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Abstract: Mesenchymal stem cells (MSCs) exhibit potent immunoregulatory abilities by interacting
with cells of the adaptive and innate immune system. In vitro, MSCs inhibit the differentiation of
T cells into T helper 17 (Th17) cells and repress their proliferation. In vivo, the administration of
MSCs to treat various experimental inflammatory and autoimmune diseases, such as rheumatoid
arthritis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and bowel disease showed
promising therapeutic results. These therapeutic properties mediated by MSCs are associated with an
attenuated immune response characterized by a reduced frequency of Th17 cells and the generation
of regulatory T cells. In this manuscript, we review how MSC and Th17 cells interact, communicate,
and exchange information through different ways such as cell-to-cell contact, secretion of soluble
factors, and organelle transfer. Moreover, we discuss the consequences of this dynamic dialogue
between MSC and Th17 well described by their phenotypic and functional plasticity.
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1. Introduction

Mesenchymal stem cells (MSCs) are considered a self-renewing cell population present in a wide
variety of tissues. Since the first reports by Friedenstein and coworkers during the 1960s and 1970s [1],
describing cells with a fibroblast-like morphology and the capacity to proliferate rapidly in discrete
colonies, many researchers delved deeper into the study of these cells, eventually establishing that
they have the potential to differentiate into chondroblasts, osteoblasts, and adipocytes [2–4]. The name
“mesenchymal stem cell” was termed in 1991 by Caplan due to their ability to differentiate into different
cell lineages [5].

MSCs can be isolated from several adult biological sources including bone marrow, adipose tissue,
dental tissue, synovial membrane, peripheral blood, and menstrual blood [6–11], as well as perinatal
tissues such as umbilical cord, placenta, Wharton jelly, and amniotic fluid [12–15]. According to the
International Society for Cellular Therapy (ISCT), there are three minimum criteria that allow these
cells to be identified [16]. Firstly, they must be plastic-adherent when they are kept under standard
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growing conditions. Secondly, they must express the markers CD74, CD90, and CD105 with a lack of
hematopoietic lineage markers such as CD11b, CD14, CD34, or CD45; in addition, they must have
a low expression of HLA class II on their surface (<2%). Finally, they must be able to differentiate
into cells of mesodermal lineage, more specifically osteoblasts, chondroblasts, and adipocytes, under
standard in vitro tissue culture-differentiating conditions [16].

MSCs express a wide variety of chemokine receptors such as CXCR3, CXCR4, or CCR5, allowing
them to be recruited from the bone marrow to the circulation and promoting their migration to
damaged tissues in pathological conditions [17–19]. Additionally, MSCs are able to secrete chemokines
such as CXCL12, CX2CL1, CXCL9, CXCL10, or CXCL11, which promote the recruitment of different
circulating or resident cell types [19,20].

Independent of their biological sources, MSCs display anti-apoptotic properties which could
determine the outcome of diseases and their therapeutic effects [21–24]. MSCs can also promote the
formation of new blood vessels in vitro and in vivo through vasculogenesis or sprouting angiogenesis
processes [25–31]. These cells are reportedly capable of secreting many factors which act in a
paracrine way promoting angiogenesis in damaged tissues [32]. Despite this, the MSC secretome
may vary depending on the cellular source, hypoxia, and the presence of growth factors and small
molecules in the microenvironment [33–35]. Additionally, numerous reports suggest that MSCs and
the MSC-derived secretome represent a promising alternative for the treatment of fibrosis and damaged
tissue cytoprotection [36,37].

Due to their potent immunoregulatory and anti-inflammatory properties, MSCs represent
one of the most promising cell products to treat autoimmune and inflammatory diseases.
Up until 2020, 1042 clinical trials using MSCs were registered in the NIH clinical Trial Database
(https://clinicaltrials.gov/), and about 31% (321 of all registered trials) were directed toward treating
immune- or inflammation-associated disorders. Autoimmune diseases such as rheumatoid arthritis
(RA) are characterized by a predominance of pathogenic immune cells releasing pro-inflammatory
cytokines and an alteration of the peripheral immune tolerance due to immune response deficiencies.
RA involves T cells and, in particular, CD4+ T cells [38,39]. CD4+ T cells of RA patients undergo a
premature transition from a naïve to a memory phenotype. The resulting memory CD4+ T cells are
hyper-proliferative and exhibit an enhanced capacity to differentiate into Th1 and Th17 pathogenic
T cells [40,41]. In contrast to other T-cell subsets such as Th1 and Th2, Th17 cells and regulatory
T cells (Treg) display a high plasticity degree. In RA individuals, the increased frequency of Th17
cells is mediated through either a reduction in the number of Treg or a qualitative defect in their
function [42]. Thus, in this context, parallel to the biotherapies that are already widely used in the
clinic, MSC-based therapy approaches were investigated for many years [43]. This attractiveness of
MSCs to treat autoimmune and inflammatory disorders relies on their capacity to repress the function
and the proliferation of pathogenic immune cells while educating regulatory immune cells. We and
others demonstrated that MSCs prevent T-cell differentiation into Th17 and induce Treg cells in vitro
and in vivo [44–48]. These potent MSC inhibitory/regulatory properties on Th17 cells are mediated
through different mechanisms that are tackled in this review.

