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Abstract
Alcohol consumption is one of the leading causes of the global burden of disease 
and results in high healthcare and economic costs. Heavy alcohol misuse leads to 
alcohol-related liver disease, which is responsible for a significant proportion of 
alcohol-attributable deaths globally. Other than reducing alcohol consumption, 
there are currently no effective treatments for alcohol-related liver disease. 
Oxidative stress refers to an imbalance in the production and elimination of 
reactive oxygen species and antioxidants. It plays important roles in several 
aspects of alcohol-related liver disease pathogenesis. Here, we review how 
chronic alcohol use results in oxidative stress through increased metabolism via 
the cytochrome P450 2E1 system producing reactive oxygen species, acetaldehyde 
and protein and DNA adducts. These trigger inflammatory signaling pathways 
within the liver leading to expression of pro-inflammatory mediators causing 
hepatocyte apoptosis and necrosis. Reactive oxygen species exposure also results 
in mitochondrial stress within hepatocytes causing structural and functional 
dysregulation of mitochondria and upregulating apoptotic signaling. There is also 
evidence that oxidative stress as well as the direct effect of alcohol influences 
epigenetic regulation. Increased global histone methylation and acetylation and 
specific histone acetylation inhibits antioxidant responses and promotes 
expression of key pro-inflammatory genes. This review highlights aspects of the 
role of oxidative stress in disease pathogenesis that warrant further study 
including mitochondrial stress and epigenetic regulation. Improved 
understanding of these processes may identify novel targets for therapy.
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Core tip: Alcohol is a global health problem with alcohol-related liver disease forming a 
significant proportion of alcohol-attributable deaths. However, there are no effective 
treatments for alcohol-related liver disease. Oxidative stress plays multiple roles in disease 
pathogenesis, which if better understood may yield new therapeutic targets. Here, we 
review the current literature on how alcohol consumption leads to oxidative stress and how 
this results in hepatocyte apoptosis and necrosis through its contribution to mitochondrial 
stress, dysregulation of cell signalling pathways and epigenetic regulation.

Citation: Tan HK, Yates E, Lilly K, Dhanda AD. Oxidative stress in alcohol-related liver 
disease. World J Hepatol 2020; 12(7): 332-349
URL: https://www.wjgnet.com/1948-5182/full/v12/i7/332.htm
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INTRODUCTION
Europe has the highest per capita alcohol consumption and alcohol-related loss of 
disability adjusted life years globally[1]. The European Union is the heaviest drinking 
region of the world, with 11 liters of pure alcohol drunk per adult each year[1]. In the 
last decade, this trend continues to rise in central and northern Europe. Alcohol is a 
dose-related risk factor for more than 200 diseases[1]. It causes 5.9% of all deaths 
globally and more than 25% of deaths in the age group 20-39 years[1].

Heavy alcohol use is the cause of alcohol-related liver disease (ALD). Therefore, it is 
not surprising that the incidence of ALD is on a rising trajectory[2]. The scale of ALD is 
estimated to burden the United Kingdom national health system with health-related 
costs of over £3.5 billion per year[2]. In Europe, the cost of treating ALD is estimated to 
be €17 billion, together with €5bn spent on treatment and prevention of harmful 
alcohol use and alcohol dependence[3]. Worldwide, alcohol-related liver cirrhosis 
deaths account for approximately 10% of all alcohol-attributable deaths resulting in 
the loss of 22.2 million disability-adjusted life years annually[4].

The ALD spectrum ranges from simple steatosis to steatohepatitis, fibrosis, and 
cirrhosis. While alcohol-related cirrhosis is no longer considered a completely 
irreversible condition, no effective anti-fibrotic therapies are currently available. 
Cirrhosis can be divided into compensated and decompensated stages, with 
differentiating clinical features and prognosis. The median survival of patients with 
compensated liver disease is approximately 6.5 years but only 2.5 years in those with 
decompensated cirrhosis[4]. Once a complication of cirrhosis develops, the 5-year 
survival rate decreases to less than 20%[4].

Alcoholic hepatitis (AH) is an acute inflammatory condition that occurs on the 
background of ALD. Severe AH has a mortality rate of 30% within 3 mo[5] but even 
non-severe AH has a significant 7% mortality within 3 mo[6]. The established treatment 
for AH is corticosteroids, which improve short-term survival but do not affect long-
term survival[5].

The molecular mechanisms underlying ALD pathogenesis are complex and have 
not been fully elucidated. However, there is emerging evidence that oxidative stress 
plays a role in mediating the inflammatory response and in directly causing liver 
damage. Oxidative stress represents the body’s imbalance in the production and the 
elimination of reactive species (including reactive oxygen and nitrogen species) as well 
as decreased production of antioxidants[7]. Here, we review the role of oxidative stress 
in ALD focusing on its effect on mitochondrial stress, cell signaling and epigenetic 
regulation.

LITERATURE SEARCH
Comprehensive searches of MEDLINE, EMBASE, PubMed and TRIPS from their 
commencement to June 2019 were conducted. The search strategy included subject 
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headings and keywords related to “alcohol” and “oxidative stress” and “liver”. The 
reference list of all included studies was screened for eligibility. This review included 
all study types in humans and animals. Studies published in all languages were 
considered. One author independently screened titles and abstracts and subsequently 
reviewed full-texts of retrieved studies for eligibility.

