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Abstract: ZSM-22/polyethersulfone membranes were prepared for salt rejection using modelled
brackish water. The membranes were fabricated via direct ZSM-22 incorporation into a polymer
matrix, thereby inducing the water permeability, hydrophilicity and fouling resistance of the pristine
polyethersulfone (PES) membrane. A ZSM-22 zeolite material with a 60 Si/Al ratio, high crystallinity
and needle-like morphologies was produced and effectively used as a nanoadditive in the development
of ZSM-22/PES membranes with nominal loadings of 0–0.75 wt.%. The characterisation and membrane
performance evaluation of the resulting materials with XRD, BET, FTIR, TEM, SEM and contact angle
as well as dead-end cell, respectively, showed improved water permeability in comparison with
the pristine PES membrane. These ZSM-22/PES membranes were found to be more effective and
superior in the processing of modelled brackish water. The salt rejection of the prepared membranes
for NaCl and MgCl2 was effective, while they exhibited quite improved water flux and flux recovery
ratios in the membrane permeability and anti-fouling test. This indicates that different amounts of
ZSM-22 nanoadditives produce widely divergent influences on the performance of the pristine PES
membrane. As such, over 55% of salt rejection is observed, which means that the obtained membranes
are effective in salt removal from water.
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1. Introduction

The global demand for freshwater is increasing every day due to high population growth and
industrial development. Brackish water and seawater are abundant but have high salt concentrations
and therefore need to be purified [1–3]. To effectively utilise these available water sources, sustainable
and efficient water purification technologies such as membrane filtration and ion exchange resins are
needed. Based on this consideration, there is a need to design and develop new functional materials for
the desalination of saltwater using membranes. Nanocomposite membranes with low surface fouling,
superior physicochemical integrity, enhanced water flux and high solute rejection have been identified
as potentially promising separation materials [4–6]. Furthermore, membranes offer high efficiency in
the separation and filtration processes [6,7]. However, due to the polymer membrane’s shortcomings,
such as fouling, high hydrophobicity and short functional lifetime, more work needs to be done in the
redesigning and modifying of nanocomposite membrane materials [7–11]. In consideration of these
limitations, the scope for membrane modification has widened for different applications, such as the
desalination and distillation of radiative waste and salt solutions [12–14].

Polymers 2020, 12, 1446; doi:10.3390/polym12071446 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0001-5374-1716
http://dx.doi.org/10.3390/polym12071446
http://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/12/7/1446?type=check_update&version=2


Polymers 2020, 12, 1446 2 of 15

Polyethersulfone (PES) membranes have been universally used and accepted as appropriate
polymers for use in separation membranes, owing to their high chemical, mechanical and thermal
stability under highly pressurised separation systems [15,16]. They have gained widespread use in
microfiltration (MF) and ultrafiltration (UF) membranes, but showed poor performance in extremely
high pressurised systems such as nanofiltration (NF) and reverse osmosis (RO) [17–19]. Their relatively
poor performance in NF and RO systems is attributed by some in the literature to their weak mechanical
stability as a consequence of their high amorphous and lower hydrophilic character [20–23]. As a result,
PES membrane utilisation in NF/RO application is highly prone to fouling, which is considered the
main limitation to the use of PES membranes in highly pressurised separation processes [23–26].

In consequence, the challenges associated with membrane quality also appear to be influenced by
the cost of membrane preparation, maintenance and lifetime. As membrane surface hydrophobicity
promotes fouling, this later leads to the low flux, permeability and lifetime of the membrane [10,27–29].
However, typical surface modification of PES by the inclusion of highly hydrophilic nanoadditives
such as hollow halloysite nanotubes (HNTs), graphene oxide (GO), titanium dioxide (TiO2), silicate,
etc., in the polymer matrix is a promising solution [29–33]. However, the challenge remains regarding
how to identify effective nanoadditives to mitigate membrane fouling. Suitable nanoadditives (in terms
of particle size and hydrophilicity) are still needed for the development of highly functional membrane
materials [8,25,33]. In this consideration, synthesising new polymer materials is not a priority given
the opportunity to modify already existing polymer materials.

Therefore, the current focus on membranes research should be directed to designing and developing
effective nanocomposite membranes with low surface fouling, superior physicochemical integrity,
enhanced water flux and high solute rejection [34]. As such, research on polymeric membrane material
and membrane technology maintained its focus on membrane modification to produce materials with
intrinsic composite features [2,35–37]. This involves a straightforward process of conjoining or blending
polymeric material with hydrophilic nanoadditives such as nanoparticles, carbon nanotubes and
zeolites [1,23,38,39]. Typically, zeolite materials have demonstrated the ability to enhance membranes’
water flux, permeability and antifouling characteristics, as reported in several studies [40,41].

