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Abstract: Hepatocellular carcinoma (HCC) has an extremely poor prognosis and is one of the most common ma-
lignancies worldwide. Immune checkpoint suppression has become the most effective treatment option for liver 
cancer. The strategies used for immune checkpoint inhibitor targeting cancer therapies have been affected by 
some significant successes, including blocking the advanced-stage malignant tumor by death protein 1 (PD-1)/pro-
grammed cell death ligand (PDL-1), and cytotoxic T-lymphocyte antigen-4 (CTLA4) pathways. T cell immunoreceptor 
with immunoglobulin and ITIM domains (TIGIT) is an immune checkpoint that participates in tumor immune surveil-
lance. Mainly expressed on T cells, natural killer (NK) cells, and other antigen-presenting cells (APCs), it diminishes 
cytokine production and exhibits strong suppressive properties. TIGIT achieves a more active antitumor immune re-
sponse and highlights a pivotal role for cancer immunotherapy. Preclinical studies have found inhibitory effects us-
ing a targeted approach. Monotherapy targeting TIGIT or in combination with anti-PD-1/PD-L1 monoclonal antibod-
ies for the treatment of patients with advanced solid malignancies have demonstrated improved antitumor immune 
responses. Due to the high tumor heterogeneity of liver cancer, immune checkpoint suppression therapy still needs 
further exploration. Therefore, we provide insights into the characteristics of TIGIT and the immune system in HCC.
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Background

Hepatocellular carcinoma (HCC) most common-
ly occurs with chronic virus inflammation such 
as hepatitis B virus (HBV) and hepatitis C virus, 
overconsumption of alcohol, aflatoxin B1 expo-
sure, obesity-related nonalcoholic fatty liver di- 
sease, type 2 diabetes, and exposure to toxic 
chemical compounds in the environment. HCC 
is the fourth most common cause of cancer-
related deaths worldwide [1, 2]. Chronic HBV 
infection can lead to cirrhosis and advanced 
HCC [3]. Liver transplantation, resection, or ra- 
diofrequency ablation can be used during the 
early stages of HCC, but these treatments are 
associated with high rates of recurrence. Trans-
arterial chemoembolization or radio-emboliza-
tion can be applied during the intermediate 
stages, but the overall survival time is <20 
months. HCC is usually diagnosed at an ad- 

vanced stage when there are fewer available 
treatment options. Use of any of these options 
is associated with a dismal prognosis [4]. Ad- 
vanced-stage HCC remains difficult to cure due 
to tumor heterogeneity and the lack of suitable 
therapeutic strategies [5]. The molecular mech-
anisms leading to the development of HCC are 
complex and not completely understood [6]. 
Therefore, HCC is an important area for immu-
notherapy research [7]. Clinical trials of anti-
TIGIT agents have been performed (Table 1). 
Targeting immune checkpoint molecules repre-
sents a revolutionary approach for counteract-
ing the immune invasion of tumor cells [8]. This 
review focuses on TIGIT, a promising novel im- 
mune checkpoint, presents the evidence that 
TIGIT expression contributes to HCC progres-
sion through tumor-associated immune sup-
pression, and discusses the mechanisms via 
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Gene profile of TIGIT

The TIGIT gene is an important protein-coding 
gene. It encodes a member of the PVR (polio- 
virus receptor) family of immunoglobin prote- 
ins (https://www.genecards.org). Cell adhesion 
molecules (CAMs) and the T cell co-signaling 
pathway are two important associated path-
ways that regulate immune cell differentiation 
and tissue morphogenesis [11]. Gene ontology 
annotations related to this gene include signal-
ing receptor binding. NECTIN2 is an important 
paralog of this gene. Gene features of TIGIT are 
presented in Table 2.

