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Abstract
The triple-negative subtype of breast cancer (TNBC) has the bleakest prognosis, 
owing to its lack of either hormone receptor as well as human epidermal growth 
factor receptor 2. Henceforth, immunotherapy has emerged as the front-runner 
for TNBC treatment, which avoids potentially damaging chemotherapeutics. 
However, despite its documented association with aggressive side effects and 
developed resistance, immune checkpoint blockade continues to dominate the 
TNBC immunotherapy scene. These immune checkpoint blockade drawbacks 
necessitate the exploration of other immunotherapeutic methods that would 
expand options for TNBC patients. One such method is the exploitation and 
recruitment of natural killer cells, which by harnessing the innate rather than 
adaptive immune system could potentially circumvent the downsides of immune 
checkpoint blockade. In this review, the authors will elucidate the 
advantageousness of natural killer cell-based immuno-oncology in TNBC as well 
as demonstrate the need to more extensively research such therapies in the future.

Key words: Triple negative breast cancer; Natural killer cells; Immune checkpoint 
blockades; Programmed death-ligand 1; Cytotoxic T-lymphocyte-associated protein 4; 
Natural killer lectin-like group 2 member D

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Triple-negative breast cancer patients have the worst prognosis and conventional 
therapeutic approaches. Triple-negative breast cancer patients are considered the patients 
of choice for immunotherapy. We are shedding light on immune checkpoint blockades, 
such as programmed death-ligand 1 inhibitors, and its recently discovered side effects and 
resistance. In this context, we highlight a potential weapon known as the innate immune 
system and its native soldiers, which are the natural killer cells.
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INTRODUCTION
As the leading type of cancer in women worldwide comprising 24.2% of all female 
cancer patients as of 2018, breast cancer (BC) is a prime target of oncological research. 
As of 2018, 626679 deaths due to BC have been documented[1] with the actual mortality 
rates showing great variance according to stage of detection. This variance is 
demonstrated by the fact that a 99% survival rate is estimated for patients with the 
cancer still localized only to the breast, whereas patients in which the cancer has 
metastasized to more distant parts of the body show a much less encouraging survival 
rate of just 27%[2].

Diversity of BC
BC is by no means a uniform disease and is in fact represented by a number of 
different subtypes. Approximately 80% of BCs are estrogen receptor-positive (ER+) 
with the majority of these (65%) also being progesterone receptor-positive (PR+)[3,4]. 
This means that in these subsets of BC their proliferation is stimulated by the 
hormones progesterone and/or estrogen due to their characteristic overexpression of 
these hormone receptors. As such, the typical method of therapy for ER+/PR+ BC is 
based on targeting these receptors using blockers such as Tamoxifen™ or by curtailing 
synthesis of the hormones themselves via aromatase inhibitors such as Anastrazole™ 
and Letrozole™. About 20% of BCs are also human epidermal growth factor receptor 2 
(HER2) positive. The HER2 pathway is a proliferative one, meaning its overexpression 
results in uncontrolled cell division. The HER2+ BC subtype is characterized as more 
aggressive in terms of tumor growth and spreading than others. However, despite its 
poor prognosis in relation to ER+ and PR+ subtypes, there remains a viable treatment 
strategy for HER2+ BC, which relies on the targeting of HER2 using monoclonal 
antibodies such as trastuzumab (commercially known as Herceptin™), which abrogates 
the aforementioned proliferative activity of these cells and consequently attenuates 
malignancy, both through the direct effects of receptor blockade as well as recruitment 
of several immune cells through antibody-dependent cellular cytotoxicity (ADCC)[3,5]. 
However, in roughly 10%-20% of BC cases, tumor cells are classified as negative for 
both hormone receptors and HER2. This case, known as triple-negative breast cancer 
(TNBC), is well recognized as the subtype with the poorest prognosis due to the lack 
of targeted therapeutic options[6,7]. TNBC survival rates are comparatively lower than 
non-TNBC ones as demonstrated by a study published in 2018 by Gonçalves Jr et al[8] 
that showed 5-year survival rates of 80.8% and 62.1% for non-TNBC and TNBC 
patients, respectively.