ALCOHOL METABOLISM
Alcohol (ethanol) is metabolized by three major pathways (Figure 1)[7]. The primary 
pathway is initiated by alcohol dehydrogenase (ADH), a NAD+ requiring enzyme 
expressed at high levels in hepatocytes, which oxidizes ethanol to acetaldehyde[7]. In a 
normal liver, acetaldehyde enters the mitochondria and is quickly metabolized to 
acetate by aldehyde dehydrogenase (ALDH). Acetate is then broken down to carbon 
dioxide and water for elimination[8]. In chronic alcohol users, the ADH/ALDH 
pathway becomes saturated and reactive aldehydes are produced from the metabolism 
process such as malondialdehyde-acetaldehyde (MAA), 4-hydroxy-2-nonenal (HNE) 
and lipid hydroperoxides which can bind to proteins to produce protein adducts[8].

These protein adducts are capable of provoking an immune response. In vitro 
experiments showed that the viability of antigen-presenting cells, lymphocytes, and 
hepatocytes was decreased on incubation with an MAA hen egg lysosome adduct[9]. 
Circulating antibodies against MAA protein adducts were increased in patients with 
ALD and AH and correlated with the severity of liver injury[9].

The second major pathway to metabolise ethanol is the microsomal ethanol 
oxidizing system (MEOS), which involves an NADPH-requiring enzyme, the 
cytochrome P450 enzyme CYP2E1[10], which is induced by chronic alcohol 
exposure[11,12]. The increase of CYP2E1 after alcohol intake is due to stabilization of 
CYP2E1 rather than to a de novo synthesis[11]. The MEOS pathway metabolises ethanol 
to acetaldehyde by converting NADPH+ and O2 to NADP and H2O resulting in the 
generation of reactive oxygen species (ROS). CYP2E1 plays a role in lipid peroxidation, 
protein oxidation, and protein nitration (Figure 1)[11]. It is also known to promote 
hepatic carcinogenesis by oxidizing DNA in alcohol-exposed rodents[13].

Ethanol metabolism through CYP2E1 not only produces acetaldehyde but also 
generates ROS including H2O2, hydroxyl (OH-) and carbon centered OH- (Figure 1)[14]. 
These ROS may be neutralized by a potent antioxidant defense system[14]. However, 
chronic alcohol consumption disrupts this system; depletion of mitochondrial 
glutathione (GSH) is observed in patients with alcohol dependence[15], which impairs 
hepatocyte tolerance to tumour necrosis factor alpha (TNF-α) resulting in an increased 
likelihood of cell death[16]. ROS increases and activates c-Jun N-terminal kinase (JNK) 
with consecutive expression of the activator protein 1 (AP-1) transcription factor 
leading to cellular hyper-regeneration, and lipid peroxidation. Lipid peroxidation 
products such as malondialdehyde and HNE are generated. HNE can bind to 
adenosine and cytosine forming highly carcinogenic exocyclic etheno DNA adducts[17]. 
These DNA adducts have been identified in the livers of patients with ALD and other 
types of liver disease associated with inflammation and oxidative stress like viral 
hepatitis[18].

The other two most prevalent DNA adducts are N2-ethyldeoxyguanosine (N2-Et-
dG), and 1,N(2)-propano-2′-deoxyguanosine (PdG). N2-Et-dG is detectable in livers of 
alcohol-exposed mice and leukocytes of human alcohol misusers[19]. PdG, on the other 
hand, is distinguished by its genotoxic and mutagenic effects which impair DNA 
replication, thereby triggering cell death. These two major acetaldehyde-DNA adducts 
also promote carcinogenesis by initiating replication errors and mutations in 
oncogenes/onco-suppressor genes[19].

A third minor pathway for ethanol metabolism involves catalase, a peroxisomal 
enzyme (Figure 1)[20], which requires the presence of H2O2, a breakdown product of 
fatty acids. Catalase located in the peroxisomes of the hepatocyte plays only a minimal 
role in alcohol metabolism due to low hepatic production of H2O2. Under normal 
conditions, ADH metabolizes about 75%-80% of the ethanol entering the liver and 
MEOS the remainder. Hepatic ADH and hepatic catalase activities remain unchanged 
following chronic alcohol consumption, whereas hepatic MEOS activity strikingly 
increases and is responsible for the enhanced alcohol metabolism found after chronic 
alcohol consumption[11,12].
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Figure 1  The three major pathways of alcohol metabolism. The primary pathway is initiated by alcohol dehydrogenase, a NAD+ requiring enzyme 
expressed at high levels in hepatocytes, which oxidizes ethanol to acetaldehyde. The second major pathway, the microsomal ethanol oxidizing system pathway, 
involves the NADPH-requiring enzyme cytochrome P450 enzyme 2E1, which is induced by chronic alcohol exposure. The third pathway for ethanol metabolism is 
carried out by catalase, a peroxisomal enzyme. ADH: Alcohol dehydrogenase; ALDH2: Aldehyde dehydrogenase; CYP2E1: Cytochrome P450 enzyme 2E1; HNE: 4-
hydroxy-2-nonenal; LOOH: Lipid hydroperoxides; MDA: Malondialdehyde; MEOS: Microsomal ethanol oxidizing system; ROS: Reactive oxygen species.