The structure and function of TIGIT

TIGIT binds with high affinity to the poliovirus 
receptor (PVR), which causes increased secre-
tion of interleukin-10 (IL-10) [12], decreased 
secretion of IL-12B [13], and suppression of  
T cell activation by promoting generation of 
mature immunoregulatory dendritic cells. TIGIT 
has a crucial role in the antitumor and antiviral 
immune processes that maintain hemostasis. 
Xin et al. [14] used gene chip scanning to 
sequence and identify this cell surface protein 
complex, which is mainly detected on T cells 
and NK cells [15, 16]. TIGIT is a novel member 
of the immunoglobulin (Ig) superfamily. It con-
sists of three functional parts (i.e., an immuno-
globulin variable fragment, a type I transmem-
brane protein domain, and the intracellular 

Table 1. Clinical trials on anti-TIGIT agents
NCT number Intervention/treatment Disease or condition Phrases Status
04150965 Drug: Elotuzumab Multiple Myeloma Phase I Not yet recruiting

Drug: Pomalidomide Relapsed Refractory Phase II
Drug dexamethasone Multiple Myeloma

Drug: Anti-LAG-3
Drug: Anti-LAG3
Drug: Anti-TIGIT

04047862 Drug: BGB-A1217 Metastatic Solid Tumors Phase I/Ib 39 Patients
Drug: Tislelizumab

03563716 Drug: Atezolizumab Non-small Cell Lung Cancer Phase II 135 participants
Drug: MTIG7192A

Drug: Placebo
04256421 Drug: Tiragolumab Small Cell Lung Cancer Phase III 400 participants

Drug: Atezolizumab
Drug: Carboplatin
Drug: Etoposide
Drug: Placebo

which HCC interacts with the immune micro- 
environment.

The liver is an immune-tolerant organ that of- 
ten encounters chronic infections and tumori-
genesis [8]. As a naturally immune-tolerant or- 
gan, it has a specific immune-anatomy that 
facilitates the establishment of an immuno- 
suppressive microenvironment [9]. However, 
HCC’s immune-biology, it effects on associat- 
ed molecular mechanisms of the immune sys-
tem, and tumor-associated immune checkpoint 
signaling make it highly suppressive to this 
microenvironment [7]. HCC is an inflammation-
driven disease, and can be a consequence of 
virus infection-associated inflammation, liver 
fibrosis, and cirrhosis. HBV-DNA integration fre-
quently occurs in patients with HBV-related 
HCC [1]. TIGIT blockade or deficiency can accel-
erate the progression of chronic liver inflam- 
mation and fibrosis and can increase with HBV 
Ag-specific CD8+T cell numbers. These charac-
teristics indicate that TIGIT is a vital molecule  
in adaptive immunity-mediated tumor progres-
sion and liver tolerance to the effects of infec-
tion and tumor cell invasion [10]. This review 
focuses on the expression of TIGIT, a novel 
inhibitory immune checkpoint molecule that 
regulates cellular immune responses that ma- 
intain homeostasis. We also discuss the pa- 
thogenesis of HCC and associated immuno-
pathological mechanisms.



TIGIT in HCC

3214	 Am J Transl Res 2020;12(7):3212-3224

Table 2. The gene profile of TIGIT
Items Status
Cytogenetic location 3q13.31

External IDs for TIGIT Gene HGNC: Entrez Gene: 201633 

Ensembl: ENSG00000181847

OMIM: 612859

Genomic Locations for TIGIT Gene UniProtKB: Q495A1

chr3: 114,276,913-114,310,288 (GRCh38/hg38)

Size: 33,376 bases

chr3: 113,995,760-114,029,135 (GRCh37/hg19)

Genes name Size: 33,376 bases

Genomic coordinates TIGIT, VSIG9, VSTM3, WUCAM

Protein names 3: 114,291,101-114,329,746

T-cell immunoreceptor with Ig and ITIM domains

V-set and immunoglobulin domain-containing protein 9

Cloning and Expression V-set and transmembrane domain-containing protein 3

244-amino acid TIGIT protein with an Ig domain, a type I transmembrane domain and an ITIM motif

immune-receptor tyrosine-based inhibitory mo- 
tif (ITIM)) [14]. Study findings indicate that the 
ITIM motif is a key domain, which is responsi- 
ble for the inhibitory function of TIGIT express- 
ed on NK cells and that results in the inhibition 
of NK cell killing [16].