TNBC patients: Worst prognosis and poorest survival rates
As mentioned, TNBC provides the bleakest outlook of all BC subtypes. Dent et al[9] 
painted a picture of this in 2007 in an 8-year follow-up study of 1601 BC patients. 
Whilst a vast minority were TNBC patients (180; 11.2%), a significantly worse 
prognosis was demonstrated by their higher mortality rate (42.2% in TNBC vs 28% in 
other BC subtypes), disease recurrence (33.2% vs 20.4%), with all TNBC-related deaths 
occurring within 10 years of initial diagnosis as opposed to regular BC mortalities 
stretching up to 18 years post diagnosis[9]. A further study was conducted 1 year later 
on the same cohort investigating the metastatic effects of TNBC. Results were yet again 
discouraging: TNBC patients had a 23% risk factor of developing visceral metastasis 
within 10 years as opposed to just 9% of other BC patients[10]. To this effect, the relative 
lack of therapeutic options for TNBC is an undoubtedly grave issue.

Chemotherapeutic insufficiency in TNBC
Despite its ominous implications, TNBC responds quite well to traditional 
chemotherapy. Response rate to neoadjuvant therapy has actually been found to be 
significantly higher in TNBC patients in comparison with other subtypes, with one 
comprehensive study by Liedtke et al[11] on 255 TNBC patients (out of a 1118-BC patient 
cohort) clocking this difference at 22% vs 11%. The real issue of TNBC is the poor 
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survival rate of those who do not respond to such chemotherapies adequately, mainly 
due to the lack of secondary therapeutic options that would otherwise be available to 
PR+, ER+ or HER2+ patients. In an attempt to alleviate this dilemma, researchers 
identified the defective DNA repair pathways characteristic of TNBC as a potential 
target. The enzyme poly (ADP-ribose) polymerase, normally known to contribute to 
base-excision DNA repair, has been shown to be dysfunctional in TNBC and 
contributes to the genetic instability of the disease[12]. As such, the poly (ADP-ribose) 
polymerase inhibitor iniparib has been tested in a combinatorial capacity with the 
chemotherapeutics gemcitabine and carboplatin. Whilst phase II trials were 
promising[13], phase III trials showed no considerable difference between combined 
therapy and sole chemotherapy[14]. This yet again underlines the immense struggle to 
find targeted therapies in TNBC.

WHY IMMUNOTHERAPY IN TNBC?
However, TNBC is associated with a high degree of chromosome instability and 
mutation, such as that of the tumor suppressor gene TP53[15,16]. Owing to this, mutant 
proteins produced by TNBC are hypothesized to be recognized by the immune system 
as unfamiliar antigens (i.e. neoantigens). This is one possible explanation to the 
characteristic and notable elevation of tumor-infiltrating lymphocyte (TIL) levels 
within the tumor microenvironments of TNBC patients, whereby lymphocytes are 
aggressively recruited to the site of malignancy. It is this observation of elevated TILs 
that prompted the reasoning that immunotherapy (i.e. stimulation of TILs or induced 
overexpression of neoantigens) would be an effective strategy to combat TNBC. This is 
further reinforced by the finding that higher TIL levels in TNBC are correlated to 
better prognoses amongst patients following the administration of immune-
stimulating chemotherapeutic agents such as anthracyclines. The heterogeneity of 
TNBC cells has in recent years been thoroughly examined to identify any potential 
candidates for targeted therapy[17]. This has proven difficult, despite the identification 
of TNBC-specific antigens such as MAGE-A and NY-ESO-1. Usage of such antigens is 
merely confined to cancer “vaccines,” which enhance tumor immunogenicity by 
improving the action of immunotherapeutic agents such as immune checkpoint 
blockers (ICB)[18].

ICB in TNBC
The era of immuno-oncology has borne with it fresh hope for TNBC patients. As 
previously mentioned, the abundance of TILs in the TNBC microenvironment is 
indicative of immunotherapy being a promising treatment approach due to the 
disease’s evident immunogenicity. Naturally, evasion measures are undertaken by the 
disease that allows it to prosper even under the immune-heavy climate in which it 
grows. Upon analysis of expression patterns, the immune checkpoint ligand 
programmed-death ligand 1 was found to be significantly overexpressed amongst 
TNBC cell surfaces as one such evasion measure[19]. As such, the programmed death-
1/programmed-death ligand 1 axis has risen as the chief target of TNBC 
immunotherapies with a number of programmed-death ligand 1-directed monoclonal 
antibodies are currently in clinical trial phases[20]. As is apparent from Table 1, the 
immunotherapeutic strategies of TNBC treatment are overwhelmingly biased towards 
ICB, with full approval still far off for most. Despite the promise of ICB in TNBC (well 
indicated by the progress into later trials for most monoclonal antibodies), some TNBC 
patients could yet find themselves short of options.

