV-Induced
HCC. Following the functional annotation analysis by
DAVID, DEGs were significantly enriched in “metabolic path-
ways,” “complement and coagulation cascades,” “biosynthesis
of amino acids,” “bile secretion,” “biosynthesis of antibiotics,”

” “carbon metabolism,” “cell cycle,”

» <

“p53 signaling pathway,
etc. for the KEGG pathway (Figure 4(a) and Table S2), while
results from ClueGO indicated that pathways including
“fatty acid degradation,” “complement and coagulation
cascades,” “p53 signaling pathway,” “arginine biosynthesis,”
“bile secretion,” “glycine, serine, and threonine metabolism,”

» «

“tryptophan metabolism,” and “PPAR signaling pathway”
were significantly enriched (Figures 4(b) and 4(c)).

3.4. Screening of Hub Genes and Module Analysis from
DEGs in the Protein-Protein Interaction (PPI) Network.
The PPI network with 325 nodes and 843 edges predicted
using STRING 11.0 with a score>0.7 (high confidence)
was visualized by Cytoscape as shown in Figure 5(a)
(detailed information in Supplementary PDF file 2). The
top ten hub genes in the PPI network were identified by the
connectivity degree (Table 2). The top ten nodes with the
highest degrees included cyclin-dependent kinase 1 (CDKI,
degree =41), cyclin Bl (CCNBI, degree=37), cyclin B2
(CCNB2, degree = 37), PDZ-binding kinase (PBK, degree =
34), abnormal spindle microtubule assembly (ASPM,
degree = 34), nuclear division cycle 80 (NDC80, degree =
33), aurora kinase A (AURKA, degree = 33), targeting pro-
tein for xenopus kinesin-like protein 2 (TPX2, degree = 32),
kinesin family member 2C (KIF2C, degree = 32), and centro-
mere protein F (CENPF, degree = 32). The network of genes
most closely related to the 10 hub genes is shown in
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TasBLE 1: 329 differentially expressed genes (DEGs) (67 upregulated and 262 downregulated) filtered by the integration of three microarray
datasets.

DEGs Gene name

SPINK1 TKT HSPB1 TPX2 S100P CCNB1 CLGN ASPM FLVCR1 CCDC34 AKR1B10 GINS1 KNL1 KPNA2 SMYD3
BIRC5 STIL UBE2C THBS4 FOXM1 EZH2 CCNB2 PRC1 CDK1 FABP5 CENPW RACGAP1 FANCI CENPU AURKA
MCM3 DTL FAM83D TOMM40L HMMR THY1 GPC3 CDKN2C CCL20 SPP1 KIF2C SQLE LCN2 AKR1C3 SEN PEG10
UHRF1 HN1 ZWINT CDKN2A NDC80 KIAA0101 REG3A RFC4 OIP5 CDKN3 PBK TRIP13 PTTG1 STMN1 UBE2T

