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Abstract: Graphene is an attractive soft material for various applications due to its unique and
exclusive properties. The processing and preservation of 2D graphene at large scales is challenging
due to its inherent propensity for layer restacking. Three-dimensional graphene-based nanomaterials
(3D-GNMs) preserve their structures while improving processability along with providing enhanced
characteristics, which exhibit some notable advantages over 2D graphene. This feature article
presents recent trends in the fabrication and characterization of 3D-GNMs toward the study of
their morphologies, structures, functional groups, and chemical compositions using scanning
electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy,
and X-ray photoelectron spectroscopy. Owing to the attractive properties of 3D-GNMs, which include
high surface areas, porous structures, improved electrical conductivity, high mechanical strength,
and robust structures, they have generated tremendous interest for various applications such as
energy storage, sensors, and energy conversion. This article summarizes the most recent advances
in electrochemical applications of 3D-GNMs, pertaining to energy storage, where they can serve as
supercapacitor electrode materials and energy conversion as oxygen reduction reaction catalysts,
along with an outlook.

Keywords: soft nanomaterials; 3D nanostructure; graphene-based nanomaterials; supercapacitor;
oxygen reduction

1. Introduction

Graphene is a 2D material that possesses sp2 hybridized carbon atoms in a hexagonal lattice,
which may be considered as single-layer graphite. It has been demonstrated that graphene is
one of the thinnest and strongest materials known, having excellent flexibility and transparency,
which also exhibits exceptional electrical and thermal conductivity, charge carrier mobility, as well as
an extensive surface area [1,2]. Its properties may vary with respect to its structure, defect density,
number of layers, etc. [3]. Due to these attributes, a number of graphene-based nanomaterials
have been developed for utilization in energy storage, catalysis, electronic devices, and sensor
applications [4–9]. Recently, graphene-based nanomaterials have also been utilized for aluminum
ion batteries as a promising electrode material along with Al-foil in an ionic liquid electrolyte [10–13].
Intense efforts have been invested toward utilizing graphene to the fullest extent for a variety of
practical applications. In general, 2D graphene-based nanomaterials are derived through chemical,
electrochemical, mechanical, and solution-based approaches [14–18].

Various nanostructures can also be derived from 2D graphene. In its 2D form, graphene has a
tendency to reaggregate due to weak van der Waals forces that can link its layers, which can alter its
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performance [19,20]. To overcome the aggregation issues, various strategies have been proposed toward
the development of macroscopic 3D structures—for instance, the introduction of functional groups or
spacers [21], use of interconnecting graphene sheets [15], and the deposition of 3D architectures [22].
Recently, 3D graphene-based architectures such as hydrogels [23,24], aerogels [25,26], foams [27,28],
and sponges [29] have been reported in the literature. Apart from structural stability, these 3D
architectures exhibited high electrical conductivity and improved heterogeneous electron transfer
properties due to the interconnectivity of graphene sheets [30]. These 3D structures minimize the
re-stacking effects that are commonly observed in 2D graphene-based materials, thus increasing the
surface area, porosity, and pore volumes. Three-dimensional graphene-based nanomaterials (3D-GNMs)
have been explored for their use as supercapacitors, in Zn-air batteries as electrode materials, in fuel
cells as electrocatalysts or supports, as sensors, and in environmental remediation applications [31–34].

Electrochemical capacitors are electrochemical energy storage devices that bridge the gap between
conventional electrolytic capacitors and batteries. Supercapacitors could store more energy than
conventional capacitors. Unlike batteries, supercapacitors have their charge storage not limited by the
diffusion of ions within bulk electrodes; thus, they can deliver high power and rapid charge/discharge
cycles through ion adsorption and desorption [35]. Typically, electrochemical capacitors store energy
via either the electrical double-layer or the pseudo-capacitance charge mechanism. For electrical
double-layer capacitance, controlling the pore architecture of the materials is crucial for improved
performance, where the morphology of materials plays a vital role. Whereas, for pseudo-capacitance,
the functionalization of carbon-based nanomaterials with electroactive species is essential for the
fast electron transfer reactions accompanied by high energy storage. Thus, the morphology
and functionalization of a material play some important roles in advancing its supercapacitor
application [36–39]. Along with desired morphologies, 3D materials possess a high ion accessible surface
area, minimum inter-sheet resistance, and appropriate pore dimensions to deliver excellent performance
for energy storage applications with high specific capacitance, rate capability, and cyclic stability [40,41].

The oxygen reduction reaction (ORR) plays a vital role in many electrochemical energy conversion
and storage devices, such as fuel cells and metal–air batteries. The sluggish kinetics of ORR is a
limiting factor of device performance; hence, it is essential to develop a stable, high-performance
electrocatalyst for improving the efficiency and reducing the cost of devices [42,43]. Although advanced
Pt/C electrocatalysts are available for the ORR, the commercialization of the technology is hindered due
to the limitations of commercial catalysts, which include high cost, scarcity, and electrode poisoning in
the presence of carbon monoxide and methanol. Graphene-based materials were shown to possess the
catalytic ability for the ORR, which is attributed to the edges, defect sites, oxygen functional groups,
and heteroatoms present in the structure [44,45]. Further, graphene-based nanomaterials have been
explored as a catalyst support due to synergistic interactions between catalytic metal nanoparticles and
metal oxides with graphene supports to improve catalytic abilities. The 3D morphology of graphene
revealed effective mass transfer due to its high surface area as well as accessibility to a greater number
of exposed planes. Various metal nanoparticles and complexes that decorated 3D graphene-based
nanomaterials have been reported as high-performance catalysts [46]. The functionalization of
graphene has been explored toward influencing its electronic and chemical properties, which can
alter the dispersion, orientation, interaction, and electronic properties of 3D-GNMs. Various types of
nanomaterials such as metal nanoparticles, metal oxides, heteroatoms, and conducting polymers have
been explored for their potential synergies with 3D graphene supports to improve electrochemical
energy storage and conversion performance [47–54]. Nitrogen is a well explored heteroatom that can
enhance electroactive surface areas, improve conductivity, and improve wettability [55]. In addition,
N doping induces ORR catalytic ability to graphene supports [56]. N-doping on 3D graphene
has been explored through various routes, namely hydrothermal, solvothermal, thermal treatment,
etc. [31,57,58]. The deposition of small quantities of metal nanoparticles such as Pd on graphene
can enhance its ORR activities [59,60]. Metal nanoparticles or metal oxide-anchored 3D graphene
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hybrid nanocomposites can be synthesized through various strategies such as chemical reduction,
hydrothermal, microwave irradiation, etc. [61–63].