Limitations of ICB
Adverse inflammatory reactions: From a purely therapeutic standpoint, the effects of 
ICB treatment are extremely promising. Its positive response rates through the 
elevation of cytotoxic T-lymphocyte levels and efficacy as well as increased generation 
of T-helper cells are widely recognized. However, ICB by no means represents an 
anticancer “magic bullet” and poses issues of its own. Apart from the astronomical 
prices of ICB agents, a worrying problem commonly rears its head during ICB 
administration in the form of autoimmune events. Seeing as immune checkpoints 
normally serve as natural brakes to prevent prolonged or excessively severe immune 
responses, their blockade has predictably resulted in adverse inflammatory reactions 
in several cases. These responses vary greatly in terms of localization as well as 
severity; hypophysitis, gastroenteritis, enterocolitis, hepatitis and many other 
immune-mediated side effects have been observed in clinical studies, with their 
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Table 1 List of immunotherapeutic agents in various clinical trial phases and earliest expected completion dates of most significant 
trials[20]

Drug Function Trial phase Est. date of completion

Pembrolizumab PD-1 Inhibitor III December 2019

Nivolumab PD-1 Inhibitor II August 2022

Atezolizumab PDL-1 Inhibitor III April 2020

Avelumab PDL-1 Inhibitor III June 2023

Durvalumab PD-1 Inhibitor I/II October 2019

Tremelimumab CTLA-4 Inhibitor II October 20181

1Phase II complete, phase III not yet begun. PD: Programmed death; PDL: Programmed death ligand; CTLA-4: Cytotoxic T-lymphocyte-associated protein 
4.

intensities ranging from grade 2 (moderate) to grade 5 (life-threatening or fatal)[21].

Primary and/or secondary resistance: In addition to autoimmune tendencies, another 
issue with ICB therapy is the emergence of resistance against it amongst treated 
individuals. According to clinical trial data, in addition to responders and innate 
nonresponders, a third category of patients who initially respond to ICB therapy but 
subsequently acquire resistance to it has been defined. ICB is based mainly on the 
regeneration of exhausted T-cells and thus largely relies on the three elements of T-cell 
expansion, T-cell potency, and T-cell memory formation. All three of these 
mechanisms have been found to be impaired in cases of ICB resistance[22].

While unnaturally mutated neoantigens serve as the basis for immune recognition 
of malignant cells, the selection pressure applied by the immune system results in a 
remainder of cancer cells that have never innately expressed such antigens or have 
adapted to effectively “conceal” themselves from TILs either by shedding their 
neoantigens or the ability to present them through mutational loss[23]. The 
downregulation of major histocompatibility complex (MHC) class I elements such as 
the β2-microglobulin domain has been documented amongst patients who acquired 
ICB therapy resistance. The lack of a proper antigen presentation apparatus in 
malignant cells in such cases greatly decreases the potential for antigen recognition 
and subsequent priming and clonal expansion of the T-cell pool, rendering ICB 
administration redundant whereby there is a numeric shortage of T-cells to be 
targeted[24].

The efficacy of cytotoxic T-cells has been found to be lacking within resistant 
individuals. Even after antigen recognition and proper expansion/activation of the T-
cell population, the tumor microenvironment is far from an ideal place for T-cells to 
exert their effector functions. A cocktail of immunosuppressive cytokines, alternate 
immune checkpoints, inhibitory receptors and immunosuppressive leukocytes are all 
characteristic of the tumor microenvironment and contribute to the attenuation of T-
cell effector functions even after ICB therapy. Most notably, a trend of loss-of-function 
mutations to the genes encoding Janus kinases 1 and 2 has been highlighted amongst 
the tumors of resistant patients. These two proteins are components of the Janus 
kinase/STAT pathway, which in an immune context is crucial to the production of 
numerous stimulatory cytokines necessary for proper T-cell efficacy[24].