CD155 (PVR/necl5/Tage4), a TIGIT ligand and 
member of the nectin-like family [17], is ex- 
pressed at high levels in several human malig-
nancies. The presence of CD155 is associated 
with a poor prognosis [18, 19]. It acts as a sig-
nificantly important immune ligand via interac-
tion with the DNAM-1 (co-activating)/TIGIT (co-
inhibitory)/ligand axis during regulation of T cell 
and NK cell functions [20].

The PVR family, which includes PVR (CD155, 
CD96), PVRL 2 (CD122), PVRIG (CD122R), and 
the DNAX accessory molecule-1 (DNAM-1) [21]. 
The glycoproteins NECL5 and CD155 are PVRs 
and are key Ig superfamily members. They con-
tain three extracellular Ig-like domains and can 
be grouped into a nectin subfamily that has a 
central role in cell-to-cell communication [22, 
23]. CD155 is highly expressed on dendritic 
cells (DCs), human vascular endothelial cells, 
and some human tumor cells [24]. CD155 par-
ticipates in sending co-inhibitory or co-stimula-
tory signals via binding of different receptors 
[25]. It is expressed on DCs that are profes-
sional antigen-presenting cells involved with 
antigen presentation, immune cell migration, 
and production of numerous cytokines that 
contribute to T cell and NK cell activation [26]. 

The TIGIT/CD155 pathway decreases DC cyto-
toxicity via promotion of IL-10 secretion and 
induction of T cell dysfunction [14]. Similar to 
TIGIT, the co-inhibitory CD96 binds to ligand 
CD155 to down regulate immune responses 
against tumors [3, 27, 28]. The co-stimulatory 
molecule, CD226, competes with TIGIT and CD- 
96 also binds to the common ligand CD155 to 
deliver activating signals. Binding of CD155/
CD226 activates the killing activity of NK cells 
[29] and CD8+T cell-associated tumor killing 
capability [30]. PVRs have high affinity for TIGIT, 
which effectively interrupts the communication 
of the PVR with its other receptors (e.g., CD226 
and CD96) [31]. In contrast, compared with the 
TIGIT/CD155 interaction, CD226 has less affin-
ity with CD155 [32, 33]. CD155 also acts as  
an immune receptor, which is recognized as a 
promising target of tumor-associated immuno-
therapy. TIGIT is an inhibitory receptor, and the 
expression of TIGIT on T cells, NK cells, and 
APCs has been detected at high levels [34]. 
Taken together, these results suggest that TI- 
GIT has a vital function during chronic inflam-
mation and in promoting tumorigenesis throu- 
gh direct or indirect pathways [10]. Low-level 
expression of TIGIT on naïve T cells has a par-
ticularly important role in T cell exhaustion in 
the tumor microenvironment. Various immune 
cells participate in the complex liver immune 
microenvironment pathways. These immune 
cells are part of a vital HCC microenviron- 
ment. Co-signaling molecules combine with 
their ligands during tumor immunity.
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helper 17 cell functions [47]. Fibrinogen-like 
protein 2 (Fgl2) promotes Treg cell-mediated 
inhibitory signals for T effector cell proliferation 
and cytokine production. TIGIT signaling induc-
es Fgl2 transcription in TIGIT+Treg cells. TIGIT 
ligation triggers secretion of Fgl2 by Treg cells, 
which enables them to act as potent suppres-
sors [47]. To promote T cell proliferation, TIGIT 
also participates in regulating the T cell anti-
apoptosis pathway via upregulation of the relat-
ed key protein, Bcl-xL. Interrupting both TIGIT 
and PD-1 can upregulate tumor antigen-specif-
ic CD8+T cell responses and the effects of 
CD8+ effector memory cells. Compared with 
other memory cell subsets, they express higher 
levels of granzyme B and perforin, which has a 
protective function with a positive correlation 
with a good prognosis [48, 49]. Su C et al. found 
that TIGIT is highly expressed in both CD4+T 
cells and Treg cells of patients with HCC [43]. 
They also found that TIGIT expression level 
accelerates and declines along with the degree 
of cancerous differentiation, from high rates of 
expression and differentiation to low rates of 
expression and differentiation. The expression 
level of TIGIT is also positively related to 
α-fetoprotein (AFP) expression [43]. During the 
pathogenesis of HBV-associated HCC, the 
growth of PD-1+TIGIT+T cell populations accel-
erates and is co-related to the degree of malig-
nancy in patients with advanced-stage HCC. 
TIGIT also has a relevant role in HBV-related 
HCC [50]. Yang Z et al. [50] found that TIGIT 
CD8 T+ cell population expression is associat-
ed with accelerated disease progression and a 
poor outcome in patients with HBV-HCC. Tian Z 
et al. [10] validated that TIGIT functions as a 
safeguard maintaining homeostasis of the 
hepatic immune system, and leading to CD8+T 
cell exhaustion. This process provides protec-
tion from immune-mediated injury and carcino-
genic initiation [10, 43]. Previous studies found 
that HCC can escape from the host’s immune 
attack and protects itself through the secretion 
of inhibitory cytokines, tumor specific antigens, 
and changes to the tumor microenvironment 
[10]. Examination of cancerous tissues from 
patients with HCC revealed that the degree of 
tumor differentiation is negatively correlated 
with expression levels of TIGIT and CD155 [51]. 
The TIGIT+CD4+T cells and TIGIT+Treg cells are 
crucial populations among those that decrease. 
Therefore, in the future, the level of TIGIT 
expressed on CD4+T cells or Treg cells may 