2. Immunoregulatory Properties of MSC

The therapeutic effect of MSCs in several diseases such as graft versus host disease (GvHD),
arthritis, multiple sclerosis, fibrosis, systemic lupus erythematosus, or kidney injury, in which the
immune system plays a key role, is widely reported [49]. This therapeutic effect is observed mainly
due to the ability of MSCs to regulate the activation, proliferation, and function of several subsets of
immune cells, from both innate and adaptive compartments (Table 1).

https://clinicaltrials.gov/
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Table 1. Mechanisms of mesenchymal stem cell (MSC) immunosuppression on immune cells.
Recapitulation of recent reports describing the known mechanisms via which MSCs exert suppressive
function to different immune populations.

Target Cell Involved Mechanism Observed Effect References

Innate Cells

DCs TGF-β, HGF, EVs
↓MHC-II, CD86, CD40;

↑phagocytic function; ↓IL-6, IL-12,
TNF-α, IFN-α; ↑IL-10, TGF-β

[50–54]

Macrophages TGF-β, iNOS, mitochondrial
transfer, EVs

↓CD86; ↑phagocytic function,
↓IL-6, IL-8, TNF-α, IL-1β; ↑IL-10,

TGF-β; ↑M2 type polarization
[55–62]

NK cells IDO, PGE2, EVs ↓IFN-γ; ↓cytotoxic activity,
proliferation [63–66]

Neutrophils TGF-β, EVs ↓CRAMP and MPO messenger
RNA (mRNA), ↓IL-17 [52,57,61,67]

ILC PGE2, IL-7 ↑IL-22; ↑proliferation [68]

Adaptive Cells

B cells PD-1, IDO, TGF-β, EVs

↓IgG production; ↓CD69, CD83,
CD86; ↓IL-4 mRNA;

↓proliferation, plasmablast
differentiation; ↑IL-10

[66,69–75]

Th1 cells
PD-1, IDO, Fas, IL-6, TGF-β,
IL-1Ra, EVs, mitochondrial

transfer

↓IFN-γ, IL-1β, TNF-α; ↑apoptosis;
↓proliferation; differentiation [52,58,67,76–85]

Th2 cells IL-6, EVs ↑differentiation; ↑IL-4, IL5; ↓IL-4,
IL-5, IL-13 [67,76,86–89]

Th17 cells
PGE2, Fas, IDO, IL-6, TGF-β,
IL-1Ra, EVs, mitochondrial

transfer

↓IL-17, IL-22; ↑apoptosis;
↓proliferation; differentiation;
↑interconversion to Treg cells.

[54,58,67,75–79,81–
84,90–99]

Regulatory T (Treg)
cells

PGE2, Fas, IDO, IL-6, iNOS,
TGF-β, IL-1Ra, EVs,

mitochondrial transfer

↑PD-1, ↑IL-10, TGF-β;
↑proliferation; differentiation;
↑conversion from Th17 cells.

[54,58,59,66,67,75–82,
85,90–94,96–100]

CRAMP: cathelicidin-related antimicrobial peptide; DCs: dendritic cells; EVs: extracellular vesicles; HGF: hepatocyte
growth factor; IDO: indoleamine 2,3-dioxygenase; IFN: interferon; IgG: immunoglobulin G; IL: interleukin;
ILC: innate lymphoid cells; iNOS: inducible nitric oxide synthase; IL-1Ra: IL-1 receptor agonist; MHC-II: class II
major histocompatibility complex; MPO: myeloperoxidase; PD-1: programmed cell death-1; PGE2: prostaglandin
E2; TGF-β: transforming growth factor-β; Th: T helper; TNF-α: tumor necrosis factor-α. ↑: upregulation;
↓: downregulation.

2.1. Innate Cells

The differentiation of dendritic cells (DC) from monocyte precursors is affected by MSCs [101].
MSCs not only inhibit the acquisition of the DC mature phenotype, keeping them in an immature
state [50,51], but also modulate their functional properties, inhibiting their ability to stimulate
lymphocyte proliferation and skewing their cytokine secretion from a pro-inflammatory to an
anti-inflammatory profile [52,53,102]. Under inflammatory conditions, MSCs can also modulate
the macrophage response, resulting in their differentiation into the type 2 macrophage phenotype
(M2) [56,103]. These MSC-modulated M2 macrophages are able to secrete several anti-inflammatory
cytokines, possessing tissue remodeling and tolerogenic properties [46]. Moreover, MSCs can
downregulate natural killer (NK) cell activation by IL-2 or IL-15, inhibiting NK cell proliferation,
cytokine production, and cytotoxicity [63–65]. Regarding innate lymphoid cells (ILCs), MSCs stimulate
their proliferation, as well as their capacity to release IL-22, which could contribute to immune
homeostasis [68].