The formation of memory antitumor CD8+ cells is one of the hallmarks of ICB 
therapy despite the unelucidated mechanism. Also characteristic of resistant patients is 
the impairment of this memory formation and consequent short-lived nature of 
reactivated cytotoxic T-lymphocytes[25]. This could possibly be attributed to epigenetic 
factors that influence exhausted cells away from memory cell formation and thereby 
result in long-term resistance to ICB[26].

As has been mentioned, ICB represents a new source of hope for problematic 
cancers such as TNBC. However, the combined prominence of autoimmunity and/or 
resistance in clinical studies of various malignancies indicates that TNBC will not 
behave any differently and will indeed display these same tendencies; once again 
leaving TNBC patients bereft of options. Henceforth, it is necessary to look into 
tertiary methods of TNBC treatment in tandem with ICB research in order to provide 
alternative pathways for cases in which both chemotherapy and ICB should fail.
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HUMAN IMMUNE SYSTEM
Innate and adaptive immune arms
The three major types of lymphocytes that comprise the mammalian immune system 
are T-cells, B-cells and NK cells; each playing its own indisputable role in the eternal 
fight between host and foreign bodies or malignancies. Whilst T-cells and B-cells are 
members of the adaptive immune system that is triggered by the detection of foreign 
antigens in the blood, NK cells belong to the innate immune system[27]. This in turn 
implies a nonspecific mode of action whereby NK cells are not armed against 
particular antigens but are instead primed to fight any unnaturally altered cell. This is 
mainly achieved through immunoglobulin-like MHC class I-specific receptors on NK 
cell surfaces that phosphorylate internal inhibitory immunoreceptor tyrosine-based 
inhibitory motifs upon recognition of normally expressed MHC class I on functional 
host cells. When MHC class I is lacking or defective, as is common in virally infected 
and malignant cells, positive transcriptional signals are fed back to the NK cell that 
triggers their active cytolytic state. Other modes of activation, such as the recognition 
of stress-induced NK cell ligands or ADCC, also exist. It is because of this search and 
destroy mode of action that NK cells are often referred to as the “first line of defense” 
with regards to mammalian immunity[28].

Intricate cross talk between the innate and the adaptive arms of the immune system
The innate and adaptive immune systems are by no means secluded from one another; 
a constant flux of crosstalk between the two arms is characteristic of any properly 
functioning immune system as shown in Figure 1. An example of this is the “beacon” 
function of NK cells upon their encounter with malignant cells and consequent 
secretion of interferon-gamma. Interferon-gamma is noted for its activation of antigen-
presenting cells such as macrophages and dendritic cells, which subsequently induce 
the effector functions of T-helper cells initiating a comprehensive cascade of adaptive 
immune responses[29]. ADCC, where NK cells are recruited to constant regions of 
antibodies (derived from adaptive B-cells) coating malignant cells, is a demonstration 
of how the adaptive arm can potentiate the innate arm (and not only vice versa) in 
what has grown to be an attractive immunotherapeutic strategy[30]. However, despite 
this evident harmonious relationship between the two arms, it has been demonstrated 
that, to a degree, the innate immune system can work alone in an antitumor capacity. 
O’Sullivan et al[31] illustrated this in a 2012 study involving groups of mice that were 
either: (1) Wild type; (2) Lacking an adaptive immune system; or (3) Deficient of both 
the adaptive and innate immune systems. Upon tumor induction, wild type mice 
naturally displayed the lowest rate of tumor growth. However, of the two remaining 
groups, mice in group 2 showed significantly more impaired tumor growth than 
group 3 mice, indicating a notably prominent role for innate level effector functions in 
antitumor immunity[31].

EXPLOITATION OF THE INNATE IMMUNE SYSTEM: A GAP IN THE 
IMMUNO-ONCOLOGICAL LANDSCAPE
Why innate-mediated immunotherapy?
As discussed previously, the modern immuno-oncology scene is dominated by ICB, 
whereby our understanding of immune checkpoints has led to the commercial release 
of various cytotoxic T-lymphocyte-associated protein 4 and programmed death-1 
blockers such as ipilimumab, pembrolizumab and nivolumab[32,33]. Despite the evident 
focus of research on ICB and the resounding progress made over the past decade, only 
a small fraction (approximately 20%) of patients enjoy long-term benefits from these 
therapies[34]. This could, in part or in full, be attributed to the previously discussed 
resistance mechanisms of malignancies against ICB. Most of these mechanisms, such 
as the shedding of the antigen-presenting apparatus on malignant cell surfaces, the 
upregulation of alternative immune checkpoints or the reduction of memory cell 
formation, are evolutionary measures directed against T-cells in the tumor 
microenvironment, i.e. the adaptive immune system[23,33,35].

