
GENOMIC PREDICTION

Genomic Prediction with Genotype by Environment
Interaction Analysis for Kernel Zinc Concentration in
Tropical Maize Germplasm
Edna K. Mageto,* Jose Crossa,† Paulino Pérez-Rodríguez,‡ Thanda Dhliwayo,† Natalia Palacios-Rojas,†

Michael Lee,*,1 Rui Guo,§,† Félix San Vicente,† Xuecai Zhang,† and Vemuri Hindu**
*Department of Agronomy, Iowa State University, Ames, IA 50011, †International Maize and Wheat Improvement Center
(CIMMYT), El Batan, Texcoco CP 56237, Mexico, ‡Colegio de Postgraduados, Department of Statistics and Computer
Sciences, Montecillos, Edo. De México 56230, México, §College of Agronomy, Shenyang Agricultural University,
Shenyang, Liaoning 110866, China, and **Asia Regional Maize Program, International Maize and Wheat Improvement
Center (CIMMYT), ICRISAT Campus, Patancheru, Hyderabad, Telangana 502324, India

ORCID IDs: 0000-0002-3946-3219 (E.K.M.); 0000-0001-9429-5855 (J.C.); 0000-0002-3202-1784 (P.P.-R.); 0000-0001-8583-129X (T.D.);
0000-0002-0643-7735 (N.P.-R.); 0000-0001-5498-6387 (X.Z.)

ABSTRACT Zinc (Zn) deficiency is a major risk factor for human health, affecting about 30% of the world’s
population. To study the potential of genomic selection (GS) for maize with increased Zn concentration, an
association panel and two doubled haploid (DH) populations were evaluated in three environments. Three
genomic prediction models, M (M1: Environment + Line, M2: Environment + Line + Genomic, and M3:
Environment + Line + Genomic + Genomic x Environment) incorporating main effects (lines and genomic)
and the interaction between genomic and environment (G x E) were assessed to estimate the prediction
ability (rMP) for each model. Two distinct cross-validation (CV) schemes simulating two genomic prediction
breeding scenarios were used. CV1 predicts the performance of newly developed lines, whereas CV2
predicts the performance of lines tested in sparse multi-location trials. Predictions for Zn in CV1 ranged from
-0.01 to 0.56 for DH1, 0.04 to 0.50 for DH2 and -0.001 to 0.47 for the association panel. For CV2, rMP values
ranged from 0.67 to 0.71 for DH1, 0.40 to 0.56 for DH2 and 0.64 to 0.72 for the association panel.
The genomic predictionmodel which includedG x E had the highest average rMP for both CV1 (0.39 and 0.44)
and CV2 (0.71 and 0.51) for the association panel and DH2 population, respectively. These results suggest
that GS has potential to accelerate breeding for enhanced kernel Zn concentration by facilitating selection
of superior genotypes.
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Malnutrition arising from zinc (Zn) deficiency is a major risk factor
for human health affecting nearly 30% of the world’s population
(Bouis and Saltzman 2017; Gannon et al. 2017). The problem is more
prevalent in low-and middle income countries (LMICs), and is highly
attributed to lack of access to a balanced diet, reliance on cereal-based

diets and ignorance of good nutritional practices (Welch and Graham
2004). Several approaches, such as food fortification, diversification
and supplementation have been tried to reduce Zn deficiency.
However, in LMICs, these methods have not been entirely successful
(Misra et al. 2004; Stein 2010).

Breeding maize for increased Zn concentration may offer some
relief. The Zn-enriched varieties can be widely accessible, will not
require continued investment once developed, and they remain after
the initial successful investment and research (Govindan 2011).
Recently, maize varieties with 15–36% more Zn were released in
Guatemala and Colombia (Listman 2019). Nevertheless, increased
breeding efforts are required to develop more Zn-enriched varieties
for a diverse range of environments and management practices.
Progress toward developing those varieties has mainly relied upon
conventional plant breeding approach that is labor-intensive and
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time-consuming. However, with the recent advances in genomics,
new methods for plant breeding such as genomic selection (GS) can
be used to identify genotypes with enhanced Zn concentration more
efficiently and rapidly.

Kernel Zn concentration is determined at the end of a plant’s life
cycle, so GS can enable selection of promising genotypes earlier in the
life cycle. This reduces the time and cost of phenotypic evaluation and
may increase the genetic gain per unit time and cost (Heslot et al.
2015; Manickavelu et al. 2017; Arojju et al. 2019). The utility and
effectiveness of GS has been examined for many different crop
species, marker densities, traits and statistical models and varying
levels of prediction accuracy have been achieved (de los Campos et al.
2009, 2013; Crossa et al. 2010, 2013, 2014; Jarquín et al. 2014; Pérez-
Rodríguez et al. 2015; Zhang et al. 2015; Velu et al. 2016). Although
the number of markers needed for accurate prediction of genotypic
values depends on the extent of linkage disequilibrium between
markers and QTL (Meuwissen et al. 2001), a higher marker density
can improve the proportion of genetic variation explained by markers
and thus result in higher prediction accuracy (Albrecht et al. 2011;
Zhao et al. 2012; Combs and Bernardo 2013; Liu et al. 2018).
Importantly, higher prediction accuracies have been obtained when
genotypes of a population are closely related than when genetically
unrelated (Pszczola et al. 2012; Combs and Bernardo 2013; Spindel
and McCouch 2016).