2.2. Adaptive Cells

Adaptive cells such as B and T cells are potently regulated by MSCs. MSCs can suppress B-cell
activation by decreasing CD69 and CD86 expression, plasma cell differentiation, and immunoglobulin
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G (IgG) production [69–71]. Moreover, several reports consistently showed that MSCs convert B cells
into IL-10-producing B regulatory (Breg) cells which exhibit inhibitory function [72–74,104].

Similarly, a compelling body of evidence supports the immunoregulatory effect of MSCs over CD4+

T-cell differentiation into the T helper subsets T helper 1 (Th1). MSCs suppress Th1 cell proliferation and
the production of pro-inflammatory cytokines such as interferon (IFN)-γ and interleukin (IL)-12, among
others [67,76,77]. MSCs can favor T-cell differentiation into the T helper 2 (Th2) subset, increasing IL-4
and IL-5 production [86]. However, MSCs were also shown to inhibit Th2-mediated inflammatory
responses in experimental allergy models [87–89]. Finally, MSCs promote the differentiation or
induction of T cells into Treg cells with immunosuppressive functions. Indeed, these Treg cells are
characterized by their capacity to produce anti-inflammatory cytokines such as transforming growth
factor-β (TGF-β) and IL-10, along with having tolerogenic properties [59,78,79,90,100].

3. Mechanisms behind the MSC Immunosuppressive Effect on Th17 Cells

Among the T-cell subsets that are involved in the immune response, Th17 cells represent a distinct
lineage of T lymphocytes located in the lamina propria of the small intestine upon steady state [105].
These pro-inflammatory CD4+ T cells express the cytokines IL-17A, IL-17F, and IL-22, as well as the
chemokine receptor CCR6 and the RAR-related orphan receptor γT (RORγT), the master transcription
factor of both human and murine Th17 cell differentiation and a hallmark of a Th17-specific T-cell
signature [41]. In response to an inadequate or deficient T-cell immune regulation, Th17 cells participate
in the development of several autoimmune diseases, and several studies described Th17 cells as major
players in the pathogenesis of many inflammatory and autoimmune diseases, such as rheumatoid
arthritis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and bowel disease [106,107].
Th17 and Treg cells are highly plastic versatile cells that can adopt different phenotypes and functions
when exposed to physiological or pathological conditions [108]. Hence, the balance between Treg cells
and Th17 cells (Treg/Th17 ratio) often shapes the outcome of immune responses (immunosuppression
versus inflammation) and, thus, represents a promising immune target to determine the effectiveness
of immune therapy [108,109].

Due to their immunomodulatory and protective properties, MSCs are studied for their therapeutic
potential in inflammatory and autoimmune diseases. Although the mechanisms via which MSCs
inhibit the response of different immune cell populations, particularly the Th17 subsets, are not fully
elucidated; to date, several processes were reported. Indeed, MSC immunoregulatory properties are
mediated through the production of soluble factors, mechanisms dependent on cell-to-cell contact,
mitochondria transfers, or the production of extracellular vesicles containing microRNAs (miRNAs)
among other molecules (Figure 1).

3.1. Soluble Factors

The production of soluble factors by MSCs that mediate the immune response is widely studied.
Prostaglandin E2 (PGE2) is a lipid molecule capable of exerting its immunomodulatory effect in