MITOCHONDRIAL STRESS
Chronic alcohol consumption results in structural and functional abnormalities in 
hepatic mitochondria, including enlarged morphology[21,22], mitochondrial DNA 
(mtDNA) damage[23], reductions in hepatic ATP levels[24] and mitochondrial protein 
synthesis[25] (Figure 2). This can result in hepatocellular apoptosis and associated 
necrosis[26]. Chronic alcohol metabolism and associated mitochondrial dysfunction has 
been implicated in increasing ROS production and accumulation in hepatic 
mitochondria.

In humans, in vivo measurement of ROS is complicated due to their rapid reactions 
with surrounding molecules[27]. Surrogate measures of mitochondrial-derived ROS 
include urinary isoprostane levels[28,29], NADH delivery to the respiratory chain[30], lipid 
peroxidation[31,32] and HNE levels and associated adducts[17,33]. The greatest indicator of 
ROS overproduction is the increase in hepatic CYP2E1 levels[32,34-37]. The respiratory 
chain has also been implicated in mitochondrial ROS overproduction in response to 
chronic alcohol consumption. Excessive levels of reducing equivalents (e.g., NADH), 
produced by alcohol and ADH entering the mitochondrial respiratory chain, lead to 
electron transport chain reduction, facilitating superoxide anion formation[38,25].

Cell death can be triggered through ROS-induced release of apoptosis signal-
regulating kinase 1 (ASK1) (a member of the mitogen-activated protein kinase [MAPK] 
family), resulting in the cleavage of pro-caspase-3 to active caspase-3, which promotes 
cellular apoptosis[39-41]. Additionally, cytosolic ASK1 activates MAPK kinase 4 and JNK 
resulting in increased mitochondrial permeability, mediated by SAB protein, and thus 
hepatocyte cell death[40,41](Figure 2).

Reactive nitrogen species (RNS) also contribute to mitochondrial damage[22,38]. 
Alcohol-mediated overproduction of the superoxide anion can result in the generation 
of RNS, such as peroxynitrite, via interaction with nitric oxide, culminating in 
mitochondrial protein damage[25]. Numerous mitochondrial-localized enzymes 
involved in respiration and cellular energetic processes are inactivated in this way, 
including NADH dehydrogenase, succinate dehydrogenase, cytochrome c reductase 
and ATP synthase[42].

To limit oxidative damage following alcohol consumption, hepatic mitochondria 
have various adaptive mechanisms to prevent functional and structural impairments. 
Uncoupling proteins (UCPs), specifically UCPs 1-3, reduce ROS production by the 
uncoupling of mitochondrial oxidative phosphorylation[43], a process observed in 
patients with non-alcoholic fatty liver disease (NAFLD)[44]. Furthermore, there is 
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Figure 2  Pathways involved in mediating mitochondrial oxidative stress. Alcohol elevates mitochondrial cytochrome p450 2E1 and NADH levels 
facilitating reactive oxygen species (ROS) upregulation. Elevated ROS damages mitochondrial DNA, proteins and cristae and causes a reduction in mitochondrial 
ATP and glutathione. ROS-activated thioredoxin-interacting protein translocates to mitochondria binding thioredoxin 2, indirectly producing further ROS through 
inhibiting its antioxidant activity. Apoptosis signal-regulating kinase 1 liberated from thioredoxin 2, facilitates cleavage of pro-caspase 3 to caspase 3 leading to 
hepatocellular apoptosis. Mitochondrial ROS activates cytosolic apoptosis signal-regulating kinase 1 leading to downstream opening of the mitochondrial transition 
pore through mitogen-activated protein kinase kinase 4 and c-Jun N-terminal kinase activation. ROS form reactive nitrogen species which inhibit mitochondrial 
enzymes. ASK1: Apoptosis signal-regulating kinase 1; BAX: Bcl-2-associated X protein; CYP2E1: Cytochrome p450 2E1; ETC: Electron transport chain; GSH: 
Glutathione; JNK: C-Jun N-terminal kinase; MKK4: Mitogen-activated protein kinase kinase 4; mtDNA: Mitochondrial DNA; ROS: Reactive oxygen species; RNS: 
Reactive nitrogen species; SAB: SH3 domain-binding protein that preferentially associates with Btk; TRX2: Thioredoxin 2; TXNIP: Thioredoxin-interacting protein.

mitochondrial upregulation of enzymatic antioxidants catalase, glutathione transferase 
and heme oxygenase-1 and a marked increase in GSH[45,46]. However, mitochondrial 
GSH depletion was observed in patients with alcohol dependence and ALD[15,16] 
suggesting that chronic alcohol exposure downregulates GSH expression.

Manganese-dependent superoxide dismutase (MnSOD) detoxifies mitochondrial 
superoxide[47], but its response to alcohol is poorly documented. Increased 
mitochondrial localization of MnSOD was associated with more severe forms of 
ALD[48], which may be mediated by increased hydroxyl radical generation[22]. Thus, 
overexpression of MnSOD may be hepatotoxic rather than hepatoprotective.