Zeolites are alumina silicates materials widely used in ion exchanging, hydrocracking, adsorption
and catalysis [42,43]. Recently, they have gained much consideration in the derivation of composite
membrane materials owing to their external surface properties such as silinol, their negatively charged
framework, shape selectivity and pore size exclusion [44–47]. These features promote high interaction
between the polymer and additive as well with the solute cations and anions. Also, their hydrophilic
character has earned them their definitive usage as inorganic nanoadditives for composite membrane
development [48–52]. This study has therefore identified a need to develop effective materials due
to the limited work associated with PES membranes for typical NF or RO applications. This report
demonstrates that, with the judicious choice of fillers, imparting additional functionalities to UF
membranes does result in nanocomposite polymer membranes with relatively high salt rejection for
potential use in brackish water treatment. Herein, ZSM-22 is embedded in the PES matrix to result in
NF membranes with up to 55% and 65% rejection rates for NaCl and MgCl2, respectively.

2. Materials and Methods

The following chemicals and reagents were purchased from Sigma-Aldrich (Johannesburg,
South Africa) and used without any purification: tetraethyl orthosilicate (TEOS), aluminium sulphate
octadecahydrate ((Al2(SO4)3·18H2O), hexamethylenediamine (HMDA), potassium hydroxide (KOH),
sodium hydroxide (NaOH), hydrochloric acid (HCl), nitric acid (HNO3), sodium chloride (NaCl),
magnesium chloride (MgCl2), bovine serum albumin (BSA), nitrogen gas (N2), polyethersulfone (PES)
3 mm nominal granule size and N-methyl-2-pyrrolidone (NMP).

ZSM-22 zeolite materials were synthesised using procedures previously reported by Marler [53]
and Ernest [54], with some modification as follows: A clear aqueous solution was prepared by
dissolving KOH (1.252 g) and Al2(SO4)3·18H2O (0.743 g) in deionised water (49 mL) under magnetic
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stirring for 1 h to produce solution A. In a separate beaker, HMDA (10.97 mL), as a structure-directing
agent (SDA), was dissolved in deionised water (20 mL) and allowed to stir for about 1 h to produce
solution B. Thereafter, solution B was transferred into solution A under stirring, resulting in solution
C. Hydrolysed TEOS (29 mL), obtained from the addition of deionised water (69 mL) after stirring
for 1 h, was added dropwise (at a rate of 3.27 mL/min) into solution C [55,56]. After 1 h, a solution
containing a final gel-like product with molar composition of 60SiO2:Al2O3:9KOH:27DAH:3600H2O
was obtained. Thereafter, the gel was transferred into a 150 mL stainless steel autoclave and heated to
160 ◦C for 144 h for crystallisation to occur. The resulting white crystals were recovered by filtration
and subsequently washing with distilled water until the pH of the filtrate was seven. The obtained
solid samples were air-dried overnight and calcined at 550 ◦C for 24 h to remove the SDA.

The ZSM-22/PES membranes were fabricated via direct incorporation of ZSM-22 nanoadditives
prepared using TEOS into the polymer solution using a phase inversion method. PES granules (18 g)
were dried at 80 ◦C for 24 h before dissolution in NMP (82 mL) solvent. This was followed by the
addition of the required amount (0–0.75 wt.%) of the ZSM-22 powder into a casting solution and
allowed to stir for 24 h until a homogenous mixture was attained. The casting solution was allowed to
degas under a vacuum for 24 h to dissipate the trapped air in the solution. For effective nanoadditive
distribution in the solution mixture, the casting solution was subjected to an ultrasonication for about
3 h before casting. Then, the solution was cast using a casting knife set at a 200 µm air gap, then allowed
to stand for 30 s in the air before immersion into the coagulation (deionised water) bath for 15 min.
Thereafter, the membranes were transferred into a clean deionised water bath and allowed to cure for
24 h, then stored in deionised water kept in the refrigerator for further analysis and assessment.