Initially, GS models and methods were developed for single-envi-
ronment analyses and they did not consider correlated environmental
structures due to genotype by environment (G x E) interactions (Crossa
et al. 2014). The differential response of genotypes in different envi-
ronments is a major challenge for breeders and can affect heritability
and genotype ranking over environments (Monteverde et al. 2018).
Multi-environment analysis canmodel G x E using genetic and residual
covariance functions (Burgueño et al. 2012), markers and environ-
mental covariates (Jarquín et al. 2014), or marker by environment
(M x E) interactions (Lopez-Cruz et al. 2015). This approach to GS can
successfully be used for biofortification breeding of maize because
multi-environment testing is routinely used in the development and
release of varieties.

Modeling covariance matrices to account for G x E allows the use
of information from correlated environments (Burgueño et al. 2012).
Mixed models that allow the incorporation of a genetic covariance
matrix calculated from marker data, rather than assuming indepen-
dence among genotypes improves the estimation of genetic effects
(VanRaden 2008). The benefit of using genetic covariance matrices in
G x E mixed models is that the model relates genotypes across
locations even when the lines are not present in all locations
(Monteverde et al. 2018). GS models capable of accounting for
multi-environment data have extensively been studied in different
crops (Zhang et al. 2015; Cuevas et al. 2016, 2017; Velu et al. 2016;
Jarquín et al. 2017; Sukumaran et al. 2017a; Monteverde et al. 2018;
Roorkiwal et al. 2018). In those studies, incorporating G x E dem-
onstrated a substantial increase in prediction accuracy relative to
single-environment analyses.

Kernel Zn has been investigated in several quantitative trait loci
(QTL) analyses in maize and each study has reported that Zn
concentration is under the control of several loci. The phenotypic
variation explained by those loci ranges from 5.9 to 48.8% (Zhou et al.
2010; Qin et al. 2012; Simić et al. 2012; Baxter et al. 2013; Jin et al.
2013; Zhang et al. 2017a; Hindu et al. 2018). A Meta-QTL analysis
across several of those studies identified regions on chromosome 2 that
might be important for kernel Zn concentration (Jin et al. 2013).
Additionally, genomic regions associated with Zn concentration were

recently reported in a genome-wide association study of maize
inbreds adapted to the tropics (Hindu et al. 2018). Whereas some
of the regions were novel, four of the twenty identified were located in
previously reported QTL intervals.

A wide array of maize genetic studies has reported considerable
effects of G x E interactions for kernel Zn concentration (Oikeh et al.
2003, 2004; Long et al. 2004; Chakraborti et al. 2009; Prasanna et al.
2011; Agrawal et al. 2012; Guleria et al. 2013). However, genotypes
with high-Zn concentration have been identified in both tropical and
temperate germplasm (Ahmadi et al. 1993; Bänziger and Long 2000;
Brkic et al. 2004; Menkir 2008; Chakraborti et al. 2011; Prasanna et al.
2011; Hindu et al. 2018). Additionally, evaluation procedures for
kernel Zn are labor-intensive, expensive and time-consuming
(Palacios-Rojas 2018). To the best of our knowledge, no study has
examined the predictive ability of GS methods that incorporate G x E
for Zn concentration in maize. Within the framework of the reaction
norm model (Jarquín et al. 2014), the potential of GS for Zn using
maize inbreds adapted to tropical environments were assessed. The
objectives of this study were; (i) to evaluate the prediction ability for
Zn using an associationmapping panel and two bi-parental populations
evaluated in three tropical environments, (ii) to assess and compare the
predictive ability of different GS models, and (iii) to examine the effects
of incorporating G x E on prediction accuracy for Zn.

MATERIALS AND METHODS

Zinc association mapping (ZAM) panel
The ZAM panel consists of 923 inbreds from maize breeding
programs of the International Maize andWheat Improvement Center
(CIMMYT). The panel represents wide genetic diversity for kernel Zn
concentration (Hindu et al. 2018).

Bi-parental DH populations
From the ZAM panel, four inbreds with contrasting Zn concentration
were selected and used to form two bi-parental (doubled haploid
[DH]) populations. DH1 was derived from the F1 generation of
a mating between CML503, a high-Zn inbred (31.21 mg/g) with
CLWN201, a low-Zn inbred (22.62 mg/g). DH2 was derived from
the F1 generation of a mating between CML465, another high-Zn
inbred (31.55mg/g) with CML451, a moderate-Zn inbred (27.88mg/g).
DH1 and DH2 were comprised of 112 and 143 inbreds, respectively.

Experimental design and phenotypic evaluation

Zinc association mapping (ZAM) panel: The ZAM panel was grown
at CIMMYT research stations in Mexico, during the months of June
through September and November through March at Agua Fria in
2012 and 2013, and Celaya in 2012. Plot sizes and the experimental
designs (Hindu et al. 2018).

Bi-parental DH populations: The DH populations were grown at
CIMMYT research stations in Mexico; Celaya in 2014 and Tlaltiza-
pan (18�41’N, 99� 079W; 962.5 m asl) in 2015 and 2017. In 2014 and
2015, both populations were evaluated in single-replication trials
(Hindu et al. 2018). In 2017, a randomized complete block design
(RCBD) with two replications was used. The rows were 2.5 m long
and 75 cm apart and each genotype was grown in a single row plot. All
plots were managed according to the recommended agronomic
practices for each environment.