S-adenosylmethionine (SAMe) has been implicated in regulating mitochondrial 
function, following alcohol consumption in a variety of animal models[49]. SAMe binds 
and inactivates the catalytic activity of CYP2E1[50], limiting alcohol-dependent 
increases in mitochondrial production of superoxide[49]. SAMe also increases synthesis 
and availability of glutathione[51] and maintains mitochondrial respiration rate and 
mtDNA integrity[38]. Although greater SAMe levels have been observed in the serum of 
ALD patients compared to healthy subjects[52], a reduction in hepatic SAMe levels was 
observed in patients with AH[53], suggesting the acute inflammatory state leads to 
hepatic SAMe depletion. SAMe has been evaluated as a treatment for AH in a recent 
phase 2 randomized controlled clinical trial. SAMe with prednisolone improved 6-mo 
survival compared to prednisolone treatment alone[54]. Although these preliminary 
results are encouraging, a definitive study has yet to be undertaken.

CELL SIGNALING PATHWAYS
Lipopolysaccharide (LPS) plays a key role in the pathogenesis of ALD, with higher 
circulating LPS levels in alcohol dependent patients[55,56]. In AH, LPS predicts organ 
failure, mortality[57] and infection[58]. Alcohol exposure increases gut permeability, 
mediating translocation of LPS from the lumen of the intestine to the portal vein into 
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the liver[55]. LPS binds to Toll-like receptor 4 (TLR4) expressed on a wide variety of 
immune and parenchymal cells including Kupffer cells, hepatocytes, endothelial cells 
and hepatic stellate cells, initiating one of the primary signaling cascades associated 
with liver damage[59,60]. LPS-mediated cell signaling results in transcription of pro-
inflammatory genes through nuclear factor-κB (NF-κB) and interferon regulatory 
factor 3 DNA binding[59,61].

Upon LPS stimulation of the TLR4 complex, NADPH oxidase (NOX) 4 interacts 
with the COOH-terminal region of TLR4 resulting in ROS generation in neutrophils 
and monocytes[62,63], which directly activates NF-κB[62,64]. ROS-mediated activation and 
potential regulation of NF-κB activity occurs by several mechanisms: IκBα 
phosphorylation; S-glutathionylation of IKKβ; disruption of IκB ubiquitination and 
degradation; NF-κB inducing kinase (NIK) activation and phosphoinositide 3-kinase 
(PI3K)/protein kinase B (Akt) stimulation[65] (Figure 3). ROS both negatively and 
positively regulates NF-κB, with oxidative stress in the early phase being a positive 
regulator, compared to a negative regulator in the late phase[66]. Diphenyliodonium 
(DPI), an inhibitor of NOX, used as a pre-treatment in alcohol-fed rats, results in 
normalized ROS production, and inhibition of TNF-α production in Kupffer cells[59,67]. 
Treatment of alcohol-fed rats with the antioxidant dilinoleoyl-phosphatidylcholine, 
also inhibited TNF-α production in Kupffer cells and LPS-induced NF-κB activation[68].

Diphenyliodonium and dilinoleoyl-phosphatidylcholine reduce extracellular signal-
regulated protein kinase (ERK)1/2 activation[67,68]. LPS-induced activation of ERK1/2 
results in transcription of early growth response protein 1 (Egr-1), involved in binding 
to the TNF-α promoter and increasing TNF-α expression[59]. Egr-1 deficient mice are 
protected from chronic alcohol-induced liver injury in association with decreased 
TNF-α messenger RNA (mRNA) levels[69].

LPS activates other MAPKs including p38 and JNK[59], involved in TNF-α 
production[70]. p38 has been implicated in maintaining the stability of TNF-α 
mRNA[59,71]. In response to acute alcohol exposure, the JNK pathway has been 
associated with increased hepatic mitochondrial ROS production[72], increased JNK 
phosphorylation and AP-1 binding in monocytes[73]. ROS is likely to activate JNK 
through interaction with upstream MEKK1[65] and by inactivating JNK inhibitor dual 
specificity protein phosphatase 1[40,74]. ROS have also been associated with activation of 
cytosolic ASK1[40] (Figure 3). Clinical trials of ASK1 inhibitors as a treatment for 
inflammatory liver disease are ongoing with a suggestion of reduced fibrosis in 
patients with NAFLD[75] but no efficacy seen in AH[76].

ROS-mediated S-glutathionylation results in decreased expression of downstream 
antioxidants such as MnSOD, catalase and Sestrin3 via the PI3K/AKT pathway[77]. Akt 
has also been implicated in increasing oxygen consumption, resulting in elevated 
mitochondrial generation of H2O2, facilitating further oxidative damage[78,79].

The net result of these alcohol-induced cell signaling pathways is the increased 
production of pro-inflammatory cytokines through upregulation of transcription 
factors such as AP-1 and NFκB. TNF-α, a key pro-inflammatory cytokine, is highly 
elevated in patients with ALD and AH[80-82], with observed TNF-α gene expression 
increasing in ALD patients[83]. TNF-α induces apoptosis through interaction with TNF-
α receptor 1 (TNFR1), initiating a cell-death cascade via activation of caspases[84]. In 
ALD, TNF-α-induces mitochondrial peroxidation[55], which is worsened following 
depletion of GSH[15,85].

