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Abstract: Patients living with brain tumours have the highest average years of life lost of any cancer,
ultimately reducing average life expectancy by 20 years. Diagnosis depends on brain imaging and
most often confirmatory tissue biopsy for histology. The majority of patients experience non-specific
symptoms, such as headache, and may be reviewed in primary care on multiple occasions before
diagnosis is made. Sixty-two per cent of patients are diagnosed on brain imaging performed when
they deteriorate and present to the emergency department. Histological diagnosis from invasive
surgical biopsy is necessary prior to definitive treatment, because imaging techniques alone have
difficulty in distinguishing between several types of brain cancer. However, surgery itself does not
necessarily control tumour growth, and risks morbidity for the patient. Due to their similar features
on brain scans, glioblastoma, primary central nervous system lymphoma and brain metastases have
been known to cause radiological confusion. Non-invasive tests that support stratification of tumour
subtype would enhance early personalisation of treatment selection and reduce the delay and risks
associated with surgery for many patients. Techniques involving vibrational spectroscopy, such as
attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, have previously
demonstrated analytical capabilities for cancer diagnostics. In this study, infrared spectra from 641
blood serum samples obtained from brain cancer and control patients have been collected. Firstly,
we highlight the capability of ATR-FTIR to distinguish between healthy controls and brain cancer
at sensitivities and specificities above 90%, before defining subtle differences in protein secondary
structures between patient groups through Amide I deconvolution. We successfully differentiate
several types of brain lesions (glioblastoma, meningioma, primary central nervous system lymphoma
and metastasis) with balanced accuracies >80%. A reliable blood serum test capable of stratifying
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brain tumours in secondary care could potentially avoid surgery and speed up the time to definitive
therapy, which would be of great value for both neurologists and patients.

Keywords: Brain Cancer; Infrared; Spectroscopy; Serum; Diagnostics; Tumour Stratification

1. Introduction

Brain cancer reduces a patient’s average life expectancy by 20 years on average, the highest
reduction of all cancers [1]. Although brain tumours are uncommon, the annual incidence appears to be
rising, with an increase of 19% in the United Kingdom (UK) between 2002 and 2014 [2]. Globally, around
330,000 people are diagnosed with a central nervous system (CNS) cancer per year, which equates to
~900 diagnoses every single day [3]. Fewer than 20% of patients survive beyond five years [4], which is
considerably lower than other cancer types.

The current gold standard investigation for patients with a suspected brain tumour is MRI,
however determining the exact brain tumour type is not possible from imaging alone [5,6]. Some brain
tumours pose particular imaging challenges, e.g. differentiating between glioma and primary CNS
lymphoma (PCNSL). Consequently, oncological treatments (radiotherapy and chemotherapy) can
only be initiated after histopathological diagnoses are obtained. This necessitates surgery (either
resection or biopsy), and although surgery is the primary treatment option for most brain tumours,
it is not always clinically indicated or appropriate. This includes patients with borderline performance
status who might not benefit from treatment [7]. In patients where a biopsy is only required for
histological diagnosis, the time taken to schedule and recover from surgery delays instigation of
definitive treatment.

The detection of brain cancer with a serum-based triage system would be well-suited to the
clinical environment. Serum tests are already used in clinics, and a new test could be readily integrated
into the current clinical pathway [8]. A rapid blood test that can stratify brain tumour histological
sub-type would positively impact on the diagnosis and personalisation of patient treatment. Strategies
for non-invasive assessment of tumour type, so-called liquid biopsy, have, to date, largely relied upon
identification of cell-free tumour DNA (ctDNA) in circulating blood. This approach has met with
significant technical challenges, as well as high cost per test.

An alternative strategy uses vibrational spectroscopy, in particular attenuated total reflection
Fourier transform infrared (ATR-FTIR) spectroscopy, for serum analysis. ATR-FTIR is rapid, cheap and
non-invasive, instruments are easy to operate, and the technique generates biochemical fingerprints
from minute volumes of biological fluids. In FTIR spectroscopy, a sample is irradiated with infrared
light, which causes atomic displacements and molecular vibrations. The absorption of this light excites
vibrational transitions of molecules, producing IR spectra that contain a vast amount of chemical
and biological information [9]. Specifically, it provides qualitative interrogation of all infrared active
macromolecular constituents of blood serum. It has been shown that biomolecular imbalances in
biofluids can give an indication of disease states [10]. When coupled with complex data analysis
systems, the technique has been shown to successfully detect various cancers [11]. Recently, we have
employed this technology in a novel high-throughput approach clinical study, supporting the possibility
of earlier detection of brain tumours by identifying which patients with non-specific symptoms of a
possible brain tumour are most likely to actually have a tumour, demonstrating high sensitivity and
specificity [12].