The X-ray diffraction patterns of different samples were recorded using a PANalytical PW 3050/60
diffractometer (XPert-Pro, Almelo, The Netherlands) with PSD Vantec-1 detectors and Cu Kα radiation
(λ= 1.5406 Å), at a scan step size of 0.025◦. The time/step was in seconds, at a scan speed of degree/second.
The BET surface measurements of zeolite ZSM-22 materials were carried out on an automated gas
adsorption and surface area analyser, Micrometrics TriStar II Plus Version 3.00 (Micromeritics, Norcross,
GA, USA) and Porosity Analyser 3000 (Micromeritics, Norcross, GA, USA) equipped with Win 3000
software at −195.8 ◦C. The surface area and the pore size and volume of the material were determined
by single point analysis. The attenuated total reflectance Fourier-transform infrared spectroscopy
(ATR-FTIR) spectra of the resulting samples in this study were attained using a Perkin Elmer Spectrum
100 FTIR spectrometer with the scan range of 400–4000 cm−1 at a resolution of 4 cm−1 and over an
average of 16 scans. The analysis was performed using Bruker Vector 22 mid-IR spectroscopy (Bruker,
Karlsruhe, Germany). Transmission electron microscopy (TEM) analysis of ZSM-22 zeolite materials
was done on a Jeol JEM 2100 transmission electron microscope (Tokyo, Japan) under a bright-field at
120 kV. A precise amount of the sample was sonicated in about 5 cm3 of ethanol under 60 W ultrasonic
bath for about 10 min. Then a tiny drop of the suspension was placed on a coated copper grid. The grid
was dried in the air before mounting on the TEM sample holder for analyses. The morphological
structure of the samples was scanned at 5 kV using lowest beam current of the scanning electron
microscopy (SEM), which achieved the optimum resolution at a specific magnification. A small amount
of zeolite powder from a piece of the membrane was mounted on a sample holder using a carbon
tap and was carbon-coated before analysis. In evaluating the membrane surface hydrophilicity or
hydrophobicity, a contact angle goniometer (G10, KRUSS, Hamburg, Germany) was used. The water
contact angle (◦) of the prepared membranes was measured at a constant room temperature and 50%
humidity using the sessile drop method.

Stock solutions of NaCl and MgCl2 (ca. 1.00 g each) were dissolved in a 1000-mL volumetric flask
using deionised water to obtain 1000 ppm solutions. The standard solution was prepared by dilution of
the stock solution: typically, a 250-ppm standard solution of NaCl or MgCl2 was prepared by diluting
125 mL of 1000 ppm stock solution in 500 mL volumetric flask. From this standard solution, 50 ppm
salt solution was prepared by diluting 20 mL of 250 ppm standard solution into a 100 mL volumetric
flask and kept in the refrigerator at 4 ◦C to avoid solution decomposition for further analysis.
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The ZSM-22/PES membrane performance indicators such as pure water flux (deionised water),
solute rejection (50 ppm of NaCl or MgCl2) and protein fouling (using 1000 ppm BSA) were evaluated
using a Sterlitech (Kent, OH, USA) dead-end stirred cell with an effective surface area of 19.63 cm2.
The permeate flux was defined as:

PWF =
Q

A× t
(1)

where Q is the volume of the pure water permeate (L), while A is the effective surface area of the
membrane (m2), and t is the time (h) taken for the permeate. The permeation measurements in the
study of all membranes were at room temperature. Preliminary, the water flux of each membrane was
compacted until a steady state was reached under the condition of pre-compacting pressure of 1 bar for
about 1 h. Following pressure was decreased to the normal operating pressure of 0.8 bar and the pure
water flux (PWF) was measured. After the pure water flux test measurement, a solution of 1000 ppm
BSA was transferred in the dead-end, followed by compacting and then permeation flux measurement
at a similar pressure. Thereafter, the fouled membranes were then rinsed with deionised water through
backwashing for 1 h, and the pure water fluxes of these backwashed membranes were retested again.

3. Results and Discussion

3.1. XRD Analysis

The XRD patterns of the zeolite ZSM-22 material and ZSM-22/PES membranes are shown in
Figures 1a and 1b, respectively.
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Figure 1. XRD patterns of (a) ZSM-22 material and (b) ZSM-22/polyethersulfone (PES) nanofiltration/reverse
osmosis (NF/RO) membranes, respectively, prepared via hydrothermal synthesis approach and direct
phase inversion method.