TNF-α exacerbates oxidative damage and inflammation via a positive feedback loop. 
Through association with TNFR1, TNF-α stimulates the association of complex I[86], 
which culminates in MAPK activation (JNK, p38 and ERK). Complex I also directly 
contributes to ROS accumulation through generation of superoxide, capable of causing 
further oxidative damage and eventual TNF-α, perpetuating the cycle[40,87,88].

Soluble inflammatory mediators including interleukins have been implicated in 
ALD[60,89,90] and are associated with outcome in patients with AH[91]. Elevated serum IL-
6 levels have recently been identified as a predictor of mortality in severe AH 
patients[64]. Hepatic upregulation of IL-6 and IL-1β in ALD, results in the 
differentiation of naïve CD4+ cells into IL-17-producing T-helper 17 cells (Th17) 
(Figure 4), resulting in elevated hepatic and serum levels of IL-17 observed in ALD 
patients[64,92]. IL-17 has a multitude of pro-inflammatory downstream effects, including 
inducing neutrophil recruitment to the liver; stimulating IL-8 and CXCL1 production 
by hepatic stellate cells[93] and CXCL4, 5 and 6 expression[92,93]. IL-6 and interferon 
(IFN)-γ are involved in JAK/STAT activation promoting hepatic regeneration[59,94]. 
Conversely, despite upregulation of IL-6 in ALD patients, downregulation of STAT 
activation has been observed in human monocytes with chronic alcohol exposure[95].

Inflammasomes propagate IL-1β and IL-18 signals, important in the regulation of 
hepatic inflammation[94]. ROS mediates IL-1β and IL-18 signaling via inflammasome 
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Figure 3  Signaling pathways involved in exacerbating oxidative damage and liver injury. Lipopolysaccharide, alcohol and extracellular reactive 
oxygen species (ROS) are all capable of activating toll-like receptor 4 leading to myeloid differentiation primary response 88 (MyD88) activation. MyD88 association 
with interleukin-1 receptor-associated kinase 1-4 results in activation of the tumor necrosis factor receptor-associated factor 6/transforming growth factor beta-
activated kinase 1 complex, which activates MAPKs c-Jun N-terminal kinase, p38 and extracellular signal-regulated protein kinase, facilitating transcription factors 
activator protein 1 and early growth response protein 1 to translocate to the nucleus and upregulate pro-inflammatory mediators. Tumor necrosis factor receptor-
associated factor 6/transforming growth factor beta-activated kinase 1-mediated phosphorylation of the IKKα-β-γ complex leads to IκB phosphorylation and nuclear 
factor κB (NF-κB) translocation to the nucleus to upregulate pro-inflammatory cytokines. MyD88 signaling also activates NADPH oxidase 4 to produces ROS. ROS 
are also produced by the NADPH oxidase 1/ras-related C3 botulinum toxin substrate 1 complex which is activated upstream by tumour necrosis factor alpha 
interacting with tumour necrosis factor alpha receptor type 1, at the cell surface, which activates complex I. ROS upregulate NF-κB translocation to the nucleus 
through IκB phosphorylation, nuclear factor κB inducing kinase activation and indirect protein kinase B activation. At high concentrations, ROS inhibit NF-κB 
activation through inhibition of IκB phosphorylation and S-glutathionylation of IKKβ. ROS inhibit dual specificity protein phosphatase 1 and thioredoxin to further 
upregulate the c-Jun N-terminal kinase pathway. ROS inactivation of phosphatase and tensin homolog facilitates phosphoinositide 3-kinase to produce protein kinase 
B, which elevates ROS levels via increased oxygen consumption, and inactivates forkhead box protein O and downstream antioxidant expression. AKT: Protein 
kinase B; AP-1: Activator protein 1; ASK1: Apoptosis signal-regulating kinase 1; DUSP1: Dual specificity protein phosphatase 1; Egr-1: Early growth response protein 
1; ERK: Extracellular signal-regulated protein kinase; FOXO: Forkhead box protein O; IAP: Inhibitor of apoptosis; IFN: Interferon; IL: Interleukin; IRAK: Interleukin-1 
receptor-associated kinase 1; JNK: C-Jun N-terminal kinase; LPS: Lipopolysaccharide; MEKK1: Mitogen-activated protein kinase kinase kinase 1; MyD88: Myeloid 
differentiation primary response 88; NF-κB: Nuclear factor κB; NIK: Nuclear factor κB inducing kinase; NOX: NADPH oxidase; MnSOD: Manganese-dependent 
superoxide dismutase; PI3K: Phosphoinositide 3-kinase; PTEN: Phosphatase and tensin homolog; Rac1: Ras-related C3 botulinum toxin substrate 1; ROS: Reactive 
oxygen species; TAK1: Transforming growth factor beta-activated kinase 1; TLR4: Toll-like receptor 4; TNF-α: Tumour necrosis factor alpha; TNFR1: Tumour 
necrosis factor alpha receptor 1; TRADD: Tumour necrosis factor alpha receptor 1-associated death domain protein; TRAF: Tumor necrosis factor receptor-
associated factor; TRIF: TIR-domain-containing adapter-inducing interferon-β; TRX: Thioredoxin; TXNIP: Thioredoxin-interacting protein.