We have used this same FTIR spectroscopy and data analysis strategy to successfully differentiate
between two types of brain tumours, glioblastoma (GBM) and PCNSL, which pose a dilemma in
radiological diagnosis [13]. If we can differentiate likely tumour types across a broader range of
tumour types when an intracranial abnormality is identified radiologically, this would enhance clinical
decision making and may reduce the need for some diagnostic investigations, such as body CT in
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patients with primary brain disease [14]. A simple and reliable blood test that is able to differentiate
a range of primary brain tumours from brain metastases would be invaluable to neurologists in
the secondary care setting. Thus, in this study we further expand our previous work by assessing
various brain tumour subtypes—including meningioma, GBM and PCNSL—and, for the first time,
we elucidate the capability of high-throughput ATR-FTIR to differentiate between GBM and brain
metastases. The ability to predict the likely diagnosis through a combination of serum spectroscopy
and brain imaging would have a major impact on the patient pathway, and would facilitate more
timely treatment in the hospital care setting.

2. Materials and Methods

2.1. Sample Collection and Preparation

A total of 641 retrospective serum samples were obtained from two biobanks; the Walton Centre
NHS Trust (Liverpool, UK) and Royal Preston Hospital (Preston, UK). Ethical approval for this study
was obtained (Walton Research Bank and BTNW/WRTB 13_01/ BTNW Application #1108). Figure S1
outlines the number of samples within the patient cohort for each category. A respectable balance
of male and female patients has been included, with a widespread age range (Table S1). Initially,
individual brain tumour types were compared to healthy controls. The larger groups of brain tumour
patients were analysed, followed by a breakdown of tumour types. The ‘glioma’ cohort was comprised
of the tumours originating from glial cells; GBM, astrocytomas and oligodendrogliomas. The gliomas
were contrasted to the meningioma samples, and these two groups were then combined to form the
‘primary’ set, which was tested against the brain metastases. Some of the more abundant individual
tumour types were then chosen for further analysis.

Control patients were healthy individuals who had no history of cancer. The cancer patients had a
histopathologically confirmed brain tumour, but had not yet commenced chemo- or radiotherapy at the
time of blood sample collection. Blood samples were collected in serum collection tubes and allowed to
clot for up to one hour. The tubes were centrifuged for 15 min at 2200× g. The serum component was
subsequently aliquoted then stored in a –80 ◦C freezer until the time of analysis. The serum samples
were removed from storage and thawed at room temperature (18–25 ◦C) for approximately 20 min
prior to spectral analysis. An amount of 3 µL of serum from one individual patient was pipetted
onto each of the three sample wells on a ClinSpec Dx optical sample slide (ClinSpec Diagnostics Ltd.,
UK) [12]. The first well remained clean for background collection to subtract atmospheric conditions
from the IR spectra. The serum drops were spread across the well in order to create thin homogeneous
serum films. Prepared slides were stored in a Heratherm™ drying unit incubator (Thermo Fisher
Scientific, Waltham, MA, USA) at 35 ◦C for 1 hour to optimise the drying process [15].

2.2. Spectral Collection

A Perkin Elmer Spectrum 2 FTIR spectrometer (Perkin Elmer, London, UK) was used for the
spectral collection. A ClinSpec Dx indexer (ClinSpec Diagnostics Ltd., Glasgow, UK) automated the
movement of the slides across the specular reflectance puck. With the first well acting as a background,
the three sample wells provided the biological repeats. Each well was analysed in triplicate—resulting
in nine spectra per patient. The spectra were acquired in the range 4000–4500 cm−1, at a resolution of
4 cm−1, with 1 cm−1 data spacing and 16 co-added scans. In total, 5769 spectra have been collected
from all serum samples.

2.3. Spectral Analysis

Principal component analysis (PCA) was processed using Matlab, and the PRFFECT toolbox within
R Statistical Computing Environment software was utilised for the pre-processing and classifications [16].
Correcting for variation in baselines and using appropriate data reduction methods, such as binning
and smoothing, can emphasise valuable biological information—such an approach is known as
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‘pre-processing’ [17]. For the PCA, the spectral datasets were cut to the biologically relevant fingerprint
region (1800–900 cm−1), followed by a rubber band baseline correction and a vector normalisation.
PCA is a relatively basic linear transformation technique that is often used in spectroscopic studies.
The main aim of a PCA analysis is to identify distinct patterns in complex data and detect a correlation
between variables [18]. Ultimately, the dimensionality of large datasets is reduced, in order to clearly
visualise the general variation, which can be achieved through scores and loadings plots.