several immune cell populations, including Th1 and Th17 cell subsets [110]. However, depending on
the maturation state of the different lymphocyte subsets, PGE2 can display a dual role. In mature Th1
cells, PGE2 inhibits their proliferation and the production of IFN-γ, whereas, during Th1 polarization,
there is an increase in the secretion of IFN-γ [111]. In contrast, the opposite effect was observed in
Th17 cells. During Th17 differentiation from naïve T cells in vitro, PGE2 increases the expression of
IL-23R and IL-1R via the activation of PGE2 receptor 2 (EP2)- and receptor 4 (EP4)-dependent signaling
pathways, along with the increase in cyclic AMP pathways [112]. However, when memory CD4+ T
cells are exposed to Th17-skewing conditions, MSC-derived PGE2 inhibits IL-17A secretion via an
EP4-mediated, contact-dependent mechanism [113,114]. This differential response to secreted PGE2 in
Th1 and Th17 cell subsets might be mediated partially by the interaction with other cell types, such as
myeloid cells, since selective removal of myeloid cells from a co-culture of MSCs and CD4+ T cells
impairs Th17 immunosuppression mediated by PGE2 [48]. Nevertheless, this dual effect of PGE2
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requires to be fully elucidated. Recent studies with PBMCs obtained from RA patients (co-cultivated
with adipose tissue-derived MSCs) showed an improvement in the Treg/Th17 ratio. as well as an
increase in the production of TGF-β and a decrease in the IL-17 levels [115]. The authors proposed
that this effect was mediated by a series of factors secreted by MSCs, including PGE2 [48]. Injection
of umbilical cord-derived MSCs in patients with active systemic lupus erythematosus (refractory to
conventional therapies) was associated with an increased frequency of Foxp3+ Treg cells one week
post MSC injection and up to three months later with an additional decrease in frequency of Th17 cells
from three to 12 months post injection [96]. In this study, the authors evaluated the potential in vitro
mechanisms behind this effect and concluded that the upregulation of Treg cells and downregulation
of Th17 cells was mediated by PGE2 and TGF-β [96].
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Figure 1. The multifaceted immunoregulatory dialogue between MSCs and Th17 cells. MSCs and
Th17 cells communicate through many different ways that include the release of soluble factors,
the transfer of mitochondria, the production of extracellular vesicles containing various molecules,
and cell-to-cell contact. When MSCs and Th17 cells are near one another, they dialogue through the
release of messengers including PD-L1, HGF, and PGE2 that are highly expressed when MSCs are
co-cultured with Th17 cells. Moreover, MSCs (nearby Th17 cells) start to express high levels of IDO and
HO-1, releasing some EV-containing immunoregulatory factors and transferring their mitochondrial
via transient cell fusion and tunneling nanotubes. In return, Th17 cells start to express high levels
of PD-1, exhibiting a reduced production of IL-17 and expression of RORγT, while increasing the
capacity to release IL-10 and to express Foxp3. This type of signaling, in which MSCs and Th17 cells
communicate over relatively short distances, regulates the phenotype and function of both cells.

Several cytokines were shown to be involved in the immunosuppressive function of MSC.
The anti-inflammatory cytokine IL-10 is secreted by MSCs, and previous studies reported that
IL-10 secreted by MSCs inhibits the differentiation of naïve CD4+ T cells into Th17 cells in vitro,
by downregulating RORγT and impairing the signaling pathways related to RORγT activation [116].
Despite this, more recent in vitro studies showed that MSC does not impair IL-23R expression on Th17
cells but strongly modulates the Th17 cell secretome [117]. MSCs themselves can secrete TGF-β and,
thus, induce the differentiation of conventional CD4+ CD25− T cells into Foxp3+ Treg cells in vitro [118].
In addition to the canonical immunosuppressive pathways triggered by the binding of MSC-derived
TGF-β on T cells, it was shown that the TGF-β produced by MSCs also modulates the function of
some caspases such as the caspase 8, critical for T-cell activation in a renal xenograft mice model [119].
In addition, TGF-β, produced by MSC along with IL-10, suppresses Th17 differentiation mediated
by dendritic cells [54,102]. Despite being described as a pro-inflammatory cytokine, IL-6 is massively
produced by MSCs. This cytokine is essential for MSCs to produce PGE2 in vitro and to decrease
inflammation in the murine model of collagen-induced arthritis (CIA) [120]. Accordingly, IL-6 released
by MSCs contributes to decreased Th17 cell frequency and inhibits the production of IL-17 and IL-22
in vitro released by PBMCs from RA patients. This resulted in the increase of both Foxp3+ Treg cells
and TGF-β produced by these PBMCs [115]. Moreover, MSCs secrete IL-1 receptor agonist (IL-1Ra)
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which inhibits IL-1α and IL-1β signaling and, thus, impacts the activation and function of several
immune populations such as macrophages, DCs, and lymphocytes [121]. Recent studies showed that
IL-1Ra produced by MSCs inhibits Th17 polarization in vitro. In vivo, in an IL-1ra knockout (KO)
mice experimental arthritis model, MSC injection reduced the severity of arthritis while increasing the
Treg/Th17 ratio as compared to the control group [77].

Another key mediator of MSC immunoregulatory properties, specific for human MSCs,
is indoleamine 2, 3-dioxygenase (IDO), which promotes the degradation of tryptophan into kynurenine
(a toxic metabolite), thus inhibiting T-cell proliferation or inducing apoptosis [122,123]. Kynurenine
inhibits Th17 cells by suppressing the mammalian target of the rapamycin (mTOR) pathway and
through tryptophan deprivation followed by the induction of general control non-depressible 2 (GCN2),
a stress response kinase [124–126]. The infusion of MSC (or their conditioned media) in a model of
carbon tetrahydrochloride-induced murine liver fibrosis attenuated fibrosis progression. These results
were accompanied by higher serum levels of IDO, IL-10, and kynurenine and lower levels of IL-17.
Moreover, the frequency of CD4+ IL-10+ was increased but the number of Il-17+ Th17 cells was reduced.
These results were completely reversed in the presence of an IDO inhibitor [127].