CRNDE CENPF NUSAP1 CD109 TP5313 DEPDC1

CYP26A1 BBOX1 XDH CXCL14 ACOT12 IGF1 HSD17B2 CYP39A1 EPB41L4A C1R PROZ C8A HRG ZG16 DEPDC7
MBL2 RCL1 SLCO1B3 SORL1 TRPMS8 BCO2 DEFB1 TEK DACH1 TMEM45A FAM150B FOLH1B GHR CLEC1B
CCL19 BHMT PON1 POU2AF1 STEAP3 SHBG ATOHS8 DNASE1L3 BCHE HAO1 ID1 GPD1 FAM110C CRHBP ASS1
F9 IDO2 IGFALS SLC38A4 ACADL DBH TBXA2R CRP COLEC11 SLC39A5 SRD5A2 EGR1 ECM1 AKR7A3 SLC3A1
MS4A6A FCN2 CYP4V2 KLKB1 F11 MT1G ABCAS8 SLC19A3 PGLYRP2 LINC01093 STEAP4 SLC22A1 ALDH6A1
ZFP36 MFSD2A ANO1 APOAS5 HOGA1 CHST4 CFHR4 PPP1R3B RCAN1 MAN1C1 PANKI1 PHGDH ARG1 PCK1
KBTBD11 SULT2A1 ADH1C DPYS CYP2C9 CYP2A7 CYP2E1 SULF2 CTH CLEC4M GABARAPLI1 ESR1 ADAMTSL2
RND3 ILIRAP RDH16 ANG DMGDH TMEM27 AFM HPGD MFAP3L THRSP CYP4A11 AGXT2 NR4A3 MT1X
SERPINF2 §100A8 C7 MRC1 TBX15 BMPER AADAT CCL2 NNMT SERPINA4 EPHX2 APOF GCDH FAM13A
GADD45B GRAMDI1C SLC7A2 TUBE1 GREM2 SDS ETNPPL DPT PRKAR2B LUM HPD SLC25A47 FLJ22763 SKAP1
EXOC3L4 SLC10A1 NAMPT ACADSB MT1E ANXA10 TTC36 GYS2 SH3YL1 ETFDH CD5L LPA C8B CXCL2
SLC22A7 TAT LIFR CYP4F2 PLGLB2 COLEC10 VNN1 LYVE1 CYP2C18 FGA FOS ALDH8A1 NAT2 MASP2 AKR1D1
PAMRI1 CXCL12 GNMT TACSTD2 A1BG ACSL1 SLC16A4 CA2 FBP1 ADH4 OIT3 GLYAT ADH1A ANGPTL6 CFTR
CETP INMT HBB SRPX ENO3 LECT2 ADAMTS13 PLG SOCS2 SLC13A5 CCL5 SPP2 HAO2 ACMSD IL33 HHIP
ADHI1B KCNN2 GSTZ1 LY6E CPS1 CNDP1 TKFC FCN3 ACACB GBA3 PDGFRA RNF125 CLEC4G OTC CDH19
FXYD1 HPX KMO ANK3 FOSB FAM65C SLC27A2 MARCO ADH6 LCAT MT1H TDO2 VIPR1 IGFBP3 PLAC8 GPT2
CFP CYP8B1 CD69 FTCD CIDEB TFPI2 LHX2 STAB2 HGFAC PTH1R MT2A NRG1 ADGRG7 CDA ZGPAT OGDHL

Upregulated

Downregulated

PZP CYR61 CP HSD17B6 SLC27A5 JCHAIN GLS2 SLC51A C6 PTGIS C9 FBLN5 CDHR2 OAT

Figure 5(b). Meanwhile, the linkage between the 10 core genes
is presented in Figure 5(c). Additionally, we picked out two
modules with the highest degree from the PPI network by
using MCODE as shown in Figures 5(d) and 5(e). Following
the pathway analysis by Reactome, the DEGs in module 1 were
primarily enriched in “cell cycle, mitotic,” “cell cycle,” and
“cell cycle checkpoints,” while those in module 2 were mainly
gathered in “complement cascade” and “innate immune
system”.

3.5. Expression Level Validation and Kaplan-Meier Plot of
Hub Genes. In order to confirm the validity of the differen-
tial expressions for transcriptional level, the hub genes were
validated using the Oncomine database. All the ten hub
genes (CDK1, CCNBI1, CCNB2, PBK, ASPM, NDCB80,
AURKA, TPX2, KIF2C, and CENPF) were verified to be
significantly upregulated in tumor tissues from the liver of
HBV-HCC patients, compared with the normal liver tissues
(P <0.01) (Figures 6(a)-6(j)). The survival curves of the ten
hub genes were visualized by Kaplan-Meier plots. Hepatitis
virus-related HCC patients with high levels of CDKI,
CCNBI1, PBK, ASPM, NDC80, AURKA, TPX2, KIF2C,
and CENPF present a shorter overall survival (P <0.05)
which represents the time from randomization to death
(Figures 7(a)-7(i)). These genes are valuable in the diagno-
sis in a clinical study of HBV-HCC patients. The unfavor-
able prognostics of relapse-free survival (RFS, defined as
the probability of survival time until the first of relapse or
death) in the patients was, however, only observed in high
expression of KIF2C and TPX2 (P <0.05) (Figures 7(j)

and 7(k)). Therefore, KIF2C and TPX2 may be considered
biomarkers for the prognosis of patients suffering from
HBV-associated HCC.