From the ZAM panel and each DH population, four to six plants
in each plot were self-pollinated, hand-harvested at physiological
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maturity, hand-shelled and dried to a moisture content of 12.5%.
The bulked kernels from each plot are considered a representative
sample and were used in subsequent Zn analyses as described (Hindu
et al. 2018).

Genotypic data
Genomic DNA was extracted from leaf tissues of all inbred lines
(ZAM panel and DH populations) using the standard CIMMYT
laboratory protocol (CIMMYT, 2005). The samples were genotyped
using the genotyping by sequencing (GBS) method at the Institute for
Genomic Diversity, Cornell University, USA (Elshire et al. 2011;
Crossa et al. 2013). The restriction enzyme ApeK1 was used to digest
DNA, GBS libraries were constructed in 96-plex and sequenced on a
single lane of Illumina HISeq2000 flow cell (Elshire et al. 2011). To
increase the genome coverage and read depth for SNP discovery, raw
read data from the sequencing samples were analyzed together with
an additional �30, 000 global maize collections (Zhang et al. 2015).

SNP identification was performed using TASSEL 5.0 GBSDiscovery
Pipeline with B73 (RefGen_v2) as the reference genome (Elshire et al.
2011; Glaubitz et al. 2014). The source code and the TASSEL GBS
discovery pipeline are available at https://www.maizegenetics.net and
the SourceForge Tassel project https://sourceforge.net/projects/tassel.
For each inbred, the pipeline yielded 955, 690 SNPs which were
distributed on the 10 maize chromosomes. After filtering using
a minor allele frequency of 0.05 and removing SNPs with more than
10% missing data, 181,889 (ZAM panel) and 170, 798 (bi-parental)
SNPs were used for genomic prediction.

Phenotypic data analysis
For the ZAM panel, broad-sense heritability (H2) across environ-
ments was estimated as:

H2 ¼ s2
G

s2
G þ s2

GE
�
l þ s2

e
�
lr

where s2
G is the variance due to genotype, s2

GE is variance due to
genotype x environment, s2

e is the error variance, l is the number of
environments and r is the number of replications using multi-
environment trial analysis with R (META-R) (Alvarado et al.
2016). For the DH populations, variance components based on the
genomic relationship matrix were computed using BGLR package as
implemented in GBLUP (Pérez and de los Campos 2014). An
estimate of narrow-sense heritability (ĥ

2
) for each DH population

was calculated as:

ĥ
2 ¼ ŝ2

g

ŝ2
g þ ŝ2

g

where ŝ2
g is an estimate of the additive genetic variance and ŝ2

e is an
estimate of the residual variance.

Correlation coefficients between Zn and environments, descrip-
tive statistics and phenotypic data distribution using boxplots were
generated in R (core Team 2018). Line means (genotypic values) for
the ZAM panel were estimated as Best Linear Unbiased Estimators
(BLUEs) with a random effect for replications nested within each
environment. Raw data (values) were used for the DH populations.

Statistical models
Genomic models used in this study were based on the reaction
norm model which models the markers (genomic) by environment
interaction (Jarquín et al. 2014). This model is an extension of the

Genomic Best Linear Unbiased Predictor (GBLUP) random effect
model, where the main effects of lines (genotypes), genomic, envi-
ronments and their interactions are modeled using covariance struc-
tures that are functions of marker genotypes and environmental
covariates.

In this study, environment is the combination of site and year
(site-by-year) and the adjusted means (BLUES) to be used in
the genomic prediction models are obtained by fitting the phenotypes
yij as:

yij ¼ mþ Ei þ Lj þ LEji þ eij;

this linear model represents the response of the jth (j = 1,. . .,J)
genotype/line tested in the ith (i = 1,. . .,I) environment and fyijg
as the sum of an overall mean m plus random environmental main
effect ½Ei �iid Nð0;s2

EÞ�; the random genotype effect½Lj �iid Nð0;s2
LÞ�, the

random interaction between the jth genotype and the ith environment
½LEji �iid Nð0;s2

LEÞ� and a random error term ½eij �iid Nð0;s2
e Þ�. From

this linear model, N(.,.) denotes a normal random variable, iid stands
for independent and identically distributed responses and s2

E , s
2
L,

s2
LE , s

2
e are the variances for environment, genotype, genotype by

environment and residual error, respectively. The model above does
not allow borrowing of information among genotypes because the
genotypes were treated as independent outcomes.

Thus, models used in this study were derived from the baseline
model above by subtracting terms or modifying assumptions and/or
incorporating genomics/marker information. A brief description of
the genomic models used in this study are given below.

M1. Environment + Line
This model is obtained by retaining the first three components from
the baseline model (overall mean, random environment main effect
and random line main effect) while their underlying assumptions
remain unchanged.

yij ¼ mþ Ei þ Lj þ eij: [1]

Here environments were considered as site-by-year combinations.

M2. Environment + Line + Genomic
Another representation of the random main effect of line Lj in the
previous model is considering a linear combination between markers

and their correspondent marker effects, gj ¼
Pp

m¼1
xjmbm, such that

yij ¼ mþ Ei þ Lj þ gj þ eij [2]

where bm �iid Nð0;s2
bÞ represents the random effect of the mth

(m = 1,. . .,p) marker, xjm is the genotype of the jth line at the mth

marker and s2
b its correspondent variance component.