Over the last few years, the enhancement of MSC immunoregulatory properties was intensively
investigated through the development of different protocols of MSC pretreatment. For example,
the pretreatment of adipose tissue-derived MSCs with metformin revealed an enhanced IDO expression
in MSC in a STAT1-dependent manner [75]. The infusion of these cells in an experimental model of
lupus significantly increased the Treg/Th17 ratio, as well as the production of anti-double stranded
DNA (dsDNA) IgG antibodies, reducing inflammation [75].

Heme oxygenase-1 (HO-1) is an inducible enzyme with anti-inflammatory and immunoregulatory
properties, which catalyzes the conversion of heme into carbon monoxide (CO), biliverdin, and Fe
(2+) [128]. Biliverdin production protects cells against oxidative damage, while CO has a similar
effect to nitric oxide (NO) by stimulating guanylyl cyclase and increasing intracellular levels of cGMP,
reducing leukocyte adhesion, decreasing apoptosis, and downregulating the production of some
pro-inflammatory cytokines [128]. The infusion of modified bone marrow-derived MSCs expressing
higher levels of HO-1 ameliorated the severity of GvHD in a murine model by regulating the Treg/Th17
balance in lymph nodes and the spleen [97]. More recently, the overexpression of HO-1 by MSCs
was shown to inhibit NK cells, reduce the Th1/Th2 balance, and induce Th17 into Treg in vitro [129].
When these modified MSC were tested in vivo in a reduced-size liver transplant rejection model,
animals showed a lower transplant rejection rate and pro-inflammatory cytokine levels along with
higher anti-inflammatory cytokines levels and number of peripheral Treg [129]. Together, these results
suggest that the overexpression of HO-1 or activity in MSCs could be useful to improve MSC efficacy
in pre-clinical and clinical applications [130].

Unlike IDO and HO-1, inducible nitric oxide synthase (iNOS) is an enzyme produced exclusively
by murine MSC. iNOS was shown to exert an inhibitory effect on different subsets of T lymphocytes
by suppressing their proliferation through the production of NO [131]. At high concentrations, NO
inhibits TCR-induced T-cell proliferation and cytokine production [132]. NO produced by murine
MSCs suppresses the phosphorylation of the signal transducer and activator of transcription 5 (STAT-5)
and inhibits CD4+ T-cell proliferation [133]. MSC pretreatment with IFN-γ and other pro-inflammatory
cytokines, such as tumor necrosis factor-α (TNF-α) or IL-1β, increases their capacity to produce NO and
other chemokines, enhancing their immunomodulatory properties [133]. A recent study supported the
importance of MSC licensing prior to their administration in vivo. Indeed, when MSCs were primed
with TNF-α and IL-1β, they suppressed lymphocyte proliferation through NO production. This effect
was demonstrated in vivo in a rat cornea transplant model [59]. The treatment with licensed MSCs
significantly improved graft survival in comparison to non-licensed MSCs, and this was evidenced by
an increasing number of Treg cells in draining lymph nodes, spleen, and lungs, in addition to lower
levels of pro-inflammatory cytokines [59]. In another recent study, the immunomodulatory effect
of MSCs was evaluated in a model of facial nerve injury in rats [134]. When the facial nerve was



Cells 2020, 9, 1660 7 of 21

harvested and co-cultured in vitro with bone marrow-derived MSCs, an upregulation of iNOS (among
other immunosuppressive factors) was observed. The local infusion of MSC after nerve face injury led
to a decrease in the frequency of Th17 cells in lymph nodes and an antiapoptotic effect in facial motor
neurons [134].

Some studies showed that the production of hepatocyte growth factor (HGF) by MSCs can partially
modulate the Treg/Th17 balance. An in vitro study using MSC co-cultured in transwell with CD4+ T
cells activated with LPS proposed that HGF is necessary for an increased number of CD4+ Foxp3+

cells and a downregulated number of CD4+ RORγt+ cells [135]. In an in vivo model of bronchiolitis
obliterans in mice, the infusion of umbilical cord-derived MSCs overexpressing HGF improved the
Th1/Th2 ratio, increased the number of Treg cells, and decreased the number of Th17 cells in the spleen;
these results were accompanied by decreased IFN-γ levels and increased IL-4 and IL-10 levels in
serum [136]. While the expression of c-Met (HGF receptor) on Th17 is not yet reported, it is known that
this receptor is expressed in immune cells with antigen-presenting capacities, such as DCs. Therefore,
an indirect effect of HGF on Th17, with DCs as intermediaries, cannot be discarded [137].