NLRP3 activation[96,97] and inhibition of antioxidant molecules[41] (Figure 4). Increased 
production of IL-1β is critical in Th17 differentiation[64,92,98], while IL-18 activates natural 
killer T-cells (NKTs) to produce IFN-γ[99]. Anti-IL-18 antibodies reduce activation of 
NF-κB and AP-1, inflammation, liver damage and mortality in animal models[99,100]. IL-
1β has also been identified as an activator of MAPKs, including p38, JNK, MEKK1 and 
IKKβ, involved in mediating upregulation of itself and other pro-inflammatory 
cytokines[101], creating another positive feedback loop.

TRACE ELEMENTS
Trace elements are a group of naturally occurring minerals that are nutritionally 
fundamental to basic cellular and immunological functions[102]. An essential role of the 
these molecules, including zinc, copper, selenium and manganese, is to act as cofactors 
of anti-oxidant enzymes, making their role imperative in the context of oxidative 
stress[103,104]. Manganese, copper and zinc are part of the SOD enzyme group that 
catalyze the breakdown of highly reactive superoxide radicals to H2O2 or O2

-. Selenium 
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Figure 4  Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome activation and 
downstream signaling. Reactive oxygen species (ROS) activate thioredoxin-interacting protein via inhibition of oxidoreductase thioredoxin. Thioredoxin-
interacting protein both binds and activates nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasomes and interacts with 
thioredoxin 1 and 2 to indirectly promote further ROS generation through inhibiting their antioxidant activity. Activated nucleotide-binding domain, leucine-rich-
containing family, pyrin domain-containing-3 inflammasomes facilitate pro-caspase 1 cleavage to caspase 1, which facilitates pro- interleukin (IL)-1β and pro-IL-18 
cleavage to IL-1β and IL-18 respectively. IL-18 induces interferon-γ production by natural killer T-cells. IL-1β induces generation of T-helper 17 cells in addition to 
nuclear factor κB and activator protein 1 activation through IKKβ, p38, c-Jun N-terminal kinase and mitogen-activated protein kinase kinase kinase 1 stimulation. 
Activating nuclear factor κB and activator protein 1 results in pro-inflammatory cytokine release, indirectly inducing further ROS accumulation. AP-1: Activator protein 
1; IFN: Interferon; IL: Interleukin; JNK: C-Jun N-terminal kinase; MEKK1: Mitogen-activated protein kinase kinase kinase 1; NF-κB: Nuclear factor κB; NKT: Natural 
killer T-cell; NLRP3: Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3; NOX: NADPH oxidase; Rac1: Ras-related C3 botulinum 
toxin substrate 1; ROS: Reactive oxygen species; Th17: T-helper 17 cells; TNF-α: Tumour necrosis factor alpha; TNFR1: Tumour necrosis factor alpha receptor 1; 
TRX: Thioredoxin; TXNIP: Thioredoxin-interacting protein.

is a component of the active site of glutathione peroxides (GPx), the main function of 
which is the neutralization of hydrogen peroxide[105]. These enzyme systems are crucial 
in counterbalancing the oxidative stress state and are impaired in chronic liver 
disease[106].

Reduced serum levels of trace elements have been confirmed in patients with liver 
disease, including ALD, and correlate with severity[107-110]. Decreased zinc is associated 
with liver cirrhosis in alcohol dependent individuals[111] and reduced serum levels of 
zinc, copper and iron have been observed when compared with healthy controls[112]. 
Zinc is a crucial trace element involved in multiple cellular and metabolic pathways[113] 
as well as acting as a cofactor for ALDH. Deficiency or abnormality in zinc function is 
implicated multiple pathologies, including liver disease (both acute and chronic)[114,115] 
and is associated with immune dysfunction evidenced by increased inflammation and 
aberrant immune cell activation[116]. Zinc deficiency in endothelial cells results in 
increased oxidative stress and decreased inflammatory regulation which is corrected 
or partially ameliorated by zinc supplementation[117,118]. In alcohol-fed mice, zinc 
deficiency worsens the balance between hepatic pro- and antioxidant enzymes[119] and 
is associated with accumulation of ROS in gut epithelial cells and disruption of tight 
junctions[120]. Given zinc’s influence on antioxidant responses, gut integrity and 
immune function, a trial of zinc supplementation to improve clinical outcomes in 
patients with ALD cirrhosis is ongoing (NCT02072746). Preliminary reports suggest 
zinc supplementation is associated with a reduction in liver inflammation and 
improvement in immune function[121].

Antioxidant therapy may also have a benefit in the treatment of AH. An antioxidant 
cocktail (including zinc and selenium) in combination with steroids for the treatment 
of severe AH correlated with a significant reduction in serum biomarkers, improved 
short-term prognosis and reduced length of stay in hospital[122]. However, a subsequent 
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study of a complex regimen of N-acetylcysteine (NAC) followed by antioxidant 
therapy, alone or in conjunction with steroids, reduced renal injury but resulted in no 
survival benefit over 6 mo[121]. Another clinical trial of steroids combined with NAC in 
AH showed reduced infection rate but not mortality at 6 mo[123]. Antioxidants have also 
been shown to have a protective effect in patients with NAFLD by reducing serum 
levels of alanine transaminase (ALT) and spleen size, a finding that likely correlates 
with an improvement of fatty infiltration[122]. These findings suggest that targeting or 
counterbalancing oxidative stress in ALD patients may improve patient outcomes.