In this feature article, the main strategies for the fabrication of 3D graphene-based nanomaterials
are presented. The characterization of the morphologies, structures, and compositions of the
fabricated nanomaterials using scanning electron microscopy (SEM) images, X-ray diffraction (XRD),
Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron
spectroscopy (XPS) is addressed. The synthesis and characterization of the novel 3D graphene-based
nanomaterials including interconnected reduced graphene oxide (IC-rGO), N-doped IC-rGO,
and Pd-decorated N-IC-rGO as well as their promising applications in energy conversion and storage
are highlighted. An outlook of the development of advanced 3D graphene-based soft nanomaterials
for energy and environmental applications is discussed.

2. Fabrication of 3D Graphene-Based Nanomaterials

The synthesis and assembly of 3D graphene-based nanomaterials provide compelling research,
particularly related to the control of their morphology and properties for practical applications. In this
section, we will focus on the fabrication of 3D graphene architectures. As illustrated in Scheme 1,
the fabrication process may be classified into three main types: (1) Template-Assisted Chemical Vapor
Deposition Method; (2) Template-Assisted Chemical Method; and (3) Template-Free Chemical Method.
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2.1. Template-Assisted Chemical Vapor Deposition Method

Chemical vapor deposition (CVD) is a well-established process for the synthesis of various
carbon-based nanostructures, including carbon nanotubes, graphene, and other fullerenes, etc. [64].
Cheng et al. first introduced CVD for the synthesis of flexible three-dimensional interconnected
graphene [65]. The basic strategy involved with this methodology was to initially produce a layer
of graphene on a 3D foam-like structure followed by polymerization and etching, which led to
3D foam-like interconnected graphene networks. In general, Ni foam, Cu, ZnO, aluminium oxide,
and pyrolyzed photoresist films have been incorporated as scaffolds and catalysts in the development
of 3D nanostructures, while flat metal substrates were employed in the conventional methods for
graphene growth [66–68]. In general, methane or acetylene gas is employed as a carbon source to grow
the graphene on the substrate at high temperatures in the presence of hydrogen and argon. In the
second step, the formed 3D scaffolds are coated with polymethyl methacrylate (PMMA). Finally, the Ni
foam and polymer coating is dissolved, and the monolithic graphene 3D network is obtained [65].
Through the selection of appropriate scaffolds (Ni or Cu foam), the pore size and structures can be
controlled in the resulting 3D interconnected graphene films. This template-assisted CVD technique
has been demonstrated as a promising method for the fabrication of 3D graphene with excellent
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properties. However, the structural stability of these 3D monoliths still needs to be improved, as the
interconnections between the graphene sheets are purely van der Walls forces.

2.2. Template-Assisted Chemical Method

Freestanding 3D graphene superstructures can also be prepared using a template-assisted
chemical method. This process is similar to the above-discussed methodology; however, the starting
materials are different. In general, the functionalized graphene is used as a precursor for this process,
particularly graphene oxides and reduced graphene oxides [69]. The functionalized graphene is
deposited either on polymer beads or metal foams after which a chemical or electrochemical process
is performed for the reduction of functional groups [70]. Finally, the polymers or metal foams are
dissolved in appropriate solutions to achieve 3D graphene monoliths [69,70]. Typically, polystyrene
beads, Ni foam, Cu foam, CaCO3, and MnO2 have been employed as scaffolds [71]. In some cases,
the potential application of 3D graphene with the scaffolds can also be established for supercapacitors
and batteries [21,72,73]. The template-assisted chemical method has been widely used to develop 3D
graphene architectures, where multiple steps and chemicals are involved for the fabrication of 3D
graphene; however, this method needs to be simplified.

2.3. Template-Free Chemical Method

The Template-Free Chemical Method is also referred to as the chemical self-assembly method [70].
Three-dimensional scaffolds comprised of GO have been reported, with some of them being hydrogels
and self-assembled films/aerogels [74–76]. This process can be subclassified into two types based on
the interactions established between graphene (whether physical interactions and/or cross-linking
agents enable contact between the graphene sheets). Most of these GO-based solids are obtained
through the physical interactions of GO building blocks, and they depend on van der Waals interactions
and the balanced electrostatic repulsive forces of GO functional groups such as hydroxyl, epoxy,
and carboxyl groups [71]. Following the gelation or chemical reduction process, a special drying process
(lyophilization) is required to obtain macroscopic 3D structures [69,70]. However, the mechanical
stability of the resulting structure is poor without the inclusion of polymers or other organics.
To overcome these issues, the interconnection of graphene sheets with covalent linkages was proposed
and attempted with various network linkers such as glutaraldehyde, resorcinol, polyallylamine,
DNA, etc. [23,77]. In some cases, these network linkers are electrochemically active; thus, their impacts
on electrochemical applications are inevitable.

Our research group developed an innovative one-pot approach for the synthesis of interconnected
reduced graphene oxide (IC-rGO) without the addition of cross-linked molecules, which we referred
as a Streamlined Hummers Method (SHM) [78]. As shown in Scheme 2, IC-rGO was synthesized
using the following two steps. In the initial step, 2.0 g of graphite and 200 mL of a 9:1 v/v proportion
of sulfuric acid and phosphoric acid were mixed and stirred for 2 h at 50 ◦C. Subsequently, 9.0 g of
potassium permanganate was gradually added, and the reaction was proceeded with stirring for an
additional 15 h. Following that, the reaction mixture was cooled to 10 ◦C in an ice bath, after which
2.5 mL of 30% hydrogen peroxide was poured into the cold reaction mixture. Then, a fraction of
the reaction mixture was separated from the first stage of the process to obtain GO. In the next step,
the remaining reaction mixture was heated to 120 ◦C for 15 min to form the IC-rGO. The as-prepared
GO and IC-rGO were washed with pure water, HCl, and ethanol, coagulated in diethyl ether, and then
dried in a hot air oven at 50 ◦C overnight. Despite the long-existing method being available in the
literature for the oxidation of graphite [79,80], most of the experiments were conducted under 90 ◦C.
In our case, the reaction was carried at two different temperatures, where 50 ◦C was maintained for the
first step, which was followed by the reaction temperature being increased to 120 ◦C in the second
step. As GO possesses –OH and –COOH functional groups, the acid-catalyzed condensation process
can spontaneously occur at 120 ◦C during the second step, which enables covalent linkages between
graphene sheets via the formation of ether and ester groups. Our results revealed that a significant
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quantity of oxygen functional groups was removed from the GO that was formed during the first
step, and the interconnection of the GO sheets was simultaneously enabled through an acid-catalyzed
condensation process without the addition of external linkers by simply increasing the temperature
from 50 to 120 ◦C.
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ref. [78], with permission from Royal Society of Chemistry, 2017).