Curve fitting analysis was carried out on MagicPlot (Magicplot Systems LLC, Saint Petersburg,
Russia) in order to unveil the hidden protein secondary structure bands concealed within the
broad Amide I region. The mean absorbance and second derivative spectra of the control,
GBM, PCNSL, metastasis and meningioma patient groups were processed using the PRFFECT
toolbox. A Savitzky–Golay filter was applied to reduce the noise, with the number of smoothing points
set to 7. The curve-fitting procedure is based on the sum of Lorentzian functions, which exist at the
location of overlapping peaks [19]. Thus, the positions of the minima observed in the second derivative
spectra were used to calculate the position and intensity of the Lorentzian curves, which could then be
tentatively assigned as various types of protein secondary structures [20].

Classifications were undertaken to recognise biological signatures from cohorts of patients
with known tumour types, then predictions from ‘unknown’ tumour types were made using this
information. Firstly, the spectra were suitably pre-processed. Using a trial-and-error approach,
the optimal parameters for the classifications were established. An extended multiplicative signal
correction (EMSC) was employed using a human pooled serum reference, followed by a spectral cut to
1800–1000 cm−1. A min–max normalisation between 0 and 1, and a binning factor of 8 were applied.
To develop the models, patients were randomly split into training sets—consisting of 70% of the
data—and test sets—the remaining 30%. Model hyperparameters were tuned to optimise the value of
Cohen’s Kappa coefficient (κ) for 5-fold cross-validation on the training sets. The optimised model was
then used to make predictions for the spectra in the test sets. The majority vote amongst the nine spectra
for each patient was reported as the diagnostic outcome. The classification models were retrained and
tested on 100 different randomly selected training and test set partitions to provide a reliable measure
of predictive accuracy with a low standard error. Due to the imbalances present when examining
the different classes, up-sampling, down-sampling and synthetic minority over-sampling technique
(SMOTE) were employed in the spectral analysis to reduce the bias in the classification models.
Three robust classification techniques have been employed in this study: random forest (RF), partial
least squares-discriminant analysis (PLS-DA), and support vector machine (SVM). For a thorough
explanation of each of these methods and their parameters, we direct the reader to our previous
work [13]. Briefly, RF builds a ‘forest’ of regression trees using the Classification and Regression Trees
algorithm [21], and by applying the Gini impurity metric, it can rank spectral features in order of
importance. PLS-DA is similar to PCA, in that it can extract hidden patterns from complex datasets by
reducing the dimensionality [22]. The supervised SVM technique can output an optimal dimension for
the separation of the data, known as the hyperplane. Various kernels are available, but here we use a
linear kernel, which has previously been shown to perform well in spectral classification studies [23].

3. Results

3.1. Brain Tumour vs. Healthy Control

3.1.1. Principal Component Analysis

PCA was first undertaken in order to explore the general variation between the controls and the
individual brain tumour groups. The data was cut to the fingerprint region where biomolecules are
known to vibrate (1800–900 cm−1), before a rubberband baseline correction and vector normalisation
was applied. Firstly, the GBM patients were compared to the healthy individuals. Figure S2 describes:
a) the scores plot between PC1 and PC2 for GBM against controls (NC), and b) and c) are the loadings
plot for PC1 and PC2, respectively. PC1 accounts for 52.3% of the general variation in the dataset,
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mainly from Amide I and II contributions, as shown in Figure S2b). Despite some slight overlap, the
two groups separate across the 2nd principal component. The PC2 loadings also suggest that this
arises from the Amide I (CO and CN stretch, NH bending) and Amide II (NH bending, CN stretch)
bands between 1500–1700 cm−1. There were also contributions from the lower wavenumber region,
which represents the CO, CC and CH stretching modes from carbohydrates and glycogen, and the
symmetric PO−2 stretching vibrations within nucleic acids (1100–1000 cm−1).

Meningioma, PCNSL and metastatic patient cohorts were also assessed individually against the
control group. Figure S3 displays the PCA results for each of the comparisons. The scores plots
and loadings presented are those that illustrate the most discrimination between classes. Similar to
GBM, with the meningioma and PCNSL analysis, we found that the PC2 suggested that the most
variance arose at the Amide I and II bands and at the phosphate, glycogen and carbohydrate region.
Interestingly, the region around 1080–1000 cm−1 was shown to exhibit the highest discrepancies in the
metastasis vs. control set. The ~1030 cm−1 band is associated with the CO stretching and bending
vibrations of glycogen and carbohydrates. This is consistent with a previous study, where this region
was found to be distinctive when analysing normal and metastatic brain tumour tissue through FTIR
imaging and linear discriminant analysis [24].