EPIGENETICS
Lifestyle and environmental factors can modify gene expression without altering the 
DNA sequence, which gets transmitted to the next generation of cells after mitotic 
division, termed epigenetics[123]. Epigenetic regulation includes both DNA and histone 
protein modifications as well as action through non-coding micro RNAs[123]. DNA 
methylation is the most abundant epigenetic modification that directly affects the 
function of a gene in eukaryotes[124]. Acetylation and deacetylation are modifications in 
histone proteins carried out by two enzyme families, histone deacetylases (HDACs) 
and histone acetyl transferase (HAT)[124]. Histone modifying enzymes contribute to the 
activation or inactivation of transcription by catalyzing the unfolding or further 
compaction, respectively, of chromatin structure[124].

Excessive ROS is involved in epigenetic gene activation or silencing by changing 
DNA methylation levels[125]. ROS production induces alterations in DNA methylation 
patterns and global histone acetylation, which then lead to aberrant gene expression, 
and may contribute to the process of carcinogenesis[124]. The reduction of global histone 
acetylation in short term oxidative stress might be due to an immediate increase of 
class I/II HDAC activity by an unknown mechanism[126,127]. Class III HDAC (Sirtuin 
NAD+-dependent family of protein deacetylases) has been hypothesized to be 
upregulated under oxidative stress because NAD+ levels increase in the mitochondria 
under oxidative stress conditions but direct evidence is lacking[126].

Alcohol consumption increases gene-selective acetylation of histone H3 at lysine 9 
(H3K9), levels of enzymes mediating histone acetylation, and results in a generalized 
increase in DNA methylation[126,127]. These epigenetic-mediated effects of alcohol 
consumption regulate the inflammatory response, through key pro-inflammatory 
cytokines, such as TNF-α, which is silenced by H3K9 methylation and activated by 
H3K9 acetylation[128]. In a macrophage cell line, alcohol treatment resulted in global 
increased histone H3 and H4 acetylation and specifically increased acetylation of pro-
inflammatory gene histones[129].

Oxidative stress itself is an important regulator of epigenetic processes by inhibition 
of HDAC expression[130]. This takes place via activation of PI3Kδ, a signalling molecule 
controlling many inflammatory signalling pathways[131]. Drugs that inhibit PI3Kδ (e.g., 
theophylline, nortriptyline and specific inhibitors) reduce oxidative stress in in vitro 
and in vivo models of lung disease[132]. In patients with AH, there is in vitro evidence 
that theophylline can enhance response to corticosteroid treatment, which may be 
mediated by its epigenetic effects[133]. Targeting epigenetic regulation has recently been 
shown to have a beneficial effect in patients with AH; a novel sulphated oxysterol, 
DUR-928, was well tolerated and improved liver biochemistry in a small phase 2 
clinical trial in AH[134].

Activation of the transcription factor Nrf2 is central to cellular defence against 
ROS[135]. Its negative regulator, kelch-like ECM-associated protein 1 (Keap1), promotes 
proteasomal degradation of Nrf2. ROS decouples Nrf2 from Keap1, allowing it to 
translocate to the nucleus to bind to antioxidant response elements (AREs), initiating a 
range of antioxidant processes[135,136]. Both Nrf2 and Keap1 expression are influenced by 
epigenetics with evidence of DNA hypermethylation in the Nrf2 promoter[135,136] and 
Keap1 promoter[137]. Histone acetylation and deacetylation also modify ARE-
dependent gene expression with Class 1 HDACs reducing Nrf2[138]. Conversely, HDAC 
inhibitors restore Nrf2 expression and antioxidant responses. Targeting epigenetic 
regulation of Nrf2/Keap1 to ameliorate oxidative stress induced inhibition of 
antioxidant responses is an appealing strategy[138]. However, much of this work has 
been performed in cancer cell lines and needs further investigation in the context of 
ALD.
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IMPLICATIONS FOR THERAPY OF ALD
An improved understanding of the detailed mechanisms by which oxidative stress 
influences liver damage in patients with ALD may yield new targets for therapy. 
Current data from pre-clinical and clinical studies suggest potential new avenues for 
therapy of ALD.

MITOCHONDRIAL STRESS
Chronic alcohol consumption results in significant mitochondrial ROS generation 
leading to morphological and functional changes. Preventing ROS generation may 
ameliorate this process. Pre-clinical and early phase clinical studies have shown 
promise of this approach with SAMe. A systematic review and meta-analysis of 11 
randomized controlled trials of SAMe treatment for chronic liver disease concluded 
that it improved liver biochemistry (bilirubin and AST) and had a good safety profile 
but did not affect mortality[139]. Long term SAMe treatment in patients with ALD does 
not appear to be clinically effective with no reduction in adverse events or mortality in 
the two included studies performed in patients with ALD[140,141]. However, short term 
treatment of the acute mitochondrial stress seen in AH may be a better strategy for the 
use of SAMe. A phase 2 clinical trial of SAMe with prednisolone for the treatment of 
severe AH demonstrated improved response rate measured by Lille score and a 
reduction in hepatorenal syndrome[54]. However, there was no statistically significant 
difference in 28-d mortality. It may yet prove to be an effective adjunct to anti-
inflammatory therapy for AH.