3.2. Cell-to-Cell Contact

One molecule considered crucial for cell-to-cell contact-based inhibition is programed death 1
(PD-1). This molecule is necessary for the downregulation of immune responses by inducing apoptosis
of target cells when it binds with its ligand (PD-L1) [138]. It is expressed in various cell types,
including B and T lymphocytes [138]. When MSCs are co-cultured with mature Th17 lymphocytes,
expression of PD-L1 is significantly increased on the surface of MSCs, promoting the inhibition of Th17
cell proliferation. This latter effect is reversed by using PD-L1-neutralizing antibodies [44]. It was
shown that palatine tonsil-derived MSCs are capable of inhibiting Th17 differentiation in vitro through
the PD-L1/PD-1 axis, and this effect is enhanced by the secretion of IFN-β by MSCs [139]. When
these MSCs were locally administered in vivo in an imiquimod-induced psoriatic skin inflammation
model, the disease symptoms were significantly decreased mainly by affecting Th17 response in a
PD-L1-dependent manner [139].

Another important mechanism that depends on cell-to-cell contact relies on the Fas/FasL axis.
The systemic infusion of bone marrow-derived MSC ameliorated the disease phenotypes in the in vivo
models of fibrillin-1 mutated systemic sclerosis (SS) and dextran-sulfate-sodium-induced experimental
colitis. This effect was mediated by T-cell recruitment through the secretion of monocyte chemotactic
protein 1 (MCP-1) by MSC. In addition, their posterior apoptosis was triggered by the Fas/FasL union.
This apoptotic effect promoted the recruitment of macrophages, which secreted high levels of TGF-β,
promoting the upregulation of Foxp3+ regulatory T cells [58]. This same effect was also reported in
Th17 cells, using gingiva-derived MSCs in a colitis mice model [98,99].

Adhesive molecules such as vascular cell adhesion protein (VCAM) and intercellular adhesion
molecule (ICAM) were also described to play an important role in the immunosuppressive properties
of MSC. These adhesive molecules promote proximity between MSCs and lymphocytes, improving
the regulatory effect promoted by the secretion of soluble factors, such as NO, by MSCs [140,141].

3.3. Extracellular Vesicles

Most somatic cells release extracellular vesicles (EVs), which are membrane vesicles involved
in cell-to-cell communication and several physiological processes that comprise different vesicle
subsets which share features such as size and biochemical composition [142]. While exosomes
(30–150 nm diameter) originate from endosomal compartments derived from the plasma membrane,
microvesicles (100–1000 nm diameter) originate mainly from the plasma membrane while apoptotic
bodies (50–4000 nm) emerge from the fragments of dying cells. The EV composition largely reflects
that of the parenting cell and, along with EV-enriched proteins (e.g., Alix, Tsg101, CD63, HSP90),
MSC-derived EVs also reportedly contain MSC markers such as CD44, CD90, and CD105 [143].
However, the immunosuppressive functions of MSC-derived EVs are predominantly attributed to other
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proteins, messenger RNAs (mRNAs), and non-coding RNAs, such as miRNAs that modulate gene
expression by affecting the translation of other specific mRNAs [144,145]. Therefore, MSC-derived EVs
are able to modulate the function of several immune populations such as inhibiting B-cell proliferation
and plasmablast differentiation, modulating macrophage polarization, inhibiting DC maturation,
impairing neutrophil mobilization, and suppressing NK cell and T lymphocyte proliferation, among
others [54,60,61,66,81,82,146,147].

Although the mechanisms of MSC-derived EV regulation on Th17 cells are not yet fully understood,
some reports indicated that these EVs downregulate the Th17 polarization of in vitro activated CD4+

T cells from PBMCs of healthy donors [94,95]. An additional study found that, among PBMCs
from type 1 diabetes (T1D) patients, in vitro activation of islet antigen-specific T cells was inhibited
by MSC EVs, decreasing the frequency of Th17 cells and IL-17 levels via a mechanism involving
TGF-β and PGE2. These EVs also showed promising results as a treatment to control inflammatory
immune responses in several animal models [147]. Studying the therapeutic potential of MSC EVs
in Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease (a progressive
model of multiple sclerosis), it was observed that MSC EV treatment decreased Th17-derived IL-17
serum levels and brain immune infiltration, which was associated with lower production of several
microglial-derived pro-inflammatory cytokines [83]. Although EV treatment reduced brain atrophy
and increased remyelination in TMEV-infected mice, the exact mechanism via which these MSC-EVs
might contribute to ameliorate this disease remains to be elucidated [83,148].

However, other studies attributed to miR-21 the protective effect of MSC EVs inhibiting Th17
cell-driven inflammation, mainly by reducing renal DC maturation and cytokine secretion, using an
ischemia/reperfusion injury model of acute kidney disease [149–151]. In addition, using the model of
experimental autoimmune uveitis (EAU), it was shown that intravenous or periocular administration
of MSC EVs decreased the number and frequency of IL-17-producing Th17 cells in immunized mouse’s
eyes, which was confirmed using a T1D mice model showing decreased transcript levels of the
DC-derived Th1- and Th17-related cytokines IL-1β, IL-6, and IL-12 [84]. Altogether, these reports
implicate that EVs derived from MSCs exert a crucial role controlling inflammatory responses and they
have significant potential for treating Th17-mediated autoimmune diseases. More research is needed
to elucidate the participation of additional components and factors present in these EVs.