4. Discussion

Since HBV infection continues to be a risk to public
health, HBV-related HCC will still be one of the major
cancers worldwide with serious economic impact on
healthcare systems [32]. To develop effective diagnosis
and treatment strategies, it is crucial to understand the
molecular mechanisms underlying HCC induced by HBV
infection. In the present study, three distinct group profile
datasets were incorporated to identify the DEGs by using
bioinformatic techniques. We identified a total of 67
upregulated and 262 downregulated DEGs, which are clus-
tered based on the functions and signaling pathways by
enrichment analysis. Following the results from GO
enrichment analysis, most of the DEGs function in “cell
division,” “mitotic nuclear division,” and “inflammatory
response.” These functional categories have been closely
associated with the development and progression of cancer
[33-35]. Then again, the enriched KEGG pathways
involved primarily in “metabolic pathways,” “complement
and coagulation cascades,” “biosynthesis of amino acids,”
“bile secretion,” “biosynthesis of antibiotics,” “p53 signal-
ing pathway,” “carbon metabolism,” and “cell cycle” are
all connected with tumor formation and progression [36-
43]. Thus, the screened DEGs may be valuable in the diag-
nosis and prognosis of HBV-related HCC. In order to
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>
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F1GURE 3: Gene Ontology (GO) enrichment analysis of DEGs following the evaluation by (a) the DAVID functional annotation and (b, c)
ClueGO plugin. (a) The histogram with orange, green, and yellow shows GO terms Biological Process (BP), Cellular Component (CC),
and Molecular Function (MF), respectively. (b) Functional connection of the enriched categories for DEGs (kappa score > 0.4). The GO
terms are depicted as nodes, whose size represents the degree of significance. (c) The pie chart shows the clusters of GO terms that were

labeled with diverse colors.

investigate the interplay of the DEGs, a network of PPI
was established and 10 hub genes upregulated in tumor
tissues of HBV-associated HCC including CDK1, CCNBI,
CCNB2, PBK, ASPM, NDC80, AURKA, TPX2, KIF2C,
and CENPF were screened out. According to the results
from the Kaplan-Meier plotter, CDK1, CCNBI1, PBK,
ASPM, NDCB80, AURKA, TPX2, KIF2C, and CENPF were
associated with the unfavorable prognosis for patients with
HCC induced by virus, and only high KIF2C and TPX2
expression, however, was linked with worse RFS. Recently,
reports from in silico analysis have also identified DEGs
for HBV-related HCC. Chen et al. [44], for example, have
analyzed the GSE32323 gene expression profile containing
21 HBV-positive samples, of which 11 are liver cirrhosis
and 10 are HCC tissues. Four of the 10 hub DEGs identi-
fied including CDK1, CCNB1, CCNB2, and KIF2C are in
accordance with our results. However, results from Chen
et al. were based on a dataset with small sample size,
and the comparisons were made on HBV-related tumor
tissue with cirrhosis samples, not normal tissues. Another
published work was performed by using four microarray
datasets totally containing 542 samples for bioinformatic
analysis of DEGs between HCC and normal samples
[45]. Three of their identified DEGs (CCNB1, CCNB2,
and TPX2) are consistent with our findings. Nonetheless,
it should be pointed out that the majority of their col-
lected samples (460 of the 542 samples) were based on
GSE14520 which was not designated as HBV-infected
samples. By contrast, we analyzed three datasets with 351
samples, each of which consisted of over 100 samples from
nontumoral and tumoral samples of liver tissues infected
with HBV. The hub genes identified in the present study
may therefore be more reliable.