The function of TIGIT expressed on T cells with 
HCC

The cytotoxic T-lymphocyte response is a cri- 
tical component of the immune response to 
tumors [35]. T cell responses rely on T cell 
receptor (TCR) binding with co-signal molecul- 
es that can direct and fine-tune essential com-
munication with the host cell [36, 37]. This  
process results in a cascade of downstream 
responses [38]. T cell function is activated by 
two different pathways. The first pathway in- 
cludes TCR contact with antigenic peptide/ma- 
jor histocompatibility complex, which is main- 
ly expressed on the APC surface. The second 
classical pathway involves antigen-indepen-
dent regulator molecules. The co-signals are 
divided into co-stimulators and co-inhibitors 
that participate in T cell priming, cell growth, 
initial differentiation, and maturation of func-
tion during the immune response [38, 39]. In 
the normal state, TCR binding of TIGIT or other 
co-inhibitors minimizes damage and prevents 
harmful auto-immunity [40, 41]. TIGIT partici-
pates in direct inhibition of T cell activation and 
proliferation. TIGIT can be detected on T cells 
(e.g., activated CD4+T cells, CD8+T cells, and 
Foxp3+T regulatory (Treg) cells). The subsets of 
type 1 regulatory T cells and follicular helper T 
(Tfh) cells can also express TIGIT, which deliv-
ers inhibitory signals and down regulates the 
production of cytotoxicity and cytokine expres-
sion [42]. The CD8+T cell expresses TIGIT at 
high levels, which are correlated with the de- 
gree of tumor malignancy [43]. This inhibitory 
function of TIGIT can be targeted during treat-
ments based on immunotherapeutic interven-
tion. TIGIT highly expressed on T cells and the 
correlation between tumor cells and T cells are 
illustrated in Figures 1 and 2.