3.4. Transfer of Mitochondria

Mitochondrial function is necessary for oxidative phosphorylation, ATP generation, and several
metabolic pathways in somatic cells, while its dysfunction leads to ROS overproduction and oxidative
damage to cells [152]. Remarkably, it was observed that MSCs exert a cytoprotective function to
damaged cells via mitochondrial transfer, leading to improved survival and modulation of cell
proliferation, as well as signaling both in vitro and in vivo [153–155].

So far, MSCs were shown to transfer their mitochondrial load via contact-dependent mechanisms
such as gap junctions, transient cell fusion, and tunneling nanotubes (TNT), in addition to
contact-independent mechanisms such as mitochondria-containing EVs and isolated mitochondria
transfer [57,156–158]. This mitochondrial transfer from MSCs exhibited cytoprotective effects in
kidney injury, myocardial damage, injured retinal ganglion, pulmonary alveoli, and damaged cornea,
among others [159–161]. Nevertheless, the understanding of the underlying molecular mechanisms of
mitochondrial transfer and recipient cell repercussions remains unclear.

To date, there were very few studies focusing on the mitochondrial transfer from MSC to immune
cells. As described by other cell types, MSCs were shown to transfer mitochondria to macrophages
through both TNT- and EV-mediated mechanisms, which increased the phagocytic capacity of
macrophages in a mouse model of Escherichia coli pneumonia, or modulated macrophages into an
anti-inflammatory M2 phenotype, reducing lung inflammation and injury in mice [57,62]. Additionally,
the artificial transfer of MSC-derived mitochondria reportedly induced Treg cell differentiation
from activated human CD4+ T cells, and these pre-treated T cells with MSC mitochondria reduced
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leukocyte tissue infiltration and improved animal survival in a GvHD mouse model [85]. However,
how naturally occurring mitochondrial transfer impacts T-cell activation and function still remains
insufficiently described.

Previous reports from our group showed that MSCs exert immunosuppression to pathogenic Th17
cells in the context of rheumatoid arthritis (RA) [41,162]; thus, we aimed to investigate whether MSCs
modulated the inflammatory environment in RA patient joints through mitochondrial transfer to T cells.
When we cultured MSC with ex vivo expanded human Th17 cells, we observed a contact-dependent
mitochondrial transfer that occurred as soon as four hours after co-culture [47]. We observed a decrease
in IL-17 production of these modulated Th17 cells, and a portion of these cells interconverted into Foxp3+

Treg cells. Moreover, oxidative phosphorylation and oxygen consumption were increased in these
MSC-treated Th17 cells, suggesting a metabolic switching associated with MSC immunomodulation
and Th17–Treg interconversion [47]. Considering that MSCs are present in the synovium during
RA onset, we wanted to reveal whether this mitochondrial transfer to CD4+ T cells was altered in
MSCs from RA patients (RA-MSCs) compared to MSCs from healthy donors, eventually finding that
mitochondrial transfer capacity of RA-MSCs was significantly lower compared to healthy MSCs [47].
Altogether, these results suggested that impaired mitochondrial transfer from MSC in the context of RA
pathogenesis (and maybe in other autoimmune diseases) could contribute to inflammation and joint
damage, worsening the outcome of the disease. However, additional studies are definitely needed to
clarify the molecular mechanisms involved in this transfer and the contribution of metabolic switching
in the immune function and phenotype of modulated T cells during RA.

4. MSC Enhancement to Improve Their Therapeutic Potential

Stimulating MSCs with biological, chemical, or physical factors was proven to be an efficient
strategy to enhance their therapeutic function [163]. Several studies demonstrated that the activation
of MSC with pro-inflammatory cytokines, as well as with growth factors, induces their multiple
immunosuppressive mechanisms. For example, the pre-treatment of MSCs with IFN-γ prior to
being co-cultured with activated lymphocytes enhanced their capacity to decrease the production of
IFN-γ and TNF-α, increased the secretion of IL-6 and IL-10, increased the frequency of CD4+ CD25+

CD127dim/− regulatory T cells, and decreased the frequency of Th17 cells [164]. Moreover, IL-1β-primed
MSCs were shown to upregulate the expression of genes related to several biological processes linked to
the NF-κB pathway [165], and the infusion of these cells in a murine colitis model led to the polarization
of peritoneal M2 macrophages, increased frequencies of Treg cells, and decreased the percentage of
Th17 cells in the spleen and mesenteric lymph nodes [166]. Considering the interaction between
Th17 and MSC, it was described that IL-17A, the main cytokine produced by Th17 cells, enhances
the immunomodulatory properties of murine MSC, both in vitro and in vivo [167,168]. This effect
depends on the expression of IL-17 receptor A (IL17RA) on the MSC surface, which is involved in the
surface levels of VCAM1, ICAM1, and PD-L1, along with iNOS expression [167,168]. Moreover, one
report showed that human MSCs treated with IL-17A exhibited a higher in vitro T-cell suppression of
proliferation, a lower proinflammatory cytokine production, and a higher induction of Treg cells with
no associated upregulation of major histocompatibility complex (MHC) class I and II compared to
MSCs treated with IFN-γ [169]. However, some disadvantages were reported, including an increased
immunogenicity of MSCs after IFN-γ stimulation, the elevated costs of recombinant cytokines, and
variability in the response of MSCs from different sources [163].