The structural stability of the formed IC-rGO was impressive due to existing covalent bonds
between the graphene sheets. We also attempted to modify the IC-rGO with various dopants such
as nitrogen and palladium [81]. The N-doping of IC-rGO was accomplished using a hydrothermal
method, where ammonium fluoride was used as the N precursor. In short, IC-rGO (2.0 mg mL−1) is
dispersed in water and sonicated for 30 min. Then, ammonium fluoride (2 M) was poured into the
dispersion while stirring; after that, the mixture was transferred to a 40 mL Teflon vessel and kept
in an autoclave to be treated at 180 ◦C for 6 h. After cooling to room temperature, the obtained N-
IC-rGO was carefully washed with pure water and ethanol, and then, it was dried in a hot air oven
overnight. To further modify the N-IC-rGO, Pd nanoparticles were deposited using the soft alcohol
reduction (SAR) method [82], where the estimated amount (for 10 wt % Pd loading) of palladium
nitrate salt precursor was reduced and decorated onto the N-IC-rGO using an ethanol/water (1:1)
mixture. After being washed with water and ethanol, the obtained solid product was dried in a hot
air oven overnight. In all cases, namely IC-rGO, N-IC-rGO, and Pd-N-IC-rGO, the 3D structure was
retained, and our studies confirmed the role of interconnectivity in the formed 3D nanomaterials.

3. Surface Characterization of 3D Graphene-Based Nanomaterials

3.1. Morphology

As 3D-GNMs were synthesized from graphite, the morphological transformation was examined
using Scanning Electron Microscopy (SEM) (FEI Quanta FEG 250). Figure 1A–D depict SEM images
of graphite, GO, IC-rGO, and N-IC-rGO. In Figure 1A, graphite shows a flake-like morphology,
which is an indication of its crystallinity [83]. The morphology of GO shown in Figure 1B is formed
following the complete oxidation of graphite at the end of the first step, which reveals a crumpled
sheet-like structure [81]. These creases in the structure are formed as a result of the functionalization
and exfoliation of graphite. Figure 1C displays the interconnected 3D morphology of IC-rGO [78].
The functionalized 2D sheets served as building blocks, which were interconnected through functional
groups to form a 3D structure. Figure 1D reveals the morphology of N-IC-rGO [81], confirming that
the interconnected 3D morphology was preserved following the N-doping process.
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(IC-rGO), and (D) N-doped IC-rGO (N-IC-rGO). Figure 1C,D (reproduced from ref. [81], with permission
from Elsevier, 2020).

3.2. Structural Characterization

X-ray diffraction (XRD) is one of the most valuable techniques that is extensively used for the
characterization of carbon-based materials including carbon nanotubes, diamond, activated carbon,
as well as 2D and 3D graphene [84,85]. As a non-destructive technique, XRD is used to determine
interlayer spacings, elucidate structural strains, and detect impurities. Particularly with graphene-based
materials, XRD analyses are employed to assess the effectiveness of oxidation, expansion of graphite,
and reduction of graphene oxide. All XRD measurements were carried out using a powder X-ray
diffractometer (PANalytical Empyrean) with Cu Kα radiation (λ = 1.54184 Å) and PIXcel1D linear
detector. Typically, X-ray diffractograms of graphite exhibit two characteristic peaks at 2θ = 26◦ and
43◦, corresponding to (002) and (100) plane reflections, respectively (JCPDS No. 01-0646) [86], which is
shown as an example in Figure 2A. Upon the oxidation of graphite to form GO, the same reflection
(002) is typically observed; however, it is shifted toward a lower angle at 2θ = 11◦. The interlayer
distance corresponding to the (002) peak increases to 0.794 nm from 0.336 nm following the insertion of
oxygenated functional groups, which confirms the efficacy of the oxidation reaction. The reduction of
GO to rGO may be achieved through the chemical or thermal reduction method. The XRD pattern for
IC-rGO (3D graphene) possesses a similar pattern associated with rGO (2D graphene) [78]. Upon the
reduction of GO to IC-rGO followed by N-doping, it was noted that the (002) plane reflection of
the GO moved toward a higher angle for both IC-rGO and N-IC-rGO. Therefore, smaller d-spacing
was observed for IC-rGO (0.355 nm) and N-IC-rGO (0.351 nm). The decreased d-spacing upon
reduction indicated an efficient reduction of the oxygenated functional groups in the GO. Furthermore,
a peak broadening observed at 2θ = approximately 24◦ indicated that the mean crystallite lengths
along the c-axes (Lc) of both IC-rGO (1.8 nm) and N-IC-rGO (1.4 nm) were shorter than that of
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GO (6.4 nm). Using the calculated Lc and interlayer distance, the number of graphene layers in a
stacked nanostructure can be estimated to be approximately 8, 5, and 4 for the formed GO, IC-rGO,
and N-IC-rGO, respectively.
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Figure 2. (A) X-ray diffraction (XRD) patterns of graphite, graphene oxide (GO), IC-rGO and N-IC-rGO;
(B) Raman spectrum of graphite, GO, IC-rGO, and N-IC-rGO (Adapted from ref. [78,81], with permission
from Royal Society of Chemistry and Elsevier, 2017 and 2020).