The incidence of resistance amongst cancer patients triggers the need to investigate 
on a molecular level. Whilst potential biomarkers for ICB efficacy have been 
investigated in a predictive sense[36], little progress has been made in elucidating the 
molecular bases by which acquired resistance in individual patients comes about[23]. 
Henceforth, it is imperative that these intricacies be clarified with a view of adopting 
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Figure 1  Adaptive/innate intricate relationship. A demonstration of the interplay between various adaptive (IgG, cytotoxic T-lymphocytes, etc.) and innate 
(Natural killer cells, macrophages, etc.) factors in the mounting of a full antitumor immune response via cytokines such as interleukin-2 and interferon-gamma. IFNγ: 
Interferon-gamma: MHC-1: Major histocompatibility complex-1; ADCC: Antibody-dependent cellular cytotoxicity.

different immunotherapeutic strategies.
The attractiveness of innate-mediated immunotherapy comes from the fact that, 

whilst not fully understood, ICB resistance mechanisms may be adaptive-specific and 
leave the door open for an innate approach. An example of this is the well-
characterized shedding of human leukocyte antigen (HLA) molecules in cancer[37]. This 
disarming of tumor cells’ antigen-presenting capability results in their significantly 
decreased immunogenicity with regards to the adaptive immune system. However, 
given NK cells’ inherent tendency to fight off cells with improper MHC function, a 
gateway is opened for alternative treatment for patients whose cancer has evaded ICB 
through this adaptive-specific mutation. It is in scenarios such as this that the innate 
immune system should be explored as a viable treatment option.

With regards to autoimmunity, NK cell stimulation poses a much lower risk than 
their T-cell counterparts. NK cells are conventionally short-lived in their active form, 
indicating that therapies that rely on their stimulation and recruitment are unlikely to 
result in any prolonged inflammatory reaction leading to autoreactivity. Interestingly, 
an inverse relation was in fact proposed. This was brought about by the observation of 
NK cell deficiency or dysfunction in patients of autoimmune disorders[38]. One 
hypothesis for this is an ongoing “battle” between NK cells and autoreactive T-cells, 
which would indeed result in NK cell clearance during T-cell overstimulation. As 
such, therapies that involve NK cell stimulation could and have indeed in some 
studies shown positive effects on autoimmunity by the induced clearance of 
autoreactive T-cells[39].

NK CELLS: NATIVE SENTINELS OF THE INNATE IMMUNE ARM
Human NK cells are the natural guards of the innate immune system. They originate 
from hematopoietic stem cells and undergo maturation in the bone marrow[40]. NK 
cells are categorized as the third largest lymphocyte population[41]. NK cells represent 
2%-18% in human peripheral blood[41]; they are also found in peripheral tissues like the 
liver, peritoneal cavity and placenta[42,43]. NK cells are phenotypically defined by the 
expression of CD56 and/or CD16 and the absence of the T-cell receptor CD3[44]. 
“Natural cytotoxicity” describes an effectively contributing phenomenon of NK cells 
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as a first line of defense against viral infections and more in general against pathogens 
without prior sensitization as previously mentioned[28,45-47]. NK cells are also involved 
in immune surveillance against tumors and prevent dissemination of metastatic 
tumors[48,49]. These effector functions are mediated through cellular cytotoxicity (mainly 
through perforins and granzymes), in addition to secretion of several noncellular 
mediators such as chemokines and cytokines[49]. NK cells cross-talking among immune 
cells also play a regulatory control in mediating the anti-tumor adaptive immunity of 
T- and B-cells that in contrast require initial priming for the expression of their 
activity[50-52].