Among the 329 DEGs, 86 are involved in “extracellular
exosome” according to our enrichment analysis result.
Exosome is defined as a nanosized vesicle enriched with

bioactive molecules (nucleic acids, lipids, proteins, and
metabolites), which is secreted by almost all types of cells
including normal and tumor cells [46]. Exosomes are
capable of transmitting signals between cells and triggering
activation or suppression of multiple signaling pathways in
recipient cells [47]. It has been known that tumor-derived
exosomes are closely related to oncogenesis and tumor cell
migration [48]. A recent study from Chen et al. [49] dem-
onstrated that HCC-derived exosomes induce a progres-
sion and recurrence of HCC by epithelial-mesenchymal
transition, which is associated with the activation of
mitogen-activated protein kinase (MAPK)/extracellular
signal-regulated kinase (ERK) signaling. Hence, the exo-
somes that derive from HCC may serve as promising bio-
markers for the diagnosis and therapy of HCC, through
delivering a range of bioactive molecules such as RNAs
and proteins. Other notable GO terms of interest enriched
by DEGs include “iron ijon binding” and “heme binding.”
Cancer cells have been well known to be addicted to iron,
which is modulated by aberrant iron metabolic proteins.
Iron depletion results in dramatically changes in cancer
cells including global histone and DNA methylation [50].
Apart from inducing a progression to tumor in the pres-
ence of cirrhosis, an overload of iron in hepatic tissue
may directly lead to HCC [51]. In contrast, a depletion
of iron has been found to suppress the growth of HCC
in an experimental study [52]. Targeting iron binding
and its associated pathway has been proposed as novel
cancer therapy [53]. Heme binding protein-released heme
exhibits highly prooxidative and proinflammatory effects
[54] and thereby may accelerate the development and pro-
gression of HCC. The medication such as biguanides tar-
geting heme binding has recently been reported to
display an antineoplastic effect [55]. It should be noted
that KEGG enrichment analysis in the present study
reveals various amino acid-associated metabolism
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F1GURE 4: Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs based on the DAVID functional annotation and
ClueGO plugin of Cytoscape. (a) KEGG enrichment analyzed by DAVID is displayed by a scatter plot. (b) The network with terms connected
to its kappa score point (>0.4) as evaluated by the ClueGO plugin. (c) Overview of the chart containing the most significant KEGG terms with
the corresponding colors.
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FIGURE 5: Protein-protein interaction (PPI) network, hub gene screening, and module analysis. (a) The PPI network constructed using
STRING 11.0 was visualized by Cytoscape. The upregulated genes are shown in green, while the downregulated genes are shown in bluish
violet. (b) The network directly associated with the top ten hub genes identified by CytoHubba. (c) The network of the top ten hub genes
filtered according to the degree method provided by CytoHubba. (d, e) The key modules identified using the MCODE plugin of
Cytoscape, which contains 27 nodes/344 edges and 16 nodes/34 edges, respectively.
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TaBLE 2: The top 10 hub genes identified by the degree method of
the plugin CytoHubba in Cytoscape software.

Gene symbol Description Degree
CDK1 Cyclin-dependent kinase 1 41
CCNB1 Cyclin B1 37
CCNB2 Cyclin B2 37
PBK PDZ-binding kinase 34
ASPM microcphily asocatd 8
NDC80 Nuclear division cycle 80 33
AURKA Aurora kinase A 33
ma e
KIF2C Kinesin family member 2C 32
CENPF Centromere protein F 32