Therefore, g ¼ ðg1; . . . ; gJÞ
0
, is the vector of genetic effects, and

follows a normal density with mean zero, and a co-variance matrix
CovðgÞ ¼ Gs2

g with G ¼ XX’

p being the genomic relationship matrix
(Lopez-Cruz et al. 2015) that describes genetic similarities among
pairs of individuals. In this model, the line effect Lj is retained to
account for imperfect information and model mis-specification
because of potential imperfect linkage disequilibrium between
markers and quantitative trait loci (QTL).

M3. Environment + Line + Genomic +
Genomic 3 Environment
This model accounts for the effects of lines Lj;   of markers (genomic)
gj, of environments (Ei) and the interaction between markers
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(genomic) and the environment ðgEjiÞ. The model includes the
interaction between markers (genomics) and the environment via
co-variance structure (Jarquín et al. 2014). The model is as follows:

yij ¼ mþ Ei þ Lj þ gj þ gEji þ eij [3]

Where gEji is the interaction between the genetic value of the jth genotype
in the ith environment and gE ¼ fgEjig � Nð0; ðZgGZ

0
gÞ#ðZEZ

0
EÞs2

gEÞ,
where Zg and ZE are the correspondent incidence matrices for
the effects of genetic values of genotypes and environments,
respectively,

s2
gE is the variance component of gE and # denotes the Hadamard

product (element-to-element product) between two matrices.

Model assessment
Models were first fitted to the entire data set to estimate variance
components using the R-package BGLR (de los Campos et al. 2010; de
los Campos and Perez-Rodriguez 2016). The information generated
from the full data analyses was not used as prior information for the
cross-validation schemes (CV1 and CV2) used for assessing the
prediction accuracy of the different models.

Prediction accuracy assessment using cross-validation
Two distinct cross-validation schemes that mimic prediction prob-
lems that breeders may face when performing genomic prediction
were used (Burgueño et al. 2012). One random cross-validation
(CV1) evaluates the prediction ability of models when a set of lines
have not been evaluated in any environment (prediction of newly
developed lines). In CV1, predictions are entirely based on pheno-
typic records of genetically related lines. The second cross-validation
(CV2) is related to incomplete field trials also known as sparse testing,
in which some lines are observed in some environments but not in
others. In CV2, the goal is to predict the performance of lines in
environments where they have not yet been observed. In this study,
CV2 mimics a situation where lines are evaluated in two environ-
ments but missing in the third environment. Thus, information from
related lines and the correlated environments is used, and prediction
assessment can benefit from borrowing information between lines

within an environment, between lines across environments and
among correlated environments.

In CV1 and CV2, a fivefold cross-validation scheme was used to
generate the training and validation sets to assess the prediction
ability for Zn within the ZAM panel and each DH population. The
data were randomly divided into five subsets, with 80% of the lines
assigned to the training set and 20% assigned to the validation set.
Four subsets were combined to form the training set, and the
remaining subset was used as the validation set. Permutation of five
subsets taken one at a time led to five training and validation data sets.
The procedure was repeated 20 times and a total of 100 runs were
performed in each population. The average value of the correlations
between the phenotype and the genomic estimated breeding values
(GEBVs) from 100 runs was calculated for the ZAM panel, and each
DH population for Zn in each environment and was defined as the
prediction ability (rMP).

Data availability
All models were fitted in R (core Team 2018) using the BGLR
package (Pérez and de los Campos 2014). All phenotypic and genomic
data can be downloaded from the link: http://hdl.handle.net/11529/
10548331

RESULTS

Descriptive statistics
Mean values of kernel Zn concentration were estimated for each
environment and across environments (Tables 1 and 2). For the ZAM
panel, kernel Zn ranged from 14.76 to 39.80 mg/g in Celaya 2012,
15.16 to 42.52 mg/g and 17.05 to 46.52 mg/g in Agua Fria 2012 and
2013, respectively (Figure 1). The highest mean (29.53 mg/g) for Zn
was observed in Agua Fria 2013. DH1 had Zn values ranging from
16.00 to 48.00 mg/g in Celaya 2012, 16.00 to 35.00 mg/g in Tlaltizapan
2015 and 15.50 to 39.00mg/g in Tlaltizapan 2017, while the respective
values for DH 2 were 17.70 to 43.14 mg/g, 15.60 to 37.80 mg/g and
14.70 to 37.60 mg/g (Figures 2A and 2B). The highest means for Zn
were observed in Celaya 2014 (25.38 mg/g) and 2017 (27.96 mg/g) for
DH1 and DH2, respectively (Table 2). Across environments, H2 for

n■ Table 1 Descriptive statistics for kernel Zn concentration for the ZAM panel grown in three environments

Population Population size Location Mean 6 SE (mg/g) s2
G
a s2

GE
a H2

ZAM panel 923 Agua Fria 2012 26.15 6 0.15 12.04 2.42 0.85
Celaya 2012 25.06 6 0.14
Agua Fria 2013 29.53 6 0.16
Across 26.94 6 0.10

H2= Broad-sense heritability for Zn across environments.
a
variance due to genotypes s2

G and the interaction between genotypes and the environment s2
GE significant at P , 0.001.