Accumulating evidence reveals that Foxp3+ 
Treg cells interact with other cells and release 
immune suppressive cytokines (e.g., IL-10 and 
transforming growth factor β (TGF-β)), which 
are crucial for immune homeostasis [44]. Treg 
cells are subsets of CD4+T cells and have cru-
cial roles in the regulation of immune stability 
and immune suppressive functions [45]. Song 
et al. found that CD226 TIGIT functional sub-
populations are significantly higher in patients 
infected with HBV [46]. TIGIT is a Treg cell inhib-
itory molecule that can inhibit T helper 1 and T 
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Figure 1. Various immune cells such as T lymphocytes, NK cells, macrophages, dendritic cells, Kupffer cells par-
ticipant in the liver immune microenvironment pathways. TIGIT participant in tumor immune surveillance, exhibit 
an inhibitory signal through the ligation of TIGIT with CD155 or CD112, TIGIT has higher affinity of CD155 trigger 
inhibitory signaling via its cytoplasmic ITIM or ITT-like motif. TIGIT competes with the co-stimulatory CD226 for com-
bination with CD155 and CD112. CD96 competes with CD226 for CD155 binding, however Interaction of CD96 with 
TIGIT inhibit immune cells activities. TIGIT can expressed on both immune cells and hepatocellular carcinoma cells 
in tumor associated environment.

serve as a potential predictive biomarker for an 
early-stage diagnosis, treatment, and prognos-
tic indicator in patients with HCC [51]. Blocking 
STAT3 might prevent HCC-mediated exhaustion 
of T cells and NK cells, illustrated with low 
expression of TIGIT on T cells and NK cells in 
the immunized HCC mice model [52]. TIGIT is 
predominantly expressed on immune cells with 
multiple roles. In one cell type, it can partici-
pate during various stages and on different 
occasions [53]. Altogether, TIGIT not only has 

significantly important roles in clinical progno-
sis, it also provides novel insights into strate-
gies in immunotherapy. 

The function of TIGIT expressed on NK cells 
with HCC

NK cells are abundant in the liver; they partici-
pate in immune surveillance and attack tumor 
cells via production of cytotoxicity. However, 
the numbers of NK cells in tumor tissues is le- 
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Figure 2. The regulation between TIGIT and immune cells. TIGIT could expressed on both cancer cell and immune 
cells such as T cell and NK cell. TIGIT inhibitors could suppress the inhibitory function and enhance the T cell and NK 
cell cytotoxic and anti-tumor function through upregulating the production of IFN-γ and TNF-α. The over expression 
of TIGIT of T cell could also cause T cell exhaustion, and down regulate the T cell cytotoxic. The NK cell activity could 
also be upregulation via antibody-dependent cellular cytotoxicity pathway.

ss than in non-tumor tissues. Tumor-infiltrating 
NK cells also display a low activation status 
with an impaired tumor cell killing capacity and 
cytotoxic factor production [51]. TIGIT [14], CD- 
96 [54, 55], CD226 [55, 56], and I-restricted T 
cell-associated molecule [57] are key regula-
tors of NK and T cell functions, especially in  
the tumor microenvironment. CD96 binding 
CD155 can suppress the immune response. In 
patients with HCC, CD96+NK cells are function-
ally exhausted and IFN-γ and TNF-α expression 
are at low levels, as are T-bet, IL-15, perforin, 
and granzyme B. Inhibitory factors such as IL- 