UCPs are strongly associated with mitochondrial stress in ALD. Overexpression of 
UCP2 reduces apoptosis and oxidative stress in vitro[142]. Hepatocellular downregulated 
mitochondrial carrier protein (HDMCP) expression induced uncoupling and reduced 
steatosis in an animal model of NAFLD[143]. However, such an approach may promote 
hepatocyte necrosis and increase the risk of hepatocellular carcinoma[144]. Further 
studies in this area are required to determine whether targeting UCPs would be a 
beneficial therapeutic strategy.

ANTIOXIDANT THERAPY
NAC, an antioxidant therapy that provides cysteine for glutathione synthesis, has been 
tested in patients with AH. Although initial trials did not demonstrate a survival 
benefit[145,146]. a more recent study of NAC in combination with prednisolone, showed a 
reduction in infective events and 1-month mortality[147]. Therefore, NAC has been 
suggested for the treatment of AH in clinical practice guidelines, with the caveat that a 
definitive randomized controlled trial is still required[148].

Deficiency of key trace elements is associated with oxidative stress, which is 
ameliorated by supplementation. Antioxidant therapy including zinc and other trace 
elements has shown clinical benefit in patients with AH[122]. However, interpretation is 
hampered by use of a variety of antioxidants at differing concentrations and 
durations[145,146]. A trial of long-term zinc supplementation in ALD patients has 
demonstrated improvements in short-term immune function[149] with long-term clinical 
outcomes due to be reported shortly. Improved understanding of the role of trace 
elements in ALD and the optimal formulation and duration of treatment is required.

EPIGENETIC REGULATION
Oxidative stress reduces HDAC expression via PI3Kδ activation resulting in increased 
expression of pro-inflammatory genes. Studies targeting HDACs have yet to be 
performed in patients with ALD. Although in vitro studies suggest an antioxidant 
effect of HDAC inhibition with upregulation of Nrf2 expression[138], HDAC inhibitors 
approved for use in the treatment of cancer induce cell cycle arrest, apoptosis and 
oxidative stress in cancer cells which overexpress HDAC[150]. The effect of HDAC 
inhibitors in the context of ALD requires careful in vitro confirmation before clinical 
translation. However, targeting PI3Kδ is a more appealing strategy with evidence 
from the respiratory field that specific inhibitors reduce oxidative stress in vitro and in 
vivo[132].
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CONCLUSION
Alcohol is a major global healthcare and economic burden and is a growing cause of 
chronic liver disease. However, there are currently no effective therapies to treat ALD. 
Oxidative stress is involved in multiple aspects of ALD pathogenesis (Figure 5). 
Chronic alcohol consumption results in the saturation of the ADH pathway and 
increased CYP2E1-mediated alcohol metabolism. This leads to the generation of 
reactive species including MAA, HNE, lipid hydroperoxides, RNS and ROS, which 
cause hepatic damage via lipid and protein peroxidation, adduct formation and 
cellular hyper-regulation. Similar damage occurs in hepatic mitochondria with ROS 
inducing structural and functional damage. ROS cause oxidative damage through 
multiple mechanisms: Promoting cell death via protein mediators, increasing and 
sustaining the upregulation of pro-inflammatory mediators, as well as inducing 
multiple epigenetic modifications.
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Figure 5  Reactive oxygen species-mediated oxidative damage in the liver. Increased cytochrome p450 2E1-mediated alcohol breakdown and electron 
transport chain reduction results in overproduction of reactive oxygen species (ROS). Excess alcohol causes gut hyperpermeability resulting in tight junction 
disruption and an excess of lipopolysaccharide translocation from the gut to the liver. Lipopolysaccharide activates NADPH oxidase via toll-like receptor 4 activation 
resulting in further ROS production. Excess ROS produce RNS and reduce antioxidant cofactors such as Mn and Zn. ROS induce hepatocyte damage through 
activation of apoptosis signal-regulating kinase 1. Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasomes are activated 
by ROS, inducing T-helper 17 generation and natural killer T cell-mediated interferon-γ production through interleukin expression. ROS upregulate transcription 
factors activator protein 1 and nuclear factor κB resulting in pro-inflammatory cytokine expression causing downstream liver inflammation. Tumour necrosis factor 
alpha further upregulates ROS through activating NADPH oxidase via tumour necrosis factor alpha receptor 1. ROS cause an array of functional and structural 
mitochondrial damage, which is initially impeded by uncoupling proteins and SAMe expression. ROS mediates epigenetic alterations through interacting with HDACs 
which mediate histone acetylation. Ac: Acetylation; ADH: Alcohol dehydrogenase; AP-1: Activator protein 1; ASK1: Apoptosis signal-regulating kinase 1; Cu: Copper; 
CYP2E1: Cytochrome p450 2E1; ETC: Electron transport chain; HDAC: Histone deacetylases; IFN: Interferon; IL: Interleukin; LPS: Lipopolysaccharide; Mn: 
Manganese; NF-κB: Nuclear factor κB; NKT: Natural killer T-cell; NOX: NADPH oxidase; ROS: Reactive oxygen species; SAMe: S-adenosylmethionine; Se: 
Selenium; Th17: T-helper 17 cells; TLR4: Toll-like receptor 4; TNF-α: Tumour necrosis factor alpha; TNFR1: Tumour necrosis factor alpha receptor 1; UCP: 
Uncoupling protein; Zn: Zinc.
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