Raman spectroscopy is employed extensively for the structural and electronic characterization of
graphitic materials. Raman spectra provide some useful information on defects, carbon sp2 vibrations,
and stacking orders [87]. All Raman spectra were recorded on a Renishaw micro-Raman spectroscope
with an excitation laser beam wavelength of 532 nm. Generally, it is found that most carbon-based
nanomaterials, including graphene, present almost identical Raman peaks comprised of characteristic
D, G, and 2D modes at approximately 1352, 1580, and 2721 cm −1, respectively. Graphite without
disorder displays only the G band at approximately 1580 cm−1. When disorder is introduced within
graphite, a defect-induced (D) band appears at approximately 1350 cm−1 [87]. For example, the Raman
spectra of graphene-based materials, including graphite, GO, 3D IC-rGO, and 3D functionalized
graphene nanocomposites such as N-IC-rGO are presented in Figure 2B, confirming almost identical
peaks in the presence of D and G bands. A defect density in the graphene structure may be obtained
by comparing the intensity ratio of the D and G bands. The Raman spectra obtained for graphite, GO,
3D IC-rGO, and N-IC-rGO displayed a defect density of 0.05, 0.89, 0.84, and 0.80, respectively. Graphite
has the smallest defect density; the introduction of oxy-containing functional groups due to the
chemical oxidation resulted in the increase of the disorder and defect density of GO. After reduction, a
decrease of the defect density was observed due to the partial removal of the oxy-containing functional
groups, which is in agreement with the XRD results. Raman spectroscopy may also be used to verify
the in-plane crystallite sizes (La) of the graphene samples by employing the La = 4.4 (IG/ID) relation,
as the in-plane crystallite size is inversely proportional to the defect density; thus, smaller defect
density corresponds to a larger crystallite size and vice versa.

Fourier transform infrared (FTIR) spectroscopy is a useful technique for qualitatively identifying
surface functional groups that are present in graphene-based nanomaterials. FTIR spectra were recorded
using a Thermo Scientific spectrometer. An example is demonstrated in Figure 3, which displays the
FTIR spectra of GO, 2D T-rGO, and 3D IC-rGO. In the obtained spectra, the existence of characteristic
peaks at 3000–3500 cm−1 (hydroxyl, OH group), 1730 cm−1 (carbonyl, C=O group), 1610 cm−1 (C=C),
1226 cm−1 (epoxy), and 1049 cm−1 (alkoxy) were evidenced for GO. However, upon reduction by a
thermal method, the formation of T-rGO and IC-rGO resulted in a weakened OH peak, which confirmed
the efficient removal of oxygen functional groups. The extensive removal of oxygen functional groups
during heat treatment under an inert environment results in 2D crumpled sheet-like morphologies.
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Compared with 2D T-rGO, the FTIR spectrum for 3D IC-rGO displayed a strong absorption peak at
1209 cm−1, which could be assigned to the formation of ethers and esters (C–O–C). The formation of
ether and ester groups may play an essential role toward interconnecting functionalized GO sheets
to form 3D IC-rGO. In N-IC-rGO, the C–N stretching bonds appeared at approximately 1100 and
1570 cm−1, which confirmed successful N-doping [88,89]. In addition, decreases in the intensity of
C=O stretching bands indicated a further reduction of functional groups during the N-doping process.
Furthermore, sustained C–O–C bands confirmed the preservation of interconnected 3D structures
following N-doping.
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Figure 3. Fourier transform infrared (FTIR) spectra of N-IC-rGO, IC-rGO, T-rGO (thermally reduced
graphene oxide), and GO (adapted from ref. [78], with permission from Royal Society of Chemistry, 2017).

The accurate chemical composition of 3D-GNMs was determined using XPS measurements,
which were performed using a Thermo Scientific K-α XPS spectrometer. All prepared samples were
run at a takeoff angle of 90◦. A monochromatic Al Kα X-ray source was employed with a spot size of
400 µm. The charge compensation was measured, and the location of the energy scale was adjusted
to place the main C1s feature (C–C) at 284.6 eV. All data analyses were carried out using XPS peakfit
software. Figure 4A,C displays the XPS survey spectra, high-resolution C1s, and high-resolution
N1s spectra of the 3D graphene-based nanomaterials. Figure 4A shows the XPS survey spectra and
peaks labeled as C1s (approximately 285.0 eV), O1s (approximately 533.0 eV), N1s (approximately
399.5 eV), and S1s (approximately 171.0 eV). The C/O ratios for graphite, GO, IC-rGO, and N-IC-rGO
were estimated to be 12.7, 1.9, 3.9, and 5.8, respectively. The C/O ratio decreased from graphite to
GO, which indicated the introduction of oxygen functional groups. From GO to IC-rGO, a significant
number of functional groups were reduced; thus, the C/O ratio decreased to 1.85. Furthermore, a small
quantity of S (approximately 1.0 at %) observed in GO dissipated during the formation of IC-rGO.
For N-IC-rGO, the C/O increased due to the further reduction of oxygen functional groups. In addition,
from the N-IC-rGO’s survey spectra, the N-doping level was determined to be 4.74%.
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Figure 4. (A) XPS survey spectra of graphite, GO, IC-rGO, and N-IC-rGO. (B) High-resolution (HR)
C1s spectra of graphite, GO, IC-rGO, and N-IC-rGO. (C) High-resolution N1s spectra of N-IC-rGO.
(adapted from ref. [78,81], with permission from Royal Society of Chemistryand Elsevier, 2017 and 2020).

A high-resolution C1s spectrum can be used to understand the type of functional groups of
carbon-based nanomaterials. Figure 4B shows that the high-resolution C1s spectra of all four materials
may be deconvoluted to five different C bonding configurations. These peaks might be labeled as
C=C (284.6 eV), C–C (285.5 eV), C–O (286.6 eV), C=O (287.6 eV), and O=C–O (288.8 eV) [90]. The C1s
spectrum of GO was significantly different from graphite, which indicated that the drastic change in the
structure was due to the introduction of oxygen functional groups [4]. On comparing the C1s spectra
of GO and IC-rGO, it was evident that the quantity of oxygen functional groups was significantly
decreased [78]. The N-IC-rGO’s C1s spectrum shows the further reduction of C–O and C=O and
the introduction of N containing functionalities, and C–N bonds were overlaid with C–O binding
energies [81]. The proportion of functional groups is shown in Table 1.

Table 1. Proportion of functional groups calculated from the high-resolution C1s spectra.