Subsets of NK cells
Human NK cells are classified according to the relative expression of the surface 
markers CD16 and CD56 into two major subsets/classes: CD56 dim and CD56 bright. 
These subsets differ in their function, phenotype and tissue localization[53]. The low 
density CD56 (CD56dim) subset comprises the majority (almost 90%) of peripheral 
blood NK cells and are characterized by their high expression of CD16, killer Ig-like 
receptors (KIRs) and perforins, making them more potent cytotoxic lymphocytes as 
illustrated in Figure 2. However, CD56bright NK cells are rarely present in peripheral 
blood but are predominant in lymph nodes, inflamed tissues and decidua[54,55]. The 
latter subset has a lower cytotoxicity as it expresses low levels of perforin and KIRs[56]. 
CD56bright NK cells are known as immunoregulatory NK cells as its functions are 
mainly mediated through the cytokine production such as interferon-gamma, tumor 
necrosis factor-α and transforming growth factor-β as shown in Figure 2[57,58].

REPERTOIRE OF RECEPTORS ORCHESTRATING NK CELL SIGNALS
NK cells have a unique feature of discriminating infected or malignant cells from 
normal “self” cells via a complex balance between activating and inhibitory receptor-
ligand interactions[59]. In addition, the resting inactivated NK cell surface constitutively 
expresses a wide range of receptors, which upon their activation by different ligands 
initiate several downstream signaling pathways and result in boosting NK cytotoxicity 
and cytokine production[60].

Inhibitory receptors
Upon recognition of their respective ligands, inhibitory receptors on NK cells 
phosphorylate associated immunoreceptor tyrosine-based inhibitory motifs, which in 
turn recruit the phosphatases SHP and SHIP. They dephosphorylate transcriptional 
signaling molecules Lck, Syk, ZAP70, Vav1 and Fyn, which results in prevention of 
active-form transcription patterns. This pathway, along with the simultaneous 
dephosphorylation of activating immunoreceptor tyrosine-based activator motif 
domains, ensures that NK cells are not converted into an active state upon healthy host 
cell encounter and thus avoids events of autoimmunity. The aforementioned MHC 
class I-specific receptors are commonly referred to as KIRs and are almost all 
inhibitory in nature. KIRs are essential for tolerance towards host cells expressing 
classical MHC molecules (namely HLA-A, HLA-B and HLA-C). As for nonclassical 
MHCs, a heterodimer of CD94 and natural killer group 2 member A is responsible for 
detecting molecules such as HLA-E, which despite not being an archetypal MHC can 
be expressed amongst healthy host cells[61].

Activating receptors
Natural killer lectin-like group 2, member D (NKG2D) is a hexameric transmembrane 
protein that acts as the principal activating receptor on NK cell surfaces. Ligands of 
NKG2D, termed NKG2DLs, act as triggers to the cytolytic mode of NK cells. As can be 
seen in Figure 3, NKG2D is associated with two DAP10 homodimers that each harbor 
two YINM motifs. Upon association with NKG2DLs, these motifs are phosphorylated 
and proceed to recruit the Grb2/Vav1/SLP-76 signaling complex and/or the p85 
subunit of PI3-kinase. Taken together with the recruitment of the Syk/Zap70 complex 
by the alternate activating receptor Ly49D, these comprise the initial steps of three 
different cascades that have the downstream additive effect of amplifying both 
cytokine and cytotoxic molecule production within NK cells. Effectively “armed” for 
attack, NK cells proceed to kill their target either directly through apoptotic 
mechanisms such as the tumor necrosis factor,  Fas/FasL, TRAIL and 
perforin/granzyme pathways or indirectly through stimulation of both innate and 
adaptive immune response via overproduction of cytokines such as IL-7, IL-12, and IL-
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Figure 2  Natural killer cell subsets differ both functionally and phenotypically. Functionally, CD56dim natural killer (NK) cells are cytotoxic cells that 
produce low levels of cytokines in response to monokine stimulation. Yet, they are potent mediators of cytotoxic effector functions due to high levels of CD16 surface 
expression. Meanwhile CD56bright NK cells are known as immunoregulatory cells that produce high levels of cytokines such as interferon-gamma, interleukin-10 and 
transforming growth factor-β upon activation. It has low expression of CD16, thus performing reduced cytotoxic functions. Morphologically, CD56dim and CD56bright 
exhibit differential receptor profiles; for instance CD56dim NK cells exhibit much higher levels of killer Ig-like receptors, whereas resting CD56bright NK cells have high 
expression of CD94/NKG2A. ADCC: Antibody-dependent cellular cytotoxicity; IL: Interleukin; KIR: Killer Ig-like receptor.