3.1.2. Amide I Deconvolution

The PCA analysis highlighted variances in Amide I absorbance between brain tumour groups, thus
deconvolution analysis was undertaken to further explore these differences. A series of overlapping
components that represent different structural elements are hidden within the broad Amide I band [25,26].
For example, β-sheets involve two or more segments of a polypeptide chain lining up next to each
other and form a sheet-like structure, as the C=O of one amino acid binds to the N-H of another
through hydrogen bonding, whereas α-helices are assembled when the polypeptide chain twists into a
spiral [27]. For the four brain tumour subtype groups and the control set, the mean Amide I absorbance
spectra were subjected to a second derivative deconvolution in an attempt to better understand the
nature of the identified spectral differences. Figure 1 describes the second derivative spectra in the
region between 1720–1590 cm−1 for each patient set, which suggests that there are minute discrepancies
at several points across the Amide I band, namely at ~1650 cm−1 and ~1638 cm−1.
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Figure 1. The mean second derivative spectra within the Amide I region (1720–1590 cm−1) for the
control, glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), meningioma and
metastasis patient groups.
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The position and intensity of the minima across the second derivative spectra represent those
of the underlying protein bands, so it is possible to predict secondary structures using curve fitting.
The deconvoluted Amide I profiles for each of the patient groups are distinctly dissimilar, in terms of
the number of bands, and their relative positions and intensities. The curve fitting analysis is outlined
in Figure 2, where the overlapping protein bands have been tentatively assigned as either α-helices,
β-sheets, turns or random disordered structures with reference to the literature [26,28].
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Figure 2. Amide I curve fitting showing the summation of resolved second derivative bands relative to
the absorption profile for the: (a) control; (b) glioblastoma (GBM); (c) primary central nervous system
lymphoma (PCNSL); (d) meningioma and (e) metastasis patient groups.

Initially, it seems that all of the deconvoluted Amide peaks follow a similar trend. From left to
right, β-sheets exist around 1700–1680 cm−1; followed by turns ~1670 cm−1; then the elevated α-helix
bands and disordered structures between 1665 and 1645 cm−1; finally, additional β-sheet components
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from 1640 to 1600 cm−1. On closer inspection, it is clear that the profiles are rather disparate. Despite all
patient groups consistently encompassing α-helix maxima, they all exist at fluctuating heights and
positions. Interestingly, this region exhibited discrepancies in the second derivative spectra in Figure 1,
corroborating the differences observed in the curve fitting analysis.

3.1.3. Partial Least Squares-Discriminant Analysis

Based on our previous work [13], we used PLS-DA to classify each dataset and test the diagnostic
performance. Initially, each model was tested with no additional sampling, before using up, down and
SMOTE sampling techniques to ensure there was no bias present within the classifications, which could
be introduced by the imbalanced classes. The optimal value of ncomp for each model was determined
from a tuning grid with a range 1:20 (Table S2). The sampling method that produced the best results
with five iterations was then chosen for 100 resamples, to generate the most accurate and optimal
outcome. Table 1 outlines the PLS-DA results for each tumour type vs. control dataset.

Table 1. Summary of partial least squares-discriminant analysis (PLS-DA) results for brain tumours
against controls. Sensitivity, specificity and balanced accuracy are reported as means and standard
deviations (SD) calculated over 100 resamples.

Tumour Type
Against Healthy
Control (n = 87)

No. of
Patients

Sampling Sensitivity (%) Specificity (%) Balanced
Accuracy (%)

Mean SD Mean SD Mean SD

GBM 96 No 95.5 4.3 94.9 4.2 95.2 2.9
PCNSL 41 Up 92.2 6.9 96.7 3.5 94.4 3.9

Meningioma 111 Up 94.7 3.7 98.4 2.2 96.6 2.0
Metastasis 210 Up 95.9 2.6 95.0 4.2 95.4 2.3

The analysed GBM vs. control set contained 96 GBM patients and 87 controls, hence the sampling
techniques—for equalising imbalanced patient groups—did not significantly improve the classification
results. After 100 iterations, the PLS-DA model reported 95.5% and 94.9% for sensitivity and specificity,
respectively. The SDs were minimal for both sensitivity and specificity (~4%), suggesting the model is
robust and reproducible. Likewise, the ability to successfully pick out the PCNSL, meningioma and
metastatic patients from their respective training sets was also evident. The number of patients in these
groups were not well matched, thus additional up sampling seemed to improve the performance of
the models. The sensitivities after 100 resamples were 92.2% for PCNSL, 94.7% for meningioma and
95.9% for metastasis. The tests were also highly specific, with each model accurately predicting the
healthy controls as non-cancer at specificities ≥ 95%.