As shown in Figure 1a, the XRD pattern of ZSM-22 crystal sample exhibits characteristic peaks
of a Theta-1 (TON) topology of ZSM-22 material, which is in agreement with the database of zeolite
structures as reported in the literature [57,58]. This material presents five peaks at 2θ values of 8.18◦,
20.30◦, 24.20◦, 24.52◦ and 25.59◦, respectively, corresponding to the ZSM-22 structure [59,60]. This is
indicative of the successful synthesis of the highly crystalline ZSM-22 material when using TEOS as
silica source at 160 ◦C for 144 h with an Si/Al ratio of 60. The obtained ZSM-22 zeolite material was
then directly incorporated into the pristine PES casting solution, resulting in a series of composite
membranes containing ZSM-22. It is observed that the XRD patterns of ZSM-22/PES membranes with
to 0 wt.% loadings exhibit a mainly amorphous phase with one broad characteristic peak of a typical
PES phase (Figure 1b). The incorporation of ZSM-22 nanoadditives resulted in the XRD patterns
exhibiting the diffraction peaks of the ZSM-22 (Figure 1b). For instance, the pattern of the membrane
containing 0.1% ZSM-22 had a peak at 2θ of 8.02◦ (of (110) plane) on the broad base of the amorphous
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PES membrane, which is indicative of the presence of ZSM-22 zeolite nanoadditives. The slight peak
shift to lower 2θ values was observed, attributed to the inclusion of the polymer chains into the zeolite
crystal planes. The shifts indicate a physical interaction between ZSM-22 crystallites and PES polymer
chains, which is a positive observation, as it will result in minimal zeolite leaching from the membranes
during application. Additional zeolitic peaks were observed at 9.73◦, 12,69◦, 20.30◦, 24.66◦ and 25.74◦,
attributed to (021), (200), (021), (240) and (400) planes, with a slight shift to higher 2θ values as the
amount of ZSM-22 was increased. The overall amorphous character of the composite membranes
indicates that the addition of the zeolites did not alter the membrane structure.

3.2. BET Analysis

The ZSM-22 material was analysed using BET to estimate the pore size distribution of the
nanoadditives for effective salt polymer and solute chain interaction upon membrane formation and
application, respectively. The N2 adsorption–desorption isotherms (with inserted textural properties)
of ZSM-22 materials along with their pore size distribution are shown in Figure 2.
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Figure 2. BET Isotherms (a) N2 adsorption–desorption uptake and (b) calculated BJH pore distributions
of a hydrothermally synthesised ZSM-22 material.

The isotherm indicates that the ZSM-22 material produced here have a significantly developed the
micropore system in agreement with the reported literature results for zeolite materials [61–63]. This is
illustrated by the amount of N2 uptake at a relative pressure P/P0 < 0.1, which represents the amount of
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micropore in the ZSM-22 structure as shown in Figure 2a. The material exhibits average pore size (PS),
pore volume (Pv) and BET surface area (SBET) of 2.814 nm, 1.260 cm3 and 228.700 m2/g, respectively.
The existence of highly ordered micropores on the structure can be manifested by the constant N2

uptake at 0.1 < P/Po or P/Po > 1.0 relative pressure. The structure also exhibits absent hysteresis
loops, suggesting a typical formation of a highly ordered and well-defined structure. Meanwhile,
the BJH pore distributions between 20 Å and 100 Å (Figure 2b), respectively, suggest the coexistence of
mesoporous structure hence an increase N2 uptake at P/Po ≥ 1 (Figure 2a) can be observed. These results
further indicate that the obtained ZSM-22 zeolite structure has a typical hierarchical framework of
inter-crystalline mesopores, within micropore nanorods, among self-assembled ZSM-22 nanorods.

3.3. ATR-FTIR Analysis

An ATR-FTIR technique was used to study the functional groups of the synthesised zeolite
material and prepared membranes. Figure 3 shows the ATR-FTIR spectra of ZSM-22 zeolite
materials hydrothermally synthesised using TEOS as silica source at Si/Al ratio of 60 and the
ZSM-22/PES membranes.
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Figure 3. (a) FTIR Spectra of ZSM-22 material prepared via hydrothermal synthesis method,
(a,b) ZSM-22/PES NF/RO membranes prepared via direct phase inversion method.