Sample C=C (%) C–C (%) C–O (%) C=O (%) O–C=O (%) π–π* (%)

Graphite 88.71 10.64 0.00 0.00 0.00 0.65
GO 27.93 7.04 32.04 21.17 11.80 0.00

IC-rGO 54.80 11.70 15.90 7.80 9.80 0.00
N-IC-rGO 57.19 20.40 7.65 5.85 8.91 0.00

Figure 4C displays the high-resolution N1s spectrum of N-IC-rGO, which can be deconvoluted to
three N configurations, namely pyridinic N (398.5 eV), pyrrolic N (399.6 eV), and graphitic N (401.8 eV) [91],
and their relative percentages were estimated to be 30%, 60%, and 10%, respectively. Pyrrolic N was
predominantly formed in N-IC-rGO, which had increased activity at the edges and contributed to
improving the electron donor behavior of the 3D graphene host and pseudo-capacitance [81].
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4. Electrochemical Applications of 3D Graphene-Based Nanomaterials

The 3D graphene-based nanomaterials possess some unique properties and enable various
environmental, energy, and sensing applications. For instance, supercapacitors are attractive devices
for energy storage with a wide range of applications from portable electronics to electric vehicles.
The fabricated 3D-GNMs were tested for supercapacitor applications, where a CHI 660E potentiostat
was employed for all electrochemical experiments. A three-electrode electrochemical cell was utilized.
The pre-determined active materials (IC-rGO, N-IC-rGO) were added to 950 µL of pure water and 50 µL
of a 10% Nafion binder. After being ultrasonicated for 30 min, an aliquot (3.0 µL) of the homogenous
dispersion was cast on a well-polished glassy carbon electrode (GCE) surface (area 0.07 cm2) and dried
at room temperature overnight before the electrochemical measurements. A polycrystalline Pt wire
and Ag/AgCl (saturated KCl) were used as the counter and reference electrodes, respectively.

4.1. Electrochemical Energy Storage Application

All the electrochemical experiments were performed in 0.5 M H2SO4. Cyclic voltammogram (CV)
was used to understand the capacitance and the mechanism of energy storage. Specific capacitance
could be estimated from the area of cyclic voltammogram. Figure 5A shows the CV of IC-rGO with GO
and 2D thermally reduced graphene oxide (T-rGO). The rectangular shape of the CV combined with
a hump-like feature indicated the contribution of non-Faradaic (arising from double layer), as well
as the Faradaic capacitance (arising from residual oxygen functional groups). IC-rGO exhibited a
capacitance of 158 F g−1, which was significantly higher compared to 2D T-rGO (54.2 F g−1) and GO
(2.3 F g−1). As seen in the SEM images, the 3D interconnected structure of IC-rGO increased the
active surface area and minimized restacking while processing as an electrode compared to the 2D
T-rGO. Constant current charge/discharge studies are another useful technique to assess the specific
capacitance. Here, the capacitance is proportional to the discharge duration. Figure 5B presents the
constant current charge and discharge profile of IC-rGO and 2D T-rGO. The capacitance of IC-rGO was
212 F g−1 at 1 A g−1 and 176 F g−1 at 10 A g−1, which is double that of the capacitance calculated for 2D
T-rGO, which is 93 F g−1 at 1 A g−1 and 70 F g−1 at 10 A g−1. Furthermore, the longevity of the energy
storage material is assessed through cycle life testing. Cycle life testing is continuously performing
charge/discharge at a specific current for a prolonged duration. Figure 5C shows the cycle life testing of
IC-rGO at 10 A g−1 for 5000 cycles, and the insert shows the stable charge/discharge pattern at different
stages of the testing procedure. It is evident that the capacity of IC-rGO was retained without any
noticeable loss over 5000 cycles.
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Figure 5. (A) Cyclic voltammogram with a 0.1 V s−1 scan rate on GO, T-rGO, and IC-rGO-modified
glassy carbon electrode (GCE). (B) Constant current charge/discharge curves of T-rGO and IC-rGO.
(C) Cyclic stability of IC-rGO at 10 A g−1; the insert shows the charge discharge curves at different
stages of the cycle life testing. (All experiments were performed in a three-electrode cell in 0.5 M
H2SO4). (adapted from ref. [78], with permission from Royal Society of Chemistry 2017).

So far, the 3D IC-rGO demonstrated higher stability and higher capacitance compared to its 2D
T-rGO counterpart. Next, we investigated the effect of N doping on the capacitance. Figure 6A–D
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present the results of N-IC-rGO as a supercapacitor electrode material. Figure 6A displays the CVs of the
IC-rGO and N-IC-rGO at a 0.1 V s−1 scan rate. The calculated capacitance of N-IC-rGO was 327 F g−1,
which was significantly higher compared to that of IC-rGO. Figure 6B shows the constant current
charging/discharging performance of N-IC-rGO in contrast to IC-rGO. The capacitance determined
from the charge/discharge studies was found to be 319 F g−1. The significant increase in capacitance
was attributed to the introduction of N, which altered the electronic structure of the 3D IC-rGO.
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Figure 6. (A) Cyclic voltammogram with 0.1 V s−1 scan rate on the IC-rGO and N-IC-rGO-modified
GCE. (B) Constant current charge/discharge curves of IC-rGO and N-IC-rGO (performed in 0.5 M
H2SO4); (C) Scan rate effect of N-IC-rGO. (D) Cyclic stability of N-IC-rGO at 10.0 A g−1 (performed in
symmetric two-electrode testing). (adapted from ref. [81], with permission from Elsevier 2020).

The presence of pyrrolic N and pyridinic N is known to improve pseudo-capacitance, whereas
graphitic N increases electronic conductivity. This excellent performance motivated us to investigate
the performance in a symmetric two-electrode capacitor. Graphite rods were used as current collectors,
polyvinyl alcohol–phosphoric acid gel was used as the electrolyte, and filter paper was used as a
separator. Active material loading on the electrodes was approximately 1 mg cm 2. Figure 6C depicts
the CV at different scan rates from 6 to 600 mV s−1. The shape of the CV pattern was consistent at
different scan rates, which was indicative of rate capability—that is, retaining capacitance over fast
charge/discharge conditions. N-doping not only increased the capacitance but also enhanced the rate
capability. The improved rate capability was attributed to the smaller resistance, which was attributed
to the introduction of graphitic N. Furthermore, the long-term performance stability of N-IC-rGO was
examined through cycle life tests at 10 A g−1 charging and discharging. Figure 6D shows that the
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capacitance was stable over 2630 cycles, and the insert confirms that the charge/discharge pattern was
consistent over the course of cycle life testing.

So far, the energy storage performance of the 3D-GNMs was demonstrated based on the IC-rGO
and N-doped IC-rGO. Several other 3D graphene structures such as aerogels and hydrogels have
also been explored for supercapacitor materials. Besides N-doping, the co-doping of heteroatoms
(N and S) for energy storage has also been reported. Doping single heteroatom improves capacitance
as a result of tuning the electronic structure of graphene, whereas dual heteroatoms provide unique
features of both heteroatoms, which further enhances the energy storage performance. Furthermore,
3D-GNMs combined with metal oxides (MnO2), metal chalcogenides (MoS2), and conducting polymers
(polyaniline) have also been reported as supercapacitor materials. 3D graphene facilitates the uniform
distribution of the metal oxides/chalcogenides, minimizes the interfacial resistance, and improves
the stability of the hybrid nanocomposites. The hierarchical structures of metal oxides/chalcogenides
via their pseudo-capacitance sites increase the ion accessible area, which contributes to the energy
density and stability of the energy storage device. Table 2 presents 3D-GNM materials with their
preparation methods and doping levels as the corresponding energy storage performance with
electrolyte, testing cell configuration, and specific capacitance.
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Table 2. Comparison of 3D-GNMs as electrode materials for supercapacitor applications. CVD: chemical vapor deposition.