Three-dimensional (3D) spheroid culture conditions were also shown to enhance MSC
immunoregulatory functions. Indeed, human MSCs significantly increased their capacity to produce
and release suppressive factors such as IDO when cultured as 3D aggregates [170]. Since oxygen
availability in the BM compartment is quite limited, going as low as 1% [171], several studies already
demonstrated that MSCs cultured under hypoxic conditions had increased production of soluble
bioactive factors, higher angiogenic potential, and immunomodulatory activity [172]. MSCs cultured
under hypoxic conditions induced the production of hypoxia-induced factor-1 alpha (HIF1α) expression,
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which is associated with the production of these multiple mechanisms mentioned, increasing the
suppressive potential on Th1 and Th17 cells [173,174].

The peroxisome proliferator activator receptor β/δ (PPARβ/δ) was suggested to play a critical role
in the control of the therapeutic potential of MSCs. PPARβ/δ is a transcription factor from the nuclear
receptor superfamily that exhibits diverse biological functions like inflammation regulation through
the inhibition of NF-κB signaling, which was described in adipocytes and macrophages [175,176].
As previously mentioned, the stimulation of NF-κB signaling with pro-inflammatory cytokines activates
the immunosuppressive effect of MSCs. Since PPARβ/δ is a negative regulator of NF-κB activity, the
inhibition of PPARβ/δ, either chemically or genetically on MSCs, enhanced their therapeutic potential
both in vitro and in vivo in an experimental model of arthritis, diminishing the frequency of Th17 cells.
This enhanced immunosuppressive potential of MSCs inhibited through PPARβ/δ was associated
with a significant increase of NF-κB activity [177]. Several other strategies were proposed to enhance
the anti-arthritic and immunoregulatory properties of MSCs on Th17 cells including the expression
of glucocorticoid-induced leucine zipper (Gilz) by MSC, which induces Treg differentiation [45,178].
However, further research has to be completed in order to elucidate the molecular mechanisms
associated and turn it into a future clinical tool.

Although these approaches showed promising results in vitro and in pre-clinical animal studies
using both murine and human MSCs, they are pending elucidation to see if these strategies are
translatable to clinical studies. For example, the treatment of MSCs with GSK3787, a selective and
irreversible antagonist of PPARβ/δ that provides MSCs with a potent immunosuppressive effect, seems
promissory for the treatment of patients with autoimmune diseases such as RA [177]. However, despite
this drug being described as non-toxic and non-bioaccumulative in tissues [179], it is not currently
approved by the United States (US) Food and Drug Administration (FDA), which maintains PPARβ/δ

as an attractive therapeutic target for MSC immunosuppressive function; however, it will require
additional research to find new drugs. In 2007, a phase Ia clinical trial aimed to prove the safety of a
PPARβ/δ agonist was successful and a phase Ib trial was started [180]; therefore, future studies cannot
be discarded to test the safety of PPARβ/δ antagonists. This is one of the major aspects to consider in
order to apply further studies for clinical therapies.

5. Conclusions

MSCs and Th17 cells are two plastic and versatile cells that interact both in physiological and in
pathological conditions with different phenotype and functions. MSCs are not immunoregulatory per
se. To acquire an immunoregulatory phenotype and function, and to regulate immune responses, MSCs
need to be activated by factors released by pro-inflammatory immune cells such as Th17 cells. Once they
acquire an immunoregulatory status, MSCs repress the differentiation program of Th17 cells, which is
accompanied by T cells producing IL-10 and expressing Foxp3. This bi-directional immunoregulatory
dialogue is mediated through different mechanisms that include the release of soluble factors and
extracellular vesicles, a reservoir of proteins, lipids, mRNAs, and miRNAs, cell-to-cell contact, and the
transfer of organelles (Figure 1). However, considering the mechanisms that govern the dialogue
between MSCs and Th17 cells and the plasticity of the two cell types (in addition to the poor survival
rate of MSCs upon in vivo injection), the immunoregulatory properties exerted by MSCs and Th17
cells can be effective only for a restricted period of time. Therefore, efforts to prolong MSC persistence
in a pathological environment should be attempted in order to extend the exposure of Th17-infiltrated
diseased tissue to MSC-derived immunoregulatory, cytoprotective, and therapeutic products.
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