10 and TGF-β1 are highly expressed. Recent 
study results indicate that the TIGIT motif binds 
with co-inhibition receptor PVR with high affini-
ty; the TIGIT-mediated inhibition signal leads to 
suppression of the production of NK cell cyto-
toxicity [58]. CD96 is expressed not only on pri-
mary human peripheral NK cells, but also on 
various NK cell lines [51]. Overexpression of 
CD96+NK cells can mainly be detected in he- 
matological malignancies like acute myeloid 
leukemia [54] and lung squamous cell carcino-
ma [59]. During chronic HBV infection, liver cir-
rhosis, and HCC, increased levels of CD96+NK 
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cells can also be detected. A dynamic balan- 
ce exists between CD96, TIGIT, and CD226 on 
intra-tumor NK cells of patients with HCC. In 
these patients, the expression of CD96 incre- 
ases, while the expression of TIGIT decreases. 
Under the activation of TGF-β1, the NK phe- 
notype can change from TIGIT+NK cells to 
CD96+NK cells. Co-inhibition of CD96 with oth- 
er checkpoint receptors may provide a more 
efficient therapeutic approach during the use 
of immunotherapy for liver cancer. Some re- 
searchers have found that there is also a no- 
vel population of NK cells (i.e., CD49a+liver-
resident NK cells) that is positively correlated 
with the expression level of checkpoint mole-
cules (e.g., PD-1, CD96, and TIGIT) on tumor 
cell surfaces in patients with HCC [60-62]. 
Tissue-resident CD49a+NK cells accumulate  
in the tumor microenvironment and exhibit 
immune-exhausted regulatory characteristics 
that negatively regulate the immune response 
and progress, predict tumor progression, and  
a poor clinical outcome [51]. Blockade of TIGIT 
of NK cells can enhance the oncolytic adeno- 
virus during ovarian cancer therapy [51]. OhsI 
et al. found that TIGIT blockers combined with 
IL12 can help reestablish NK cell antitumor 
capacity and cytotoxicity [63]. TIGIT is also up- 
regulated upon NK cell activation through anti-
body-dependent cell-mediated cytotoxicity in 
human breast cancer [64]. He Y et al. found 
that if TIGIT NK cells are suppressed and im- 
mature, the combination of TIGIT and CD155 
promotes NK cell maturation [65]. In the tu- 
mor-associated environment, NK cell cytotoxic 
capability can be suppressed by TIGIT upregu-
lation and enhanced by TIGIT inhibitors (Figure 
2).

TIGIT expressed on APCs in HCC

The tumor-associated macrophages (TAMs) th- 
at highly infiltrate most solid tumors lead to 
tumor progression. TAMs express inhibitory sig-
nals that shape antitumor immunity and pro-
mote tumor proliferation by expressing cyto-
kines and chemokines; they are closely related 
to the occurrence and development of lympho-
ma [9, 66]. Macrophages are the dominant leu-
kocyte population found in the tumor microen-
vironment, including HCC TAMs. Preclinical stu- 
dies revealed that TIGIT has a key role in the 
regulation of immune cell recruitment, mono-

cyte phenotype polarization, and autophagy of 
TAMs during tumor progression.

TAM numbers are negatively correlated with 
survival and prognosis in patients with HCC. 
However, no clear evidence indicates that TIGIT 
directly regulates macrophages in patients with 
HCC. Macrophage co-culture with porcine aor-
tic endothelial cells revealed that high TIGIT 
expression does not occur on M1 macrophages 
[67]. But, TIGIT is highly expressed on M2 mac-
rophages. Study findings suggest it participat- 
es in the down-regulation of the release of TNF-
α, IL-β, and IL-12, and suppresses macrophage-
mediated cytotoxicity. Study results also sug-
gest that the phosphorylation of SHP-1 (a tail of 
TIGIT) and TIGIT-CD155 binding participates in 
this inhibitory signal pathway on macrophages 
[67]. LPS-stimulated macrophages (i.e., M2-like 
cells) release anti-inflammatory factors (e.g., 
IL-10) and significantly reduce various pro-in- 
flammatory cytokines (e.g., TNF-α) [12]. Human 
regulatory macrophages (Mreg) are a novel 
subpopulation that reflect a specific phenotype 
of macrophage differentiation, which is char- 
acterized by stable suppressive activity. Mregs 
strongly induce TIGIT+T cells through a partly 
immunosuppressive agent-dependent mecha-
nism in solid organ transplantation [68]. The 
TIGIT is highly expressed on APCs, especially  
on DCs. Some endothelial cells (e.g., Kupffer 
cells) also have high levels of TIGIT expression 
[16]. The release of inhibitory factors from DCs 
occurs via the ligand of CD155 and TIGIT on 
DCs; it results in an inhibitory immune respon- 
se in T cells. The combination of TIGIT and 
CD155 does not weaken the DC maturation 
process, but it does impair the effectiveness  
of activating and modulating the antigen-spe-
cific T cells and induces tolerance in T cells 
[69]. DCs not only contribute to the anti-inflam-
mation process. They also function to restore 
the antiviral immunity of HBV-specific T cells 
[70]. The details of the relationships between 
the inhibitory molecule TIGIT expressed on DCs 
and HBV-related HCC progression remain to be 
determined.