Material Method/Precursor/Doping Level Electrolyte/Cell Configuration, 3E or 2E * Specific Capacitance Ref.

3D mesoporous rGO CuCl reduction mesoporous rGO 10 wt% H2SO4 PVA gel/2E 310 F g−1 at 1 A g−1 [92]

3D graphene hydrogel Hydrothermal self-assembly/phytic acid 1 M H2SO4/3E
PVA- H2SO4 gel/2E

248.8 F g−1 at 1 A g−1

170.6 F g−1 at 1 A g−1 [93]

N-graphene Supercritical fluid processing/NA 1 M H2SO4/3E 286 F g−1 at 0.5 A g−1 [54]

N-graphene Hydrothermal/N = 3.77 at % 6 M KOH /3E 243.5 F g−1 at 1 A g−1 [91]

N-graphene Hydrothermal/N = 6.85 at % 1 M H2SO4/2E 242 F g−1 at 1 A g−1 [94]

3D N-graphene Hydrothermal assembly through amidation/N-9.25 at % 1 M H2SO4/3E 408 F g−1 at 1.0 A g−1 [95]

N-super-doped rGO aerogels Hydrothermal and annealing/ammonia gas/N = 15.8 at % 6M KOH/3E
6M KOH/2E

380 F g−1 at 0.6 A g−1

297 F g−1 at 0.3 A g−1 [96]

N, S-graphene aerogel Solvothermal/N = 0.32 at % 1 M KOH/3E 254 F g−1 at 1 A g−1 [97]

N, S-graphene hydrogel Hydrothermal/ammonia and thiourea 6M KOH/3E
PVA-KOH gel/2E

1063 C g−1 at 1 A g−1

45 C g−1 at 1 A g−1 [31]

N, S-3D graphene Thermal treatment by self-assembly approach 6 M KOH/3E
6 M KOH/2E

362 F g−1 at 100 mV s−1

62.5 F g−1 at 1 A g−1 [98]

MnO2/graphene hydrogel Self-assembly using glucose via the hydrothermal method 1 M Na2SO4/3E
1 M Na2SO4/2E

200.6 F g−1 at 1 A g−1

132 F g−1 at 1 A g−1 [99]

3D graphene/CuS 3D graphene prepared via CVD/solution chemistry method 3M KOH/3E
PVA-KOH gel/2E

249 F g−1 at 4 A g−1

32 F g−1 at 1 A g−1 [100]

MoS2-3D graphene network 3D graphene from CVD/liquid phase exfoliation 3M KOH/3E
3M KOH/2E

1972.58 F g−1 at 1 A g−1

102.46 F g−1 at 1 A g−1 [101]

3D graphene/polyaniline hybrid Hydrothermal method 1 M H2SO4/3E
1 M H2SO4/2E

1182 F g−1 at 1 A g−1

808 F g−1 at 1 A g−1 [102]

IC-rGO Streamlined Hummers method 0.5 M H2SO4/3E 212 F g−1 at 1.0 A g−1 [78]

N-IC-rGO Hydrothermal/NH4F/N – 4.74 at % 0.1 M KOH/3E
0.5 M H2SO4/3E

259 F g−1 at 5.0 A g−1

319 F g−1 at 10 A g−1 [81]

* 3E/2E: three-electrode/two-electrode configuration of the electrochemical cell system.
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4.2. Electrochemical Energy Conversion Applications

Energy conversion devices play a vital role in meeting the ever-growing global demands for
inexhaustible and eco-friendly energy. In recent years, 3D-GNM have been widely explored as catalysts,
which support economically important energy conversion reactions, such as the oxygen reduction
reaction (ORR), water splitting, carbon dioxide reduction, etc. ORR is a cathodic reaction in fuel
cells and air batteries. In this section, the catalytic activity of 3D-GNM is demonstrated using two
examples—namely, N-IC-rGO and Pd-N-IC-rGO for oxygen reduction reaction.

4.2.1. Oxygen Reduction Performance of N-IC-rGO

All measurements were performed using a rotating disc electrode (RDE) of 0.19 cm2 with active
material loading 0.21 mg cm−2 in 0.1 M KOH electrolyte. The CV technique is useful to confirm the
catalytic activity. Figure 7A,B depict the CVs of IC-rGO, N-IC-rGO, and N-rGO in argon-saturated
and oxygen-saturated environments, respectively. As seen in Figure 7A, there was no observable
peak, indicating that there is no activity in an argon-saturated electrolyte. In Figure 7B, there was an
obvious reduction peak observed at the potential of approximately −0.25 V Vs Ag/AgCl for N-rGO
and N-IC-rGO in oxygen saturated electrolyte, confirming the ORR catalytic activity. From visual
comparison of the onset potential and peak currents corresponding to the reduction peak from the CV,
N-IC-rGO exhibited significantly more positive onset potential and higher current compared to N-rGO
and IC-rGO. Furthermore, the catalytic activity was probed using a linear sweep voltammogram
(LSV) with rotation of the working electrode at specific revolutions per minute (RPM) to minimize
the diffusion limitation. Figure 7C shows the LSVs of IC-rGO, N-IC-rGO, and N-rGO recorded at
a scan rate of 0.002 V s−1 at 1600 RPM. Figure 7D illustrates a Tafel plot (η (overpotential) Vs log j
(current density)), which was constructed using LSV data (Figure 7C). The estimated onset potentials
for ORR from LSVs of N-IC-rGO, IC-rGO, and N-rGO were −0.05 V, −0.12 V, and 0.08 V, respectively.
The limiting current and half-wave potential of N-IC-rGO were found to be −2.9 mA cm−2 and −0.18 V,
respectively. Further, the Tafel slopes of N-IC-rGO, IC-rGO, and N-rGO were determined to be 80 mV,
128 mV, and 97 mV, respectively. The N-IC-rGO exhibited a significantly more positive onset potential
and half-wave potential, increased the current density, and had the smallest Tafel slope in contrast to
IC-rGO and N-rGO. This catalytic activity was entirely attributed to the N functionalities on the 3D
structured IC-rGO. The presence of graphitic N improved the conductivity and electron density on the
IC-rGO, which provided active sites for the ORR.
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Figure 7. Cyclic voltammogram conducted in 0.1 M KOH at a scan rate of 50 mV s−1 for
IC-rGO, N-IC-rGO, and N-rGO modified glassy carbon electrodes in (A) argon-saturated and
(B) oxygen-saturated environments. (C) Linear sweep voltammogram performed in 0.1M KOH
with 2.0 mV s−1 for IC-rGO, N-IC-rGO and N-rGO. (D) Tafel plots constructed from linear sweep
voltammogram (LSV) data for IC-rGO, N-IC-rGO, and N-rGO.