The PLS scores plots were very similar to the PCA results, but they provided slightly better
separation of the classes. Figure 3 shows (a) the PLS scores plot between PLS1 and PLS2, and (b) the
loadings for the 1st PLS component based on the GBM vs. control dataset. The PLS1 loadings in
Figure 3b) generally agree with the PCA loadings (Figure S2). The most discriminating regions in each
of the four brain tumour subtypes vs. control datasets were generally found between 1000–1100 cm−1

and 1500–1700 cm−1, along with some minor lipidic contributions. The wavenumbers that were
mainly responsible for all four classifications are outlined in Table 2 with their corresponding biological
assignments and vibrational modes.

Overall, the classification results highlight the ability of ATR-FTIR to successfully differentiate
individual brain tumour types from control serum samples with extremely high accuracies. A recent
health economic assessment of current diagnostic practices suggested that a serum-based test for
the detection of brain tumours could be cost-effective to the NHS [29]. Thus, the results from
this retrospective analysis indicate that this platform technology may be well suited to the clinical
environment. Moreover, the Amide I deconvolution analysis has highlighted concealed differences
in the proteinaceous structures of the different brain tumour types, suggesting that using similar
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classification techniques, it may also be possible to discriminate between brain lesions as well as brain
tumour vs. control.Cancers 2020, 12, x 8 of 16 
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Figure 3. (a) Partial least squares (PLS) scores plot between PLS1 and PLS2 for the glioblastoma (black)
and control (red) dataset, and (b) the loadings for the 1st PLS component with tentative biological
assignments: lipids (blue), proteins (yellow), phosphates (green) and carbohydrates (red).
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Table 2. The main wavenumbers involved in each of the four brain tumour subtypes vs. control
classifications, with tentative biological assignments.

Approximate Wavenumbers
(cm−1)

Tentative Biological Assignments Vibrational Modes

1012 Carbohydrate C-O stretch
1030 Glycogen C-O and C-C stretch, C-OH deformation
1045 DNA and RNA symmetric PO−2 stretch
1050 Carbohydrate/Glycogen C-O-C stretching and bending

1050–1100 DNA and RNA Symmetric PO−2 stretch
1240–1310 Amide III of Proteins N-H in plane bend, C-N stretch

1245 Phosphodiesters Asymmetric PO−2 stretch
1340 Phospholipids CH2 wagging
1400 Lipids/Proteins CH3 bending
1470 Lipids CH2 scissoring

1500–1600 Amide II of Proteins N-H bending, C-N stretching
1600–1700 Amide I of Proteins C=O and C-N stretch, N-H bending

1750 Lipids C=O stretching

3.2. Brain Tumour Differentiation

We next examined the ability of ATR-FTIR spectroscopy to distinguish the various brain tumour
subtypes from each other, rather than individual brain tumour subtypes from controls. We built
on our previously reported method to differentiate GBM and PCNSL [13], where RF, PLS-DA and
linear SVM were utilised and compared. The SMOTE, up and down sampling techniques were tested
to combat the imbalanced classes, and the best model for each classification (Table S2) was iterated
100 times for more reliable results. The optimum model is reported for each combination, in terms of
sensitivity, specificity and balanced accuracy, with their corresponding SD (Table 3). In each instance,
the sensitivity refers to the positive class and the specificity refers to the negative class. For example,
in the glioma vs. meningioma classifier, the sensitivity relates to glioma and the specificity is based on
the meningioma predictions.

Table 3. The results from the optimal model for each brain tumour differentiation. Sensitivity, specificity
and balanced accuracy are reported as means and standard deviations calculated over 100 resamples.

Classification (Positive
Class v Negative Class)

No. of Patients
(Positive Class/
Negative Class)

Model +
Sampling

Sensitivity (%) Specificity (%) Balanced
Accuracy (%)

Mean SD Mean SD Mean SD

Primary v Metastasis 303/210 RF + up 90.9 3.1 66.4 5.5 78.8 2.8
Glioma v Meningioma 192/111 SVM + down 70.9 5.5 81.8 6.2 76.3 4.4
GBM v Meningioma 96/111 RF + no 94.4 5.1 83.4 5.6 88.9 3.0

Metastasis v GBM 210/96 SVM + down 84.3 3.8 96.2 3.4 90.3 2.6
Metastasis v PCNSL 210/41 PLS-DA + smote 91.5 3.1 91.1 9.2 91.3 4.6

Metastasis v
Meningioma 210/111 PLS-DA + up 71.3 6.2 86.1 5.5 78.7 3.6

The classification with the largest number of patients was the primary brain tumour (n = 303)
vs. brain metastasis (n = 210). The best model that was chosen for 100 resamples was the RF with
additional up sampling, which provided a sensitivity of 90.9%. This model was evidently very capable
of detecting the primary brain tumours within the test set, and on average only missed ~9 out of
90 patients in the resampled test sets. On the other hand, the RF model struggled to detect the metastatic
brain tumours in this patient cohort, reporting a rather low mean specificity of 66.4%.