PD-1: the classical co-inhibitory partner

PD-1 is a well-studied cell surface protein. It is 
also an immune checkpoint expressed by T 
cells, B cells, and macrophages. PD-1 is pre-
dominantly co-expressed with TIGIT in CD8+T 
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cells [71, 72]. It acts as a key regulator in bal-
ancing physiological immunity and pathological 
immunity, and maintains homeostasis and tol-
erance [73]. Accumulating evidence indicates 
that immune checkpoint targeting of PD-1 re- 
sults in substantial clinical benefits in patients 
with solid tumors. In patients with HBV-related 
HCC, overexpression of CD8+T cells results in 
immune exhaustion, a dysfunctional pheno-
type, and causes immune damage to liver tis-
sue [74]. PD-1 is highly expressed in tumor-sur-
rounding tissues, especially in the liver portal 
region. It is also positively correlated with tumor 
size and the degree of differentiation [74]. PD-1 
overexpression on tumor-infiltrating T lympho-
cytes inhibits proliferation and metastasis of 
HCC cells [75, 76]. Expression of PD-1 from 
high to low correlates with distinct gene expres-
sion profiles on CD8+T cells. The accelerated 
levels of PD-1 expression on CD8+T cells ac- 
companied by higher levels of the exhaustion  
of gene expression negatively regulates T cell 
function [77]. PD-1-high CD8+T cells also highly 
express other inhibitory immune checkpoints 
(e.g., TIGIT) and decrease production of IFN-γ 
and TNF-α in response to anti-CD3 [78]. Thy- 
mocyte selection-associated high mobility gr- 
oup box protein (TOX) is as a transcription fac-
tor that participates in the regulation of T cell 
differentiation [79]. TOX binds with PD-1 in the 
cytoplasm and promotes endocytic recycling  
of PD-1. This process results in higher expres-
sion of PD-1 in the cell membrane and an im- 
paired CD8+T cell tumor killing capability [80]. 
Combining the inhibitory receptors of TIGIT and 
PD-1 might be used to enhance the immuno-
suppressive characteristics of cancer immune 
therapy.

The role of TIGIT in other diseases

In addition to targeting checkpoint inhibition for 
solid tumor immunotherapy, the role of TIGIT in 
myeloma treatment merits a fresh look. In adult 
acute lymphoblastic leukemia, the levels of TI- 
GIT on n CD4+CD25+T cells and CD8+T cells 
are significantly upregulated, compared with a 
healthy control group. Similar to TIGIT, PD-1 and 
Tim-3 are also highly expressed. Together with 
PD-1, Tim3, Lag3, and TIGIT have co-inhibitory 
effects during the regulation of T cell function 
[81-83]. Guillerey et al. [84] were the first to  
find that the percentage of TIGIT expressed in 
CD8+T cells is related to myeloma burden in a 