pathways linked with HBV-related HCC including “bio-
synthesis of amino acids,” “arginine biosynthesis,” “trypto-
phan metabolism,” “tyrosine metabolism,” “glycine, serine,
and threonine metabolism,” and “alanine, aspartate, and
glutamate metabolism.” Results from metabolomics unveil
that serum levels of serine, glutamate, phenylalanine, orni-
thine, and tyrosine are remarkably elevated in both
patients suffering from HBV infection and HCC, com-
pared with healthy subjects [56]. The aberrant metabolism
of amino acids in tumor tissues may deliver novel diag-
nostic and therapeutic opportunities for HCC. For exam-
ple, arginine depletion by targeting arginase has been
regarded as a strategy to mitigate HCC, due to the argi-
nine auxotrophy of certain tumor cells with low capacity
of arginine synthesis [57]. Consistently, all the six DEGs
(GLS2, ASS1, FOLHIB, AGXT2, CPS1, and GPT2)
enriched in “arginine biosynthesis” in our results were sig-
nificantly downregulated in tumor hepatic tissue from
HBV-infected patients compared with adjacent nontumor
tissues. Hence, the regulation of key metabolic enzymes
of amino acids may conduce to intervening with the devel-
opment of HCC.

CDKI1, a master kinase regulating the mammalian cell
cycle, was found to be one of the hub genes with the high-
est degree of connectivity. The target genes of CDK1 pre-
viously have been identified which are involved in DNA
replication, chromosome segregation, transcriptional activ-
ity, cell morphogenesis, and genome stability [58]. Fur-
thermore, recent progress reported by Ravindran Menon
et al. has unveiled that CDK1 expedites tumor initiation
through the interaction with Sox2 (sex determining region
Y-box 2) [59]. It has been demonstrated that CDKI is
highly expressed in HCC and facilitates tumor progression
by means of CDK1-PDK1-p-catenin signaling [60]. Appli-
cation of an inhibitor targeting CDK1 (e.g., RO3306, BA-
12, and BP-14) provides antitumor responses in HCC via
suppressing the cell proliferation and viability [60-62].
However, cyclin B1-CDK1 kinase was reported to be sus-

International Journal of Genomics

tainedly activated by HBV X (HBx) protein, leading to
an inhibition in the growth of HCC cells [63]. Other
essential regulators related to the cell cycle screened in
our study include CCNB1 and CCNB2 encoding B-type
cyclin protein (cyclin B). Cyclin Bl serves to initiate the
transition of the G2 to M phase by binding with CDK1
and provide checkpoint in the G2/M phase via the cyclin
B1-CDC2 complex. Results from human colorectal cancer
have shown that overexpression of CCNBI1 induced by
Chk1 accelerates cancer cell proliferation and tumor
growth [64]. In parallel with our study, CCNB1 has been
shown as a prognostic indicator for HCC [65]. Recent
in vitro evidence reveals an indispensable role of CCNB1
in the proliferation of human hepatocellular carcinoma
cells, which is driven by forkhead box protein Ml
(FOXM1) [65]. Importantly, cyclin Bl was verified to be
highly associated with the recurrence of HBV-related
HCC, thus being a candidate biomarker for HBV-HCC
patients after surgery [66]. Similar to CCNBI1, an aberrant
expression of CCNB2 may lead to impaired G2/M check-
point, followed by DNA damage and mutations and even
oncogenesis. CCNB2 has recently been involved in cell
proliferation and migration through CCNB2/PLKI in a
hepatocarcinoma cell line [67]. In contrast, downregula-
tion of CCNB2 by silencing the upstream regulator karyo-
pherin subunit-o 2 (KPNA2) induces cell cycle arrest in
the G2/M phase and stagnant cell proliferation in HCC
cells [68]. Recent evidence reveals that DLEU2 (Deleted
In Lymphocytic Leukemia 2) and HBx cooperate to acti-
vate the transcription of CCNB2 in HBV-replicating
HCC cells [69], offering a confirmation in the role of
CCNB2 in HBV-HCC. The oncogenic function of CENPF,
a member of kinetochore proteins, in HCC has also been
proven to be associated with mitotic progression (G2/M
transition) [70]. This gene has been considered a bio-
marker for the early diagnosis of HCC [71]. PBK previ-
ously was identified as a mitogen-activated protein kinase
targeting malignancy [72]. In terms of mechanism, the
role of PBK in tumorigenesis has been reported to be
linked with the FoxMI1/PBK/B-catenin axis [73]. More
recently, a study from Yang et al. reveals that an overex-
pression of PBK facilitates the migration and invasion of
HCC cells by activating the ETV4-uPAR pathway [74].
ASPM has been known as one of the key factors in onco-
genesis through the regulation of cell proliferation and cell
cycle progression [75]. In addition, ASPM acts as a molec-
ular marker for predicting enhanced invasive/metastatic
potential of HCC [76]. Although the regulatory mecha-
nism of ASPM in HBV-HCC has not been reported,
ASPM was demonstrated to be modulated by viral non-
structural protein 5A (NS5A) in HCV-HCC [77]. NDC80
also plays a key role in accelerating the development of
HCC. As summarized in detail by Ju et al. [78], NDC80
elicits HCC progression via accelerating cell proliferation
and the formation of tumor colony and inducing cell cycle
arrest at the S phase. In line with our study, experimental
evidence indicated a high expression of NDC80 in HBV-
related HCC tissues [79]. Knockdown of NDC80 expres-
sion using shRNA inhibited the proliferation of hepatoma
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FIGURE 6: Validation of the expression level of the ten hub genes between the clinical liver samples from HBV-related HCC patients and those
from healthy individuals. All the relative expression levels of hub genes were based on the dataset from Roessler et al., except for that of ASPM