The Gini impurity metric was examined to identify the most important features within each
dataset. The accuracy and reliability of the model can be determined from the RF statistical value
outputs, with the Gini plot highlighting the main wavenumbers responsible for the results (Figure S4).
Table S3 gives an overview of the top 15 identified wavenumbers in order of importance, with their
corresponding wavenumber assignments and vibrational modes. As with the brain metastasis vs.
control results, the top two Gini values come from the lower wavenumber region around ~1050 cm−1,
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which was found to show the most discrimination between the metastatic and primary tumour samples.
The phosphate and CO stretching vibrations from nucleic material and phospholipids give rise to the
bands in this region. Stretching of the carbonyl groups in proteins and lipids make up the rest of the
top five wavenumbers. These areas of importance are closely followed by Amide I/II/III and lipidic
vibrations, as well as contributions from glycogen and carbohydrates.

The optimal results for glioma (n = 191) vs. meningioma (n = 111) were produced from a
linear SVM with down sampling, where random selections of the glioma set were removed from the
resampled training sets to have more evenly balanced classes. Down sampling has been criticised
in the field for ‘ignoring’ potentially important information, but we overcome this by resampling
the data as different random subsets of patients are removed in each iteration. Using this particular
method, the SVM model was better at predicting the meningioma patients than picking out the
gliomas, reporting a mean sensitivity of 70.2% and a mean specificity of 81.7%. A range of tumour
grades are comprised within the glioma group, with lower grade tumours including grade I pilocytic
astrocytoma, grade II astrocytomas and oligodendrogliomas, and the higher-grade gliomas dominated
by GBMs (grade IV). On average ~16 of the 57 glioma samples in the test sets were misdiagnosed as
meningioma, equivalent to a sensitivity of 70%. When the pilocytic astrocytomas, grade II astrocytomas
and oligodendrogliomas were removed in order to focus on GBM vs. meningioma, the classification
performance was greatly improved, with the sensitivity increasing to 94.4%.

One of the classifications that is of particular interest to clinicians is metastasis vs. GBM. Tumours
that transpire to be primary GBMs on histopathology can be confused radiologically with brain
metastases [14]. For the resampled SVM model, the sensitivity (metastasis) was 84.3%, and the ability
to detect GBM (specificity in this case) was 96.2%. Likewise, using PLS-DA, metastatic patients were
separated from PCNSL and meningioma patients with mean balanced accuracies of 91.3% and 78.7%,
respectively. Intriguingly, the lesser performance of the metastasis vs. meningioma model was not
wholly unexpected. From the second derivative spectra and curve fitting analysis (Figures 1 and 2), it
was noticed that their spectral signatures were relatively similar, hence a challenging classification
was anticipated.

The receiver operating characteristic (ROC) curves for each of the brain tumour differentiation
models are outlined in Figure 4. The six models have varying diagnostic ability. The GBM vs.
meningioma, and the metastasis vs. PCNSL PLS-DA models produce excellent ROC curves, achieving
AUC values >0.9. The metastasis vs. GBM linear-SVM model is also highly promising, reporting
an AUC of 0.896. Furthermore, the large cohort of primary vs. metastasis and the metastasis vs.
meningioma have AUC values ~0.85. The glioma vs. meningioma group yielded the poorest diagnostic
capability, with the lowest AUC of 0.77. The AUC values coincide with the classification results in
Table 3. Analysis of the ROC curves suggests that some of the presented models could be optimised
for clinical applications. A default probability threshold value of 0.5 was used here to distinguish
between brain tumour types. However, by varying the probability threshold that each classifier uses
to discriminate between positive and negative classes, each model could be fine-tuned to obtain the
greatest balance between sensitivity and specificity.
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Figure 4. Receiver operator curves displaying the trade-off between sensitivity and specificity for
the best model of each of the six brain tumour classifiers: primary (Pri) vs. metastasis (Met), black;
glioma (Gli) vs. meningioma (Men), blue; glioblastoma (GBM) vs. meningioma, red; metastasis vs.
GBM, green; metastasis vs. primary central nervous system lymphoma (Lym), orange; metastasis vs.
meningioma, purple.