n■ Table 2 Descriptive statistics for kernel Zn concentration for DH populations grown in three environments

Population Population size Location Mean 6 SE (mg/g) ĥ
2

DH1 112 Celaya 2014 25.38 6 0.48 0.83
Tlaltizapan 2015 24.01 6 0.38
Tlaltizapan 2017 24.53 6 0.37
Across 24.65 6 0.26

DH2 143 Celaya 2014 27.96 6 0.39 0.76
Tlaltizapan 2015 24.08 6 0.33
Tlaltizapan 2017 24.64 6 0.37
Across 25.59 6 0.22

ĥ2 = Narrow-sense heritability for Zn across environments.
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the ZAM panel was 0.85 (Table 1) and the ĥ2for DH1 and DH2 were
0.83 and 0.76, respectively (Table 2). There were significant positive
correlations between environments for Zn (Table 3), accounting for
the moderate to high heritability estimates.

Principal component analysis for the ZAM panel suggested pres-
ence of a relatively diverse set of lines, and 452 principal components
(PCs) were needed to explain 80% of the genotypes’ variance (Figures
3A and 3B). The first two principal components explained 3.85% of
the total variance. For the DH populations first two eigenvectors
separated the two groups (DH1 and DH2) and 56 principal com-
ponents were needed to explain 80% of the genotypes’ variance
(Figures 3C and 3D). The first two principal components explained
27.50% of the total variation for the DH populations.

Estimates of variance components
Variance component estimates for all models were derived from the
full-data analysis (Table 4). In the ZAM panel, variance components
for M1 ranged from 16.18 to 7.01 with the main effect of environ-
ments explaining the largest proportion (46%). When marker in-
formation was incorporated (i.e., M2 andM3), the estimated variance
due to environments was reduced to 9.46 for M2 and 8.11 for M3.
Inclusion of the interaction term (genomic x environment) reduced
the residual variance component by �30%, from an estimated re-
sidual variance of 7.01 in M1 to 4.92 in M3 suggesting that some
components of differences among genotypes cannot be fully captured

by the main effects of markers and environments. Similar trends were
observed in DH1 and DH2 except for M1 of DH1 where the main
effect of lines accounted for a slightly higher proportion of the total
variance (38%) than the main effects of environments (35%).

The residual variance component values for all models of
DH populations were slightly higher than those for the ZAM panel
(Table 4), possibly because the populations were evaluated in single-
replicated experiments at Celaya and Tlaltizapan (2014 and 2015,
respectively). However, estimates from M3 of the DH populations
suggest that $ 60 of the within-environment variability can be
explained by main effects of lines, genomic (markers) and their in-
teraction term. The proportions of within-environment variation
explained by the interaction term were $ 10% for the ZAM panel
and DH populations suggesting the importance of considering such
interactions in genomic prediction models.

Prediction ability in different populations
Cross-validated rMP values for kernel Zn were estimated for the ZAM
panel and DH populations (Tables 5, 6 and 7). The average rMP values
in CV1 were consistently lower than those in CV2, suggesting the
importance of using information from correlated environments
when predicting performance of inbred lines. The mean rMP values
in CV1 and CV2 for the ZAM panel were 0.39 and 0.71, respectively
(Table 5). For the DH populations, average rMP values were 0.53 for
DH1-CV1, 0.44 for DH2-CV1 (Table 6), 0.70 for DH1-CV2 and 0.51
for DH2-CV2 (Table 7).

In the ZAM panel, the highest values in CV1 (0.47) and CV2
(0.72) were obtained in Celaya and Agua Fria 2012 (Table 5). For the
bi-parental populations, both under CV1 and CV2, higher rMP values
were observed for DH1 compared to DH2. The highest values in CV1
(0.56) and CV2 (0.71) were observed in Tlaltizapan 2017 and 2015, all
for DH1 (Tables 6 and 7). The consistently higher rMP values in CV1
and CV2 of DH1 could be attributed to the higher (0.58 to 0.62)
correlation values between environments (Table 3).

Prediction ability of different models
Comparing the rMP values obtained from each model, M1 had the
lowest (-0.001, -0.03 and 0.04) accuracies in CV1 for the ZAM panel
and DH populations (Tables 5 and 6). Those values were improved
in CV2 because the predictions benefited from previous records

Figure 1 Box plot for kernel Zn (mg/g) in the ZAM panel in three
environments (Agua Fria, 2012, Celaya, 2012 and Agua Fria 2013).

Figure 2 Box plot for kernel Zn (mg/g) for (A) DH1 and (B) DH2 in three environments (Celaya 2014, Tlaltizapan, 2015 and Tlaltizapan 2017).
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(collected from other environments) of lines whose Zn values were
being predicted. When M1 was expanded to M2 by adding the main
effects of markers, the rMP values at each environment and across
environments were increased. For example, in CV1, M2, .100-fold
increase in rMP values were observed for the ZAM panel and DH
populations, and in CV2, M2, average rMP values increased by 2.98%,
2.94% and 11.11% for the ZAM panel, DH1 and DH2, respectively
(Tables 5, 6 and 7).