To understand catalyst selectivity, it is important to study the ORR reaction pathway. A set of LSVs
recorded with different RPMs are shown in Figure 8A. As expected, increased RPM resulted in higher
current densities. As shown in Figure 8B, a Koutecky–Levich (K-L) plot was constructed using the LSV
data from Figure 8A. The number of electrons transferred during the ORR was estimated using the
K-L equation [103]. According to the K-L equation, the measured current density is a combination of
diffusion limited and kinetic limited current density (Equation (1)), where Jk = kinetic current density,
Jd = diffusion current density, 1/B is the slope, andω = angular rotation speed.

1
J
=

1
Jk

+
1
Jd

=
1
Jk

+
1

Bω1/2
(1)

Figure 8B shows the K-L plots (J−1 Vsω−0.5) constructed from the LSV data at different revolutions per
minute (RPM). Using the slope (1/B), the number of transferred electrons was determined using Equation
(2), where n = number of electrons, F = Faradaic constant, A = area of the electrode, D(O2) = diffusion
coefficient of oxygen gas, ϑ = kinetic viscosity of solution (0.01 cm2/s), and C(O2) = concentration of
dissolved oxygen (1.26 × 10−3 M).

B = 0.2nFA
(
DO2

)2/3
ϑ−1/6CO2 (2)
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From the above calculations the number of electrons transferred during the ORR on the N-IC-rGO
was found to be 4.0, which is shown in the insert of Figure 8B. This confirmed that N-IC-rGO was
highly selective for the reduction of oxygen to form water through four-electron transfer. Pyridinic N
and graphitic N present in the 3D N-IC-rGO were the active sites responsible for the ORR activity,
and this observation was consistent with the XPS results [104]. Therefore, this demonstrates that
N-doping and 3D morphology synergy contributed to the higher ORR activity of N-IC-rGO compared
to its 2D counterpart N-rGO.
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Figure 8. (A) Linear sweep voltammogram carried out in 0.1 M KOH at a scan rate of 5.0 mV s−1 with
different rotating speeds using a rotating disc electrode modified with N-IC-rGO. (B) Koutecky–Levich
(K-L) plots constructed using rotating disc linear sweep voltammograms (insert: number of electrons
transferred at different potentials determined from K-L plots).

4.2.2. Oxygen Reduction Performance of Pd-N-IC-rGO

Furthermore, we investigated the effects of metal nanoparticle deposition on the 3D N-IC-rGO.
Pt/C is a state-of-the-art catalyst for ORR; however, it is expensive and scarcely available. Therefore,
we selected Pd, which is cheaper than Pt. We aimed to improve the mass activity of Pd by anchoring it
on an active 3D N-IC-rGO catalyst. Figure 9A,C present ORR results for N-IC-rGO and Pd-N-IC-rGO.
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Figure 9. (A) Linear sweep voltammogram carried out in 0.1 M KOH at a scan rate of 0.005 V s−1 at
1600 revolutions per minute (RPM). (B) Linear sweep voltammogram carried out in 0.1 M KOH at a
scan rate of 5.0 mV s−1 at different rotating speeds Pd-N-IC-rGO. (C) K-L plots constructed using data
from C (insert: number of electrons transferred at different potentials determined from K-L plots).

Firstly, Pd decoration on N-IC-rGO was accomplished with an environment-friendly soft
alcohol reduction method (SARM) [82]. The decoration of Pd on the 3D N-IC-rGO was confirmed
by energy-dispersive spectroscopic (EDS) analysis showing that Pd content was 4.1 ± 0.1 wt %.
Following the confirmation of Pd decoration, the ORR activity was probed using the RDE experiments.
Figure 9A shows the LSV performed at 1600 RPM at a 0.005 V s−1 scan rate. The Pd-N-IC-rGO
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apparently showed improved ORR activity onset potential and limiting current density. The onset
potential, half-wave potential, and limiting current density of Pd-N-IC-rGO from the LSV were 0.02 V,
−0.16 V Vs Ag/AgCl, and 3.34 mA cm−2. Furthermore, the reaction pathway was studied using a K-L
plot. Figure 9B shows a series of LSVs performed at different RPMs. Figure 9C shows the K-L plot
constructed using the LSV data. The insert of Figure 9C shows that the number of electrons transferred
was approximately 4.0, which was the same as for N-IC-rGO, further confirming the high catalytic
activity and selectivity. The Pd decoration further improved the ORR activity of N-IC-rGO by positively
shifting the onset potential and increasing the limiting current density. Besides the heteroatom doping
and the modification of nanoparticles, various hybrid catalysts using 3D-GNM have been reported in
the literature. Table 3 summarizes the ORR activity of nanocomposites with different 3D graphene
supports, such as graphene foam, graphene aerogel, 3D graphene with dual heteroatoms (N&S, B&N),
metal oxides (Mn3O4), mixed metal oxides (NiCo2O4, CoFe2O4), alloy nanoparticles (Ni-Fe), etc.
N-doping on the 3D IC-rGO increased the ORR activity compared to 2D N-rGO. Pd nanoparticle
decoration onto N-IC-rGO further improved the ORR activity.
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Table 3. Comparison of the oxygen reduction reaction (ORR) performance of different 3D-GNM electrocatalysts.

Material Method Electrolyte Eonset (V)/E 1
2

(V) @ 1600 RPM Jl/n @ 1600 RPM Ref.