4. Discussion

The PCA results described differences between each patient group in the Amide region, which
can be attributed to alterations in the levels of proteins. Many proteins exist as circulating markers
of inflammation and angiogenesis. For example, C-reactive protein (CRP) and vascular endothelial
growth factor (VEGF) were previously reported to be elevated in the plasma of GBM patients [30].
Likewise, various studies have highlighted serum YKL-40 as a potential blood-based biomarker for
gliomas, with levels significantly higher in GBM patients in some cases [31,32]. However, there are
currently no protein-based biomarkers used for brain tumour differentiation and a signature approach
as described here enables a full protein assay to be performed. Separation in PCA score plots was less
marked for the other tumour groups than the GBM vs. control analysis. The chemokines, cytokines
and other biomarkers that are associated with cancer exist in pg/mL concentrations in serum, and are
obscured by larger protein molecules that are present in high concentrations in both cancer and control
patients [33,34]. More robust supervised classification techniques are typically required to identify
the most salient features within such complex datasets. That being said, PCA offers an unsupervised
platform that can indicate specific regions of interest.

Through deconvolution of the Amide I bands, differences in the assignment of certain structures
were observed between patient groups. The levels of β-sheets are higher in the PCNSL group when
compared to the controls, as well as exhibiting a minor drop-off in α-helices. This is consistent
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with a previous study, which discriminated lymphoma and normal serum from mouse models [35].
In contrast, there is a decrease in the β-sheet band (~1630 cm−1) in the GBM patient group compared to
the controls, plus a minor increase in α-helix intensity (~1660 cm−1). Interestingly, the PLS1 loadings
corroborate these differences (Figure 3b); which defines the variation between the two classes where the
GBM patients are the negative cluster and the controls are the positive group, as shown in the scores
plot between PLS1 and PLS2 (Figure 3a). When considering the control set, the higher level of β-sheets
is described by the intense positive loading at ~1630 cm−1, whilst the minor increase in α-helix intensity
is observed in the large negative loading around 1660 cm−1. Similar findings have been observed
recently in a study that utilised synchrotron-based IR micro-spectroscopy to analyse human gliomas,
and which demonstrated a rise in the α-helix content while the content of β-sheets decreased with
increasing malignancy grade [36]. For the meningioma and metastasis groups, the second derivative
spectra were somewhat overlaid (Figure 1), and their deconvoluted bands also seemed to exhibit some
noticeable similarities—the intensities of the four largest bands followed the same pattern: two high
intensity α-helices at ~1658 and ~1650 cm−1, the disordered structure at ~1645 cm−1 and a β-sheet at
~1637 cm−1, with a similar intensity of ~0.25 on the absorbance scale (Figure 2d,e).

The alterations in protein secondary structures between the mean spectra of respective patient
cohorts reflect major biochemical differences in serum content associated with each tumour group.
However, blood serum is a complex medium comprised of over 20,000 proteins, which naturally
fluctuates between individuals [37]. Hence, the assumption that protein content is irrefutably consistent
within patient groups is a slight generalisation. Nevertheless, the technique offers a further insight into
the potential variances between the patient groups that have been highlighted through the loadings
from PCA and PLS analysis. Furthermore, deconvolution analysis is sensitive to the pre-processing
and second derivative parameters that are applied, and indeed these were consistent for this analysis
and there are clear differences between tumour types.

It is well recognised the systemic response of cancer impacts the patients’ spectral signatures
evident in IR spectroscopy [38,39]. In the case of primary brain tumour vs. metastasis (Figure S4),
it may be that the blood composition of the metastasis patients differs slightly from those with brain
primaries. One plausible theory is that the levels of cell-free circulating tumour DNA and RNA
(ctRNA), and circulating microRNAs (miRNA) are elevated in the bloodstream as a result of the
systemic cancer, which could account for the increase in nucleic acid-related absorbance in their spectral
serum profile [40–44]. This particular test is of great interest, as if it was possible to tell at an early stage
whether a suspected brain tumour was more likely to be a brain primary or a metastatic secondary
lesion, it would be both cost- and time-effective for the health services with primary brain tumour
patients not requiring further diagnostic body imaging. There are a variety of different metastatic
brain tumours arising from different primary cancers (e.g. breast, lung, etc.) within this population.
It could be that certain types of lesions have more spectral similarities than others, thus breaking the
cohort down into subgroups may benefit classification performance. That said, a balanced accuracy of
78.8% is respectable, and with more thorough tuning of the classification models and by modifying
the probability threshold, the sensitivity and specificity could potentially balance out. Moreover,
the accuracy could potentially improve with a larger population of metastatic patients.