The multi-environment model (M3), which includes the in-
teraction between markers (genomic) and the environment ðgEjiÞ
gave higher prediction accuracy than single-environment models
(M1 and M2). In CV1, mean rMP values increased from 0.37 (M2)
to 0.39 (M3) for the ZAM panel and from 0.43 (M2) to 0.44 for
DH2 (Tables 5 and 6). Similar trends were observed in CV2 for the
ZAM panel and DH2 (Tables 5 and 7). However, in both CV1 and
CV2 of DH1, incorporating gEji did not improve rMP values for Zn
(Tables 6 and 7). For CV1, M3, rMP values for Zn in individual
environments ranged from 0.34 to 0.47 for the ZAM panel (Table
5), 0.51 to 0.55 for DH1 and 0.35 to 0.50 for DH2 (Table 6). For
CV2, M3, those values ranged from 0.69 to 0.72 for the ZAM

panel, 0.68 to 0.70 for DH1 and 0.43 to 0.56 for DH2 (Tables 5,
6 and 7).

DISCUSSION
Overall, moderate to high prediction ability values for kernel Zn were
observed for the ZAM panel and DH populations. This could be
attributed to the heritabilities observed for kernel Zn (Tables 1 and 2).
Similar observations were reported for Zn concentration in wheat
(Velu et al. 2016; Manickavelu et al. 2017). Higher predicted values
with high accuracy for GS programs are expected for traits with
moderate to higher heritability estimates (Combs and Bernardo 2013;
Lian et al. 2014; Muranty et al. 2015; Saint Pierre et al. 2016;
Manickavelu et al. 2017; Zhang et al. 2017b 2019; Arojju et al.
2019). Consistent with a study on Zn and iron (Fe) concentration
in spring wheat, the prediction accuracies in this study are sufficient
to discard at least 50% of the inbreds with low-Zn concentration
(Velu et al. 2016).

Additionally, the moderate to high prediction accuracies reported
in this study shows that GS can be used in maize breeding to improve
kernel Zn concentration. Assuming two possible seasons of Zn
evaluation per year, the predicted genetic gains can be estimated
from prediction accuracies and genetic variances of the training
populations. The genetic variances for the ZAM panel, DH1 and
DH2 were 12.38, 12.20 and 14.88, and prediction accuracies were
0.71, 0.70 and 0.51, respectively. If the inbreds in each predicted
population are ranked based on their predicted Zn values and the top
10% selected, then their expected average Zn values can be estimated
from the proportion of inbreds selected, their respective training
population genetic variances, prediction accuracies and the time
interval for evaluating the lines. With reference to this, the expected
average values of Zn are approximately 31 mg/g for the ZAM panel,
30 mg/g for DH1 and 27 mg/g for DH2. These averages are higher

n■ Table 3 Phenotypic correlation between environments for
kernel Zn

DH1 DH 2 ZAM Panel
aEnv1 vs. Env2 0.62 0.46 0.63
aEnv1 vs. Env3 0.58 0.29 0.66
aEnv2 vs. Env3 0.62 0.45 0.61

Phenotypic correlation coefficients were significant at a = 0.001.
a
DH populations; Env1, Env2 and Env3 = Celaya,2014, Tlaltizapan, 2017 and
Tlaltizapan 2017, respectively.

a
ZAM panel; Env1, Env2 and Env3= Agua Fria, 2012, Celaya, 2012 and Agua Fria
2013, respectively.

Figure 3 Scree plots (A and C) and loadings of the first two eigenvectors (B and D) of the covariance matrices derived from markers for the ZAM
panel (A and B) and for the DH populations (C and D).
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than the averages of the respective training populations (�27mg/g for
the ZAM panel, �25 mg/g for DH1 and �26 mg/g for DH2)
suggesting that the prediction accuracies achieved are sufficient
to select at least 10% of the predicted inbreds with higher Zn
concentration.

Data from both bi-parental populations and diverse collection of
inbreds have been used for GS and based on cross-validation (CV), it
has been established that prediction accuracies could also be affected
by the relatedness between training and prediction sets (Habier et al.
2007; de Roos et al. 2009; Asoro et al. 2011; Daetwyler et al. 2013;
Cericola et al. 2017; Crossa et al. 2017). In this study, average
predicted accuracies were higher for CV1 of the bi-parental pop-
ulations (0.53 for DH1 and 0.44 for DH2) compared to the ZAM
panel (0.39). Higher predicted values in CV1 of the DH populations
could be attributed to the closer relationship among DH lines in the
training and prediction sets, maximum linkage disequilibrium (LD)
between a marker and a QTL, and controlled population structure
(Bernardo and Yu 2007; Albrecht et al. 2011; Zhang et al. 2015). In
collections of diverse inbreds, prediction accuracy may depend on the
ancestral relationships between the lines. So, in experiments using
such collections of lines, prediction accuracies have been more

variable than accuracies achieved using bi-parental populations
(Spindel and McCouch 2016).