15, which serve to upregulate NKG2D expression both on fellow NK cells and 
adaptive CD8+ cells[61].

NK cell ligands
NKG2DLs are mainly divided into two classes: MHC class I-related proteins 
(comprising MIC-A and MIC-B) and UL16 binding proteins (comprising ULBPs 1-6). 
Given the prominence of NKG2D amongst NK cells, the most integral aspect for the 
effective facilitation of tumor immunosurveillance is the differential expression pattern 
of NKG2DLs. To this effect, NKG2DLs are commonly overexpressed amongst 
malignancies. Indeed, studies have shown evidence for the increased expression of 
MIC-A and ULBPs 1-5 in all of colorectal cancer, ovarian cancer and BC along with 
further evidence of MIC-B expression in BC. As prognostic factors, NKG2DLs tend to 
be inconsistent. An example of this being ULBP 5 overexpression indicating a positive 
prognosis in colorectal cancer whereas ULBPs 2 and 4 correlate with a negative 
prognosis in ovarian cancer. The prognostic effects of various NKG2DLs on BC were 
elucidated in a comprehensive 2012 study by de Kruijf et al[62] of Leiden University. 
The results of the study yielded the finding that high MIC-A/B and ULBP 2 expression 
correlated with significantly more favorable prognoses as opposed to low expression 
with regards to tumor size, tumor grade and relapse rates.

NK CELLS IN CANCER
As shown in Figure 4, NK cells are equipped with these thorough mechanisms of host 
and nonhost recognition and therefore are important mediators of tumor 
immunosurveillance and eradication. This point is underlined by the higher 
susceptibility to cancer yielded by mice that are NK cell-deficient in comparison with 
wild type mice[28] as well as the higher susceptibility of mice lacking both adaptive and 
innate immune components in comparison with those lacking just the adaptive arm[31]. 
Consistent with these findings, the increased risk of cancer within humans with lower 
NK cell counts has been demonstrated through an 11-year follow-up study in 2000[63]. 
This is further corroborated by the observation of NK cell cytolytic impairment in 
various forms of cancer, such as non-small cell lung carcinoma and BC.
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Figure 3  Natural killer lectin-like group 2, member D mode of action. Illustration of activation cascades initiated by the active conformations of natural 
killer lectin-like group 2, member D receptors in natural killer cells. NKG2D: Natural killer lectin-like group 2, member D; NKG2DL: Ligands of natural killer lectin-like 
group 2, member D.

NK CELLS IN IMMUNO-ONCOLOGY
Given their favorable characteristics in terms of resistivity and autoimmunity in 
comparison with adaptive methods, NK cells are a prime candidate for novel 
immunotherapeutic research, and their exploitation has long been appealing. Attempts 
to achieve this include the upregulation of stimulatory receptors, downregulation of 
inhibitory ones, ADCC mediation, manipulation of cytolytic pathways such as 
Fas/FasL and TRAIL and NK cell activation through external agents such as vaccines 
and chemotherapeutic drugs[38]. In adoptive NK cell treatment involving external cell 
transfusions, it has indeed been demonstrated that increased NK cell count correlates 
to a favorable outcome in diseases such as non-Hodgkin lymphoma[64]. With NK cells 
having been proven integral to anticancer immunity, recent significant attention has 
turned to manipulating the tumor microenvironment in an NK cell-stimulatory 
capacity in ways such as induced expression of activating NKG2DLs on cancer cell 
surfaces.

Despite such promise, NK cell-based therapies have hardly made any clinical 
progress as opposed to more popular immunotherapeutic strategies such as ICB. 
Given ICB’s limitations, it is imperative that more attention be turned to this scope of 
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Figure 4  Different modes of natural killer cell activation. Natural killer cell differential modes of activation when encountered with A: Healthy cells; B: 
Diseased cells with natural killer Ig-like receptors mismatch; C: Antibody-coated diseased cells; D: Diseased cells expressing natural killer lectin-like group 2, member 
D. NKG2D: Natural killer lectin-like group 2, member D; NKG2DL: Ligands of natural killer lectin-like group 2, member D; MHC: Major histocompatibility complex; KIR: 
Killer Ig-like receptor.

research in the near future as a means to provide patients of aggressive and difficult-t
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