As shown in Figure 3a, with regard to the synthesised ZSM-22 zeolite material using TEOS as
silica source, two main peaks, appearing at 1050 cm−1 and 765 cm−1, were related to the Si-O-Si and
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Si-O symmetric and asymmetric vibrations, respectively. Meanwhile, the shoulder peaks at 1200 cm−1

and 700 cm−1 could be attributed to the Al-OH and Si-O-Al bending vibration, respectively [64,65].
These further confirm that the resulting structure possesses a negatively charged framework. This is
probably due to the plausible isomorphous substitution of Si4+ and al3+ during calcination in the zeolite
framework. Small bands at around 1710 cm−1 can be traced to the insignificant vibration of Al-O-Al,
amounting to lower aluminium species in the zeolite structure [65,66]. Meanwhile, Figure 3b displayed
identical FTIR spectra of ZSM/PES membranes. Their spectra exhibited no bands attributable to ZSM-22
inclusion in the membranes, probably due to low amounts of ZSM-22 (typically 0.1–0.75 wt.% loadings)
incorporated into the PES matrix. Another explanation for their absence might be that these bands,
specifically the symmetric and asymmetric peaks of ZSM-22, are buried within the relatively more
intense vibration bands from the PES polymer matrix.

3.4. Morphological Analysis

The morphology of ZSM-22 zeolite obtained from SEM and TEM are presented in Figure 4.
As observed from the SEM micrograph (Figure 4a), the zeolite ZSM-22 exhibits agglomerates of
needle-like and rod-like structures. The observed shapes are attributed to the effect of HMDA used as
a structure-directing agent. Moreover, the TEM (Figure 4b) image reveals that the resulting ZSM-22
material consists of nanorods, in agreement with the SEM analysis. The observed morphologies
from both SEM and TEM analyses are in line with previous reports [67]. Then, the nanocomposite
membranes were also analysed using the SEM technique.
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Figure 4. SEM (a) and TEM (b) micrographs of ZSM-22 zeolite material hydrothermally synthesised
using tetraethyl orthosilicate (TEOS) source at Si/Al 60.

The membrane surface and cross-section of ZSM-22/PES nanocomposite membranes are shown
in Figure 5. The surface morphology (Figure 5a–e) of the membranes all exhibited a porous nature,
as expected. Furthermore, as the quantity of ZSM-22 was increased, surface nodules started to emerge,
indicating that the zeolite crystallites were near or on the surface layer. The cross-section also showed
a typical morphology of finger-like pores with microvoids of varying shapes depending on the amount
of nanoadditives used. In general, the cross-section micrographs (Figure 5a’–e’) exhibit a compact
thin selective layer and porous sublayer typical of NF membranes produced through phase inversion.
There is an observable transformation of both the surface and cross-section in both the surface layer
and sublayer (i.e., morphology of macropores and wide micro-voids) as zeolite nanoadditives were
increased. This is evident from the respective decrease and increase in pore size and pore quantity upon
ZSM-22 addition. In consequence, the microvoids of the resulting membranes in the corresponding
cross-section micrographs are slightly compressed/reduced in size with increasing zeolite addition,
in agreement with the corresponding surface micrographs, indicative of the effect of zeolite inclusion
into the polymer matrix and in agreement with reports from the literature [68–70].
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Figure 5. SEM surface and cross-sectional’ micrographs of (a) PES and (b–e) ZSM-22/PES membrane
materials prepared using different ZSM-22 content: (a,a’) PES, (b,b’) 0.1 ZSM-22/PES, (c,c’) 0.3 ZSM-22/PES,
(d,d’) 0.5 ZSM-22/PES and (e,e’) 0.75 ZSM-22/PES.

Generally, SEM studies show that the incorporation of ZSM-22 nanoadditives into the polymer
matrix has influenced the membrane formation mechanism and the final structure of the prepared
membranes during the phase inversion process. As such, the incorporation of hydrophilic ZSM-22
into the PES polymer matrix resulted in reduced membrane surface pore sizes (Figure 5a–e) with a
concomitant increase in pore density compared to the pristine PES membrane. This observation of
surface pore size reduction and the relatively decreasing porosity of the top dense layer with increasing
filler loading (Figure 5a’–e’) confirms this trend towards tighter membranes. These observations are
in line with the reported expectations for hydrophilic fillers that generally result in membranes with
smaller surface pores and increasing filler content [71,72].

3.5. Hydrophobicity and Hydrophilicity Analysis

A water contact angle was employed to determine the hydrophobicity/hydrophilicity character
of the membranes. This technique is widely used for a quick and cheap way to estimate surface
hydrophilicity or hydrophobicity even with its known limitations [71–73]. The limitations are, in some
cases, due to the water droplet penetrating the surface into the micro-voids of the membrane gradually
because of capillary force contact with the membrane. Generally, the water contact angle decreases
with increasing surface hydrophilicity, indicative of the wettability of the permeable membrane [74,75].
As such, the membrane contact angle with good hydrophilicity should decrease more rapidly, in theory,
when the pore size and morphology are similar for a series of membranes.