Cross-validation (CV) schemes are used in genomic prediction to
estimate the accuracy with which predictions for different traits and
environments can be made (Burgueño et al. 2012; Zhang et al. 2015;
Saint Pierre et al. 2016; Velu et al. 2016; Sukumaran et al. 2017a,
2017b; Monteverde et al. 2018; Roorkiwal et al. 2018). In this study,
two CV schemes (CV1- predicting the performance of newly de-
veloped lines, and CV2- predicting the performance of lines that have
been evaluated in some environments, but not in others) were used.
The utility of these schemes indicated that prediction values for newly
developed lines (CV1) were generally lower (0.39 for the ZAM panel,
0.53 for DH1 and 0.44 for DH2) than the values for lines which have
been evaluated in different but correlated environments (CV2; 0.71,
0.70 and 0.51 for the ZAM panel, DH1 and DH2, respectively). Such
observations indicate the importance of using information from
correlated environments when predicting the performance of inbred
lines. However, selection of new lines without direct field testing, as
simulated in CV1, may enhance the breeding process by replacing the
time and labor-intensive field testing for Zn with genomic-estimated
breeding values. But, the prediction accuracy values obtained may be

n■ Table 4 Estimated variance components (estimate6 SD) and percentage of within-environment variance accounted for by each random
effect

Variance component estimate Percentage of the within-environment variancea

Source M1 M2 M3 M1 M2 M3

ZAM panel E 16.18 6 15.31 9.46 6 6.43 8.11 6 5.92
L 12.09 6 0.71 2.44 6 0.63 2.47 6 0.64 63 13 13
G — 10.07 6 1.11 10.03 6 1.18 — 52 51
G x E — — 2.13 6 0.36 — — 11
Residual 7.01 6 0.25 7.00 6 0.25 4.92 6 0.33 37 35 25

DH1 E 11.70 6 9.67 7.72 6 5.25 6.23 6 4.58
L 12.77 6 2.13 3.18 6 1.09 2.96 6 1.06 58 15 13
G — 9.67 6 2.49 9.26 6 2.54 — 44 42
G x E — — 2.22 6 0.76 — — 10
Residual 9.16 6 0.88 8.95 6 0.83 7.88 6 0.89 42 41 35

DH2 E 12.37 6 16.50 8.69 6 6.13 7.26 6 5.69
L 7.10 6 1.30 2.36 6 0.71 2.23 6 0.71 39 10 9
G — 10.05 6 2.94 9.41 6 2.94 — 43 40
G x E — — 2.90 6 1.10 — — 12
Residual 11.07 6 0.92 10.78 6 0.86 9.31 6 0.90 61 47 39

E =Environment, L = Line, G = genomic (marker information), G x E = genomic x environment.
a
Relative to the total varianceminus the variance due tomain effect of the environment. The percentages of within-environment variance were computed without taking
into account the variance of the environment.

n■ Table 5 Correlations (mean6 SD) between observed and genomic estimated breeding values for kernel Zn in the three environments for
three GBLUP models for cross-validations CV1 and CV2 of the ZAM panel

Prediction accuracy in CV1

Population Environment M1a M2 M3

Agua Fria, 2012 20.01 6 0.04 0.33 6 0.01 0.34 6 0.02
ZAM panel (923) Celaya, 2012 0.004 6 0.04 0.43 6 0.01 0.47 6 0.01

Agua Fria, 2013 20.001 6 0.03 0.34 6 0.01 0.35 6 0.01
Average -0.001 6 0.03 0.37 6 0.01 0.39 6 0.01

Prediction accuracy in CV2
Population Environment M1a M2 M3

Agua Fria, 2012 0.71 6 0.00 0.71 6 0.00 0.72 6 0.00
ZAM panel (923) Celaya, 2012 0.64 6 0.00 0.68 6 0.00 0.72 6 0.00

Agua Fria, 2013 0.67 6 0.00 0.67 6 0.00 0.69 6 0.01
Average 0.67 6 0.00 0.69 6 0.00 0.71 6 0.00

a
Models: M1= Environment +Line; M2 = Environment + Line + Genomic; M3 = Environment + Line + Genomic + Genomic · Environment.
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lower such that the annual rate of genetic progress in a GS program
is compromised (Burgueño et al. 2012). So, the ultimate decision of
how a breeding scheme should be structured could depend on the
compromise between the desired prediction accuracy and the gen-
eration interval (Burgueño et al. 2012).

Genotype by environment interaction is an important factor
affecting kernel Zn concentration in maize and genomic prediction
models that incorporate G x E may enhance the potential of GS for
biofortification breeding. For different crop species and traits, geno-
mic prediction models which incorporated G x E achieved higher
prediction accuracies in both CV1 and CV2 schemes relative to
models which did not include G x E (Burgueño et al. 2012; Guo et al.
2013; Jarquín et al. 2014; Lopez-Cruz et al. 2015; Zhang et al. 2015;
Monteverde et al. 2018). In this study, the impact of modeling G x E
variance structures for multi-environment trials was investigated and
results indicated that the average predicted values from M3 (G x E
model) were higher (0.39 and 0.44 for CV1 and 0.71 and 0.51
for CV2) than the values from M2 (non-G x E; 0.37 and 0.43 for
CV1-M2, 0.69 and 0.50 for CV2-M2) for the ZAM panel and DH2.
These findings agree with those reported on Zn concentration in
wheat (Velu et al. 2016), providing evidence that incorporating G x E
in GS models can enhance their power and suitability for improving
maize for kernel Zn concentration. Conversely, the average predicted
values for CV1 and CV2 of DH1 were higher in M2 (0.53 and 0.70)
than in M3 (0.53 and 0.69). Except for differences in population size
(112 lines vs. 143 lines), this was unexpected since DH1 and DH2
were grown in the same environments.