murine V k*MYC myeloma model. They also 
found that the malignant progression of multi-
ple myeloma is correlated with overexpressi- 
on of TIGIT on CD8+T cells in both mice and 
humans. TIGIT shows high levels of expression 
in CD8+T cells, compared with other immune 
checkpoint molecules that negatively regulate 
T cell killing function. More importantly, mono-
clonal antibodies that block TIGIT can reduce 
the malignant progression of multiple myelo-
ma. Minnie et al.’s study also found that the 
progression of myeloma is closely related to 
inhibitory receptor expression on CD8+T cells, 
while the co-stimulatory receptor CD226 (DN- 
AM-1) is detected at low levels on CD8+T cells 
that have an exhausted phenotype and high 
levels of IL-10; the latter have a role in the T cell 
exhaustion [85]. Notably, the IL-10 that causes 
relapsed myeloma originates from myeloid cell 
subsets (DCs) that lack major histocompatibili-
ty complex class II expression (but expressed 
PD-L1) and CD641 macrophages [85].

Recent findings indicate that there is a novel 
mode of cross-talk between the immune sys-
tem and the neuroendocrine system. As physi-
ological stress increases, the immunological 
status may show protective immunity. Gluco- 
corticoid-induced immunosuppression of TIGIT 
may be operational in various subsets of im- 
mune effector cells that participate in the re- 
solution of inflammation when faced with th- 
reats, such as infections with viruses, and  
cancer cell invasions [86]. TIGIT is also co-
expressed with CD11b or CD11c in tumor-infil-
trating stromal cells. In colorectal tumors, the 
tumor-intrinsic TIGIT is highly expressed on 
CD4+T cells, CD8+T cells, and NK cells, and 
inhibits the function of these cells via interac-
tion with CD155 (PVR) [87]. The tumor-intrinsic 
TIGIT not only has a suppressing function on 
immune cells; it also enhances tumor growth 
and significantly impairs tumor genesis via we- 
akening the immune cell cytotoxicity [86], gr- 
anule polarization, and cytokine release. In pa- 
tients with head and neck squamous cell car- 
cinoma [88], the expression of TIGIT on tumor-
infiltrating T cells is higher compared with he- 
althy controls. Similar results have been found 
for CD155. Blocking TIGIT/CD155 signaling can 
alleviate CTL exhaustion, decrease suppres-
sion by Tregs and MDSCs, inhibit tumor pro-
gression [75], and manifest antitumor immuni-
ty during progression of malignant tumors. 
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Zhang et al. [89]. found that in patients with E. 
multilocularis-associated alveolar echinococ-
cosis (AE), the expression of TIGIT is highly ex- 
pressed in both blood and liver-infiltrating T 
cells. TIGIT causes T cell functional exhaustion 
through its CD155 ligand. In patients with AE, 
the expression of TIGIT shows apparently high-
er levels, compared with healthy people. This 
expression is correlated with lesion activity. 
The TIGIT-CD155 interaction has a key role in 
AE-related T cell exhaustion [89].

Conclusions and future perspectives

Most cases of HCC are diagnosed at an ad- 
vanced stage, but use of immune checkpoint 
inhibitors may benefit patients and improve 
survival times [90, 91]. HCC is associated with 
highly heterogeneous lesions and multiple pa- 
thologies, including multiple etiologically-indu- 
ced liver-related diseases [92]. The notably ro- 
bust upregulation of TIGIT in the liver corre-
sponds with stresses and regulates its func-
tion. Cell-to-cell communication includes ab- 
undant intricate signal pathways to maintain 
hemostasis. Blocking one signal pathway re- 
sults in compensation by other pathways. Evi- 
dence indicates that targeting the exhausted T 
cell’s inhibitory signal may lead to overexpres-
sion of other signals. Although clinically-impor-
tant achievements have been gained from the 
use of immune therapy, the proper combina-
tions of these strategies remain to be deter-
mined. The immune checkpoint targeting the- 
rapies and their irreplaceable precision target-
ing and profound immune responsiveness ha- 
ve the potential to change the conventional 
treatment approaches.
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