Figure 6 shows the water contact angles of prepared membranes with varying zeolite wt.%
loadings. As shown in the figure, the water contact angles of the membranes containing ZSM-22 were
smaller than that of the pristine PES membrane. The water contact angle decreased as the amount of
nanoadditives was increased. This decrease in contact angle with increasing nanoadditive loadings
indicates that ZSM-22 imparts hydrophilicity to the membrane surface. This was expected as ZSM-22
is known to be a hydrophilic zeolite [76,77].
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Figure 6. Contact angle measurements of ZSM-22/PES membrane materials prepared using different
ZSM-22 zeolite wt.% loadings.

3.6. Flux and Rejection Analysis

The composite membranes were further assessed for filtration performance. In this regard,
pure water flux, flux recovery ratio, as well as solute rejection, were measured for each membrane
in the series. Figure 7 shows these membrane performance indicators for different ZSM-22/PES NF
membrane with zeolite loadings of 0–0.75 wt.%.

Therein, Figure 7a indicates that, as the loading of ZSM-22 was increased, the membranes showed
increasing flux response at the same pressure. Thus, membranes with high hydrophilicity showed
relative high flux in line with expectations. Moreover, the flux recovery ratios were assessed by using
BSA as a model foulant (Figure 7b). The unmodified polyethersulfone membrane, which exhibited
a greater contact angle due to its inherited low hydrophilicity, attained the lowest flux recovery
ratio (FFR). This was a typical hydrophobic membrane and followed its reported character [78–81].
This behavior suggests that the membrane was fouled during BSA rejection and backwashing could not
restore the membrane performance/flux. However, the FRR was observed to increase with increasing
ZSM-22 wt.% loadings (as manifested in Figure 7b), suggesting the improved fouling resistance of
the PES composite membrane upon zeolite addition. As shown in Figure 7a at higher wt.% loadings,
the incorporation of porous zeolitic materials has led to low resistant water permeability in agreement
with the obtained FFR in Figure 7b. This might be due to additional flow paths presented by the porous
nanoadditives, thus increasing the tortuosity of the matrix [82,83].

In this study, the solutes used for membrane rejection were inorganic salts (NaCl and MgCl2),
representing mono and divalent salts, respectively. The two salts were selected to better assess the
influence of the porous and negatively charged ZSM-22 zeolite on the behaviour of NF/RO membranes
for salts. This assessment led to cheaper water softening applications using lower applied pressure
(<1 bar) in the NF or RO membrane systems. The interaction of these solutes with the composite
membrane matrix containing negatively charge nanoadditives, as opposed to size exclusion, was also a
possible mode for membrane rejection [84,85]. The relatively high charge on divalent Mg ion means it
is strongly attracted to the negatively charged membrane surface than the monovalent Na ion, resulting
in the different observed rejection profiles. As displayed in Figure 7c, the composite membranes
attained about 50% of NaCl rejection, while the best rejection (≥65%) for MgCl2 was for membranes
with a ZSM-22 loading of 0.3 wt.%. The rest of the composites rejected between 60% to 55% of the salts.
This shows that the electrostatic repulsion of Mg2+ by the membrane was much higher than that of
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Na+, hence why the high rejection of MgCl2 was observed. It can be concluded that the composite
membranes in this study possess negatively charge surfaces due to the AlO4 tetrahedra interactions
with the SiOH of ZSM-22 nanoadditives [84,86,87].
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Figure 7. Performance evaluation. (a) Pure water flux, (b) flux recovery ratio and (c) salt rejection
analysis graphs of differently loaded ZSM-22/PES membrane materials prepared using ZSM-22 as
a nanoadditive.
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4. Conclusions

Zeolite ZSM-22 material was successfully synthesised and fully characterised by XRD, BET,
FTIR, SEM and TEM. The zeolitic materials were incorporated into PES membranes through phase
inversion. Membranes were characterised by XRD, FTIR, WCA and SEM and their performance in
relation to pure water flux, salt rejection and protein fouling, i.e. flux recovery ratio was assessed.
The increased hydrophilicity with increasing amounts of ZSM-22 resulted in membranes having
increased flux and flux recovery ratios or increasing protein (BSA) fouling resistance. The solute
rejection for the monovalent NaCl was insensitive to the nanoadditive loadings, while the divalent salt,
MgCl2, reached a maximum before decreasing with increasing loadings. An approximate minimum
rejection of about 55% was achieved upon using these materials, though a further assessment of the
performance of the membrane still needs to be carried out.
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