3D Pd/rGO Hydrothermal/PdCl2 and glucose 0.1 M KOH Eonset = 0.90 V Vs RHE Jl = −3.7 mA cm−2 [33]

3D N-graphene
Hydrothermal self-assembly

(ascorbic acid)/C3N4 and urea/N =
4.94 at %

0.1 M KOH Eonset = 0.88 V/E1/2 = 0.81 Vs RHE Jl = 5.21 mA cm−2/ n = ~3.4
(catalyst loading 0.1 mg cm−2)

[58]

3D N-graphene aerogel
Ascorbic acid-hydrothermal

assembly/Pyrolysis,
Polyallylamine/N = 2.07 at %

0.1 M KOH E1/2 = −0.77 V Vs RHE Jl = 5.7 mA cm−2/(catalyst
loading 0.102 mg cm−2)

[105]

Pd−N/3D graphene
Silica template assisted/surfactant

free Pd deposition/N=3.5 at %/30 wt
% Pd (XPS = 2.2 at %)

0.1 M NaOH Eonset = 1.0 V Vs RHE Jl = 5.8 mA cm−2/n = ~ 4 [106]

N, B-graphene aerogel Hydrothermal (NH4B5O8) 0.1 M KOH Eonset = −0.05 V/E1/2 = −0.2 V Vs Ag/AgCl Jl = 5.7 mA cm−2 (catalyst
loading 0.14 mg cm−2)

[107]

N, S-flexible 3D graphene
Thermal treatment by self-assembly
approach/3-Amino- benzenesulfonic

acid
0.1 M KOH Eonset = −0.13 V Vs Ag/AgCl Jl = −3.72 mA cm−2 [98]

3D N-S-graphene aerogel
Hydrothermal self-assembly

(ammonia and sulfur powder)/N-5.7
at %; S-4.5 at %

0.1 M KOH E1/2 = −0.21 V Vs Ag/AgCl NA [108]

Ag/3D N-G-Aerogel Hydrothermal self-assembly 0.1 M KOH Eonset = 0.97 V/E1/2 = 0.81 Vs RHE Jl = 5.25 mA cm−2 (catalyst
loading 0.128 mg cm−2)

[109]

3D N- graphene encapsulated
Ni-Fe

Hydrothermal
assembly/pyrrole/N-6.4 at % 0.1 M KOH Eonset = 0.93 V/E1/2 = 0.80 V Vs RHE NA [61]

Mn3O4 nanowire/3D
graphene/SWCNT

CTAB assisted microwave irradiation
method 0.1 M KOH Eonset = −0.048V/E1/2 = −0.15 V Vs Ag/AgCl n = ~4 [62]

NiCo2O4 on graphene foam
Ni foam template-assisted

CVD/Chemical synthesis (NH4F and
urea)

0.1 M KOH E1/2 = 0.86 V Vs RHE Jl = 6.25 mA cm−2/n = 4
(catalyst loading 0.4 mg cm−2)

[110]

MnCo2O4 NP/3D graphene Template method/Coal tar
pitch/hydrothermal method 0.1 M KOH Eonset = 0.98 V Vs RHE/E1/2 = 0.81 /n = 4 NA [111]

Spinel CoFe2O4/3D graphene Templated method/coal tar pitch
/Hydrothermal 0.1 M KOH E1/2 = 0.80 V Vs RHE n = ~4 [112]

N-IC-rGO
Streamlined Hummers

method/hydrothermal method
(NH4F)/N = 4.74 at %

0.1 M KOH Eonset = −0.05 V/ E1/2 = −0.18 V Vs Ag/AgCl
Jl = 2.9 mA cm−2/n =

approximately 4 (catalyst loading
0.21 mg cm−2)

This work

Pd-N-IC-rGO
Streamlined Hummers

method/hydrothermal method
(NH4F)/surfactant-free Pd deposition

0.1 M KOH Eonset = 0.02 V/ E1/2 = −0.16 V Vs Ag/AgCl
Jl = 3.34 mA cm−2/n =

approximately 4 (catalyst loading
0.21 mg cm−2)

This work
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5. Summary and Future Outlook

In this feature article, we initially discussed recent advances in the fabrication of 3D graphene-based
nanomaterials. Subsequently, the characterization techniques used to study the 3D materials
were discussed, using the IC-rGO and N-IC-rGO as models. Morphological transformations were
characterized using SEM, whereas the structural changes and chemical compositions were elucidated
using XRD, Raman, FTIR, and XPS techniques. The aggregation of 2D graphene sheets could potentially
inhibit ion transport into its structure, which was overcome with 3D network macrostructures such
as IC-rGO and N-IC-rGO. The advantages of the 3D morphology were elucidated through the
electrochemical energy storage performance of IC-rGO, while the benefits of heteroatom doping onto
3D graphene were investigated through N-IC-rGO. N-doping on a 3D-GNM enhanced the specific
capacitance and the rate capability. Moreover, N-doping on the 3D-GNM was shown to have catalytic
activity for the ORR. In addition to the N-doping effect, we also demonstrated that the decoration
onto the 3D N-IC-rGO with Pd nanoparticles further improved the ORR performance. Overall,
this article summarized recent progress in the fabrication of 3D graphene hierarchical structures
and their characterization, as well as their electrochemical energy storage and oxygen reduction
catalysis applications.

The rising global demand for energy storage and production makes graphene-based nanomaterials
important candidates for environmentally compatible energy storage and conversion devices. In its pure
form, graphene has remarkable properties; however, it suffers limitations for large-scale production
due to the re-stacking issues. This key challenge can be addressed through the development of
3D hierarchical structures. Various 3D-GNMs have been reported, including IC-rGO, hydrogel,
aerogel, sponge, foam, etc. In addition, pore architectures (porous graphene, mesoporous/microporous
materials) were evolved to improve the performance of graphene-based materials. Current trends
involve the development of hybrid materials to exploit the synergies resulting from the combination
of 3D-GNM with functional candidates, such as carbon materials (CNT), metal/alloy nanoparticles,
metal oxides, metal hydroxides, metal sulfides, etc., for energy storage and catalytic applications.
Based on this, possible future research directions include (1) exploration of novel materials considering
the practical needs of device energy/power outputs such as supercapacitors, air batteries, and fuel
cells; and (2) the development of promising materials for flexible and compact energy storage devices,
which would advance a myriad of applications in wearable electronics and biomedicine. The outlook
for 3D-GNMs is to identify beneficial synergies via a fundamental understanding of their formation
mechanisms, which will lead to breakthroughs toward the development of custom materials for specific
needs that can meet energy demand challenges. In view of the early improvements demonstrated here,
we believe that the future potential of 3D graphene-based materials is immense.
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