Likewise, it is unclear exactly why the other glioma types were assigned to the meningioma
class, though it could potentially be due to them having a lower growth potential and mitotic activity.
This may be reflected by the systemic response to tumour grade, which could influence the respective
spectral profiles. As many of the oligodendrogliomas, astrocytomas and meningiomas range between
grade I and III, their spectroscopic signature may be more alike than the more aggressive grade IV
lesion of GBM.

5. Conclusions

In this study, we have assessed serum from patients with various brain tumours, by comparing
and contrasting their spectral signatures against each other, as well as healthy controls. GBM, PCNSL,
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meningioma and brain metastases have been successfully separated from control patients through
PLS-DA, all with sensitivities and specificities greater than 92%. Deconvolution of their respective mean
Amide I bands highlighted subtle variations in the levels of various protein secondary structures within
each tumour type. Hence, further classifications between the lesion classes were fulfilled, presenting
some very encouraging results. Despite a relatively low specificity, the primary vs. metastasis cohort
showed some initial promise, with the RF model being able to pick out 90.9% of the ‘primary’ brain
tumour samples within the resampled test sets. Most other classifiers performed remarkably well for
the brain tumour differentiations, achieving balanced accuracies around 80%. Notably, the metastasis
vs. GBM linear-SVM classifier reported an 84.3% sensitivity, a 96.2% specificity and a ROC curve
with an AUC value of ~0.9, suggesting that the model has high diagnostic capability. Due to their
similar features on MRI scans, implementing serum spectroscopy alongside imaging protocols could
help differentiate brain metastases from GBM, as well as other tumours with similar radiological
appearances, e.g., PCNSL [13,14,45].

A simple and reliable blood test that is able to differentiate a range of primary brain tumour types
from brain metastases, would lead to a paradigm shift in the clinical management of brain tumour
patients. Our findings in this study suggest this is feasible, and by using basic serum spectroscopic
analysis—despite the fact that some of our sample sets had relatively low numbers of patients—all of
the presented models achieve balanced accuracies greater than 75% (Figure S5). The ability to provide
the likely diagnosis based on a blood test, when combined with radiological assessment, would have
a major impact on the patient pathway and would facilitate more timely treatment in the hospital
care setting.

For these proof-of-concept tests to be validated, the models must be used to predict tumour type
in prospective patients already within the current diagnostic pathway, although these results indicate
the potential for a serum diagnostic tool at both the primary and hospital care stage. A reliable blood
test in primary care would initially fast-track patients who are in urgent need of referral and brain
imaging, whilst reassuring those who have a negative test result and reducing the number of patients
who would normally be sent for unnecessary brain scans. Likewise, stratification of brain tumour type
through serum spectroscopy would assist clinicians when brain scans are inconclusive and the primary
tumour type is uncertain, and furthermore would prevent patients from undergoing avoidable surgical
biopsy and/or further MRI and CT imaging. The results of our study show great potential to improve
the diagnostic pathway for patients with brain tumours.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/7/1710/s1,
Figure S1: Breakdown of the large brain cancer cohort with the number of patient samples used for the classifications,
Figure S2: (a) Principal component analysis scores plot of PC1 and PC2 displaying the variance between GBM
(blue) and healthy control (red); (b) PC1 loadings and (c) PC2 loadings describe which wavenumbers account for
the most discrimination, Figure S3: Principal component analysis scores plots displaying the biggest separation
between: healthy control (red) versus; (a) meningioma (green), (c) lymphoma (blue) and (e) metastasis (bowel:
orange rings, breast: pink rings, lung: green rings, melanoma: blue rings). Corresponding loadings plots for
the principle component that describes which wavenumbers account for the separation of; (b) meningioma,
(d) lymphoma and (f) metastasis against control, Figure S4: Gini plot outlining the most important features for
the Random Forest classification between primary (Pri) and metastasis (Met), Figure S5: Bar graph of balanced
accuracies for the differentiation of brain tumour types with their associated standard deviations, Table S1: Age
and sex information for each of the tested patient groups, Table S2: Additional information on the classification
tuning parameters, Table S3: The top 15 wavenumbers from the Random Forest classification between primary
and metastasis with tentative biochemical assignments. The column “ΣGini” is a summation of the mean decrease
in Gini for each wavenumber, over all nodes in all trees in the random forest ensemble, which suggests the regions
of highest importance.
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