(Guichard et al.).

cells transcribed with the HBV genome [79]. Aurora A
kinase (AURKA) is a member of Ser/Thr family kinase
involved in the regulation of the G2/M phase cell cycle and
has been a considerable predictor for early HCC formation
and provides reliable biomarkers for the progression of
HCC [80]. Moreover, overexpression of AURKA-induced
HCC metastasis is associated with epithelial-mesenchymal
transition (EMT) and cancer stem cell (CSC) behaviors con-
trolled by the PI3K/AKT pathway [81]. The recruitment to
spindle microtubules and the catalytic activity of AURKA
are determined by its interaction with TPX2 [82], a
microtubule-associated protein which was found to be
upregulated in tumor tissues in the liver of HBV-HCC
patients compared with the adjacent normal tissues in our
present study. Knockdown of TPX2 inhibits cell invasion
and migration as well as the tumorigenicity of HCC cells
[83, 84]. KIF2C, belonging to kinesin superfamily proteins,
is found to be correlated with HCC aggressiveness [85]. Of
note, Kaplan-Meier analysis from our study indicated that

high expression levels of TPX2 and KIF2C were associated
with both the poor overall survival and relapse-free survival,
suggesting that these two core genes may serve as valuable
targets for both diagnosis and prognosis of HCC patients
infected with HBV.

5. Conclusions

To sum up, the present study has identified 329 DEGs in
total (67 upregulated and 262 downregulated DEGs) by
integration of three profile datasets. Importantly, we
obtained ten promising biomarker genes with the highest
interaction degrees from the PPI network. These genes
are linked to HBV-associated HCC tumorigenesis and pro-
gression and may be potential forecasters and therapeutic
targets for HCC patients with HBV infection. Moreover,
the multiple key biological components (e.g., extracellular
exosome) and signaling pathways identified from our
study will provide novel research directions concerning
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Ficure 7: Kaplan-Meier plotter reveals the overall survival (OS) and relapse-free survival (RFS) curves with a significant difference
concerning the hub genes in a liver cancer RNA-seq cohort. As risk factors, alcohol consumption was excluded and hepatitis virus was
included in the analysis. The analysis was run on 111 and 103 patients for OS and RFS, respectively. P < 0.05 was considered a statistically

significant difference.
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HBV-related HCC. Further extensive biological studies are
required to corroborate our findings and to reveal the
mechanisms underlying the progression of HCC induced
by HBV.
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