The gains in prediction accuracies for the GS model that
accounted for G x E were dependent on the correlation between
environments and CV method used. In this study, the phenotypic
correlations between environments were all positive (ranging from

0.58 to 0.62 for DH1, 0.29 to 0.46 for DH2 and 0.61 to 0.66 for
the ZAM panel). Such correlations can be exploited using multi-
environment models to derive predictions that use information from
across both the lines and environments (Burgueño et al. 2012). For
instance, although the phenotypic correlations between environ-
ments for DH2 were positive (0.29 to 0.46), the lowest average
prediction value (0.51) for CV2 was observed for this population.
This was expected because CV2 uses phenotypic information from
genotypes which have already been tested; hence, effectively exploit-
ing the correlations between environments (Burgueño et al. 2012;
Jarquín et al. 2014; Crossa et al. 2015; Pérez-Rodríguez et al. 2015;
Saint Pierre et al. 2016; Monteverde et al. 2018). However, for CV1,
the information between environments could only be accounted for
through the genomic relationship matrix (Monteverde et al. 2018).
Hence, the gains in CV1 may likely attribute to more accurate
estimate of environment-specific marker effects (Guo et al. 2013).
In contrast, when multiple environments are weakly correlated,
prediction accuracies from across environment analyses can be
negatively affected relative to prediction accuracies within environ-
ments (Bentley et al. 2014; Wang et al. 2014; Spindel and McCouch
2016). Thus, before designing a GS experiment, identifying correlated
environments where environments can differ in terms of site, year or
season in which data were collected is of great interest (Spindel and
McCouch 2016).

However, the prediction accuracy values were of lower quality
when genomic predictions were conducted across populations. For
instance, when the ZAM panel was used as the training population,
prediction accuracies for DH1, DH2 and DH1+DH2 were 0.15,
-0.10 and 0.09, respectively. When DH1 and DH2 were used as a
training and prediction set for each other, prediction accuracies were
0.08 and 0.16 (Unpublished data). These prediction accuracies are

n■ Table 6 Correlations (mean6 SD) between observed and genomic estimated breeding values for Zn in the three environments for three
GBLUP models for cross-validation CV1 of DH populations

Population Environment

Prediction accuracy in CV1

M1a M2 M3

Celaya, 2014 20.05 6 0.10 0.52 6 0.04 0.51 6 0.04
DH1 Tlaltizapan, 2015 20.02 6 0.12 0.52 6 0.05 0.51 6 0.05

Tlaltizapan, 2017 20.01 6 0.10 0.56 6 0.05 0.55 6 0.05
Average -0.03 6 0.10 0.53 6 0.04 0.52 6 0.04
Celaya, 2014 0.05 6 0.08 0.47 6 0.03 0.50 6 0.04

DH2 Tlaltizapan, 2015 0.03 6 0.08 0.45 6 0.03 0.45 6 0.03
Tlaltizapan,2017 0.04 6 0.08 0.35 6 0.03 0.35 6 0.04
Average 0.04 6 0.06 0.43 6 0.03 0.44 6 0.02

a
Models: M1= Environment +Line; M2 = Environment + Line + Genomic; M3 = Environment + Line + Genomic + Genomic · Environment.

n■ Table 7 Correlations (mean6 SD) between observed and genomic estimated breeding values for Zn in the three environments for three
GBLUP models for cross-validation CV2 of DH populations

Population Environment

Prediction accuracy in CV2

M1a M2 M3

Celaya, 2014 0.67 6 0.02 0.68 6 0.02 0.68 6 0.03
DH1 Tlaltizapan, 2015 0.70 6 0.02 0.71 6 0.02 0.70 6 0.02

Tlaltizapan, 2017 0.67 6 0.02 0.70 6 0.02 0.69 6 0.02
Average 0.68 6 0.01 0.70 6 0.01 0.69 6 0.01
Celaya, 2014 0.46 6 0.016 0.53 6 0.02 0.56 6 0.02

DH2 Tlaltizapan, 2015 0.50 6 0.020 0.55 6 0.02 0.55 6 0.02
Tlaltizapan, 2017 0.40 6 0.023 0.43 6 0.02 0.43 6 0.02
Average 0.45 6 0.02 0.50 6 0.01 0.51 6 0.01

a
Models: M1= Environment +Line; M2 = Environment + Line + Genomic; M3 = Environment + Line + Genomic + Genomic · Environment.
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considerably lower than those reported in this study and the differ-
ences may be attributed to: (i) weak genetic relationships between the
training and prediction population sets and (ii) different methods of
analysis because the prediction accuracies reported in this study were
partly achieved by modeling the random-effects environment struc-
ture to account for G x E while for the unpublished data, the random-
effects environment structure of G x E was not included.

The ability to predict kernel Zn concentration using high-
throughput SNP markers including G x E interactions creates an
opportunity for efficiently enhancing Zn concentration in maize
breeding programs. For instance, during early generations of a
breeding program, GS can be utilized to identify genotypes with
favorable alleles when numbers of progenies and families are large.
This could potentially reduce the resource-intensive evaluation pro-
cess and advancement of false-positive progenies (Velu et al. 2016).
Coupled with advances in technologies for assessing Zn, plant
scientists can more rapidly measure Zn concentration in maize
kernels using the energy dispersive x-ray fluorescence (XRF) assays
(Guild et al. 2017). Thus, with more validations and model refine-
ments, GS can potentially accelerate the breeding process to enhance
Zn concentration in maize for a wider range of environments.
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