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Abstract: Pharmacogenetic testing (PGT) is increasingly being used as a tool to guide clinical decisions.
This article describes the development of an outpatient, pharmacist-led, pharmacogenetics consult
clinic within internal medicine, its workflow, and early results, along with successes and challenges.
A pharmacogenetics-trained pharmacist encouraged primary care physicians (PCPs) to refer patients
who were experiencing side effects/ineffectiveness from certain antidepressants, opioids, and/or
proton pump inhibitors. In clinic, the pharmacist confirmed the need for and ordered CYP2C19 and/or
CYP2De testing, provided evidence-based pharmacogenetic recommendations to PCPs, and educated
PCPs and patients on the results. Operational and clinical metrics were analyzed. In two years,
91 referred patients were seen in clinic (mean age 57, 67% women, 91% European-American).
Of patients who received PGT, 77% had at least one CYP2C19 and/or CYP2D6 phenotype that
would make conventional prescribing unfavorable. Recommendations suggested that physicians
change a medication/dose for 59% of patients; excluding two patients lost to follow-up, 87% of
recommendations were accepted. Challenges included PGT reimbursement and referral maintenance.
High frequency of actionable results suggests physician education on who to refer was successful
and illustrates the potential to reduce trial-and-error prescribing. High recommendation acceptance
rate demonstrates the pharmacist’s effectiveness in providing genotype-guided recommendations,
emphasizing a successful pharmacist-physician collaboration.

Keywords: precision medicine; pharmacogenetics; pharmacogenomics; implementation; primary
care; internal medicine; CYP2C19; CYP2D6
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1. Introduction

The implementation of pharmacogenetics has grown in various healthcare settings, because of
advancements in technology, accumulation of evidence of genetic associations with drug response,
and increased provider and pharmacist training [1-6]. The field of pharmacogenetics focuses on the
impact of interindividual variability in drug response due to genetic variation and the usage of this
information to guide drug therapy decisions; pharmacogenetic test results can be utilized as another
tool to individualize drug therapy, similar to monitoring serum creatinine levels or drug interactions [7].
By adjusting medication therapy (i.e., selecting different drug or dose) based on genetic variants and
other patient-specific factors, pharmacogenetics aims to reduce toxicity and/or increase effectiveness of
medications to further optimize patient care [8].

Thus far, pharmacogenetic implementations have largely taken place in research hospitals [9]
or academic medical centers [10-15], which often have the financial means and access to trained
personnel necessary to facilitate pharmacogenetic testing and its integration into practice. In addition,
teaching environments foster interdisciplinary collaborations and engagement with physician
champions, two key pieces that have been shown to be essential for longevity of pharmacogenetic
services [16]. Nevertheless, pharmacogenetic implementations are not limited to research or academic
health systems [17-19]. Previous publications have described how to implement pharmacogenetic
services in various settings, focusing on required resources and ways to overcome common
challenges [16,20,21].

Regardless of setting, it is crucial for those leading pharmacogenetic implementations to understand
the evidence supporting genotype-guided therapy. To improve applicability of pharmacogenetic
test results, there are evidence-based guidelines available from consortia such as the Clinical
Pharmacogenetics Implementation Consortium (CPIC) [22] and Dutch Pharmacogenetics Working
Group (DPWG) [23]. Additionally, the Pharmacogenomics Knowledge Base (PharmGKB; available at
www.pharmgkb.org) is a resource for clinicians and researchers that contains curated data on the
influence of genetic variation on drug response, including pharmacogenetic information within the
FDA-approved drug labeling [24]. An evidence-based approach ensures that pharmacogenetic testing
is used appropriately to complement the clinical decision-making process, and in doing so, is more
likely to lead to improved patient outcomes.

In order to contribute to the evidence base of the real-world utility of clinical implementation
of genomic medicine (including pharmacogenetics) and support the development, investigation, and
dissemination of genomic medicine practice models, the National Institutes of Health-funded IGNITE
(Implementing GeNomics In pracTicE; www.ignite-genomics.org) Network was established in 2013 [25].
One of the projects within this network was led by the University of Florida (UF) Health Precision
Medicine Program [14,26], which is a multidisciplinary team of pharmacists, physicians, informaticians,
and others who have implemented multiple examples of pharmacogenetic testing into practice and
provided evidence-based pharmacogenetic guidance on drug/dose selection. Since it was established
in 2011, the Precision Medicine Program has launched six implementations across various practice areas
in inpatient and outpatient settings [14,26], largely focusing on CYP2C19 and CYP2D6 and applicable
medications. However, previous implementations did not offer face-to-face consultation between the
patient and pharmacist and were instead focused on specific therapeutic areas or medication classes
(e.g., chronic pain and CYP2D6-metabolized opioids [e.g., codeine, tramadol, hydrocodone] or depression
and certain selective serotonin reuptake inhibitors [SSRIs; all except fluoxetine]).

It was a logical next step to develop an outpatient clinic where a pharmacogenetics-trained
pharmacist could provide guidance to primary care physicians on multiple medications for various
disease states based on pharmacogenetic test results. This collaboration between a specialist pharmacist
and primary care physicians seemed like a natural fit, as evidence had shown that these physicians were
interested in pharmacogenetics but were uncomfortable utilizing these test results in clinical care [27].
On 5 September 2017, the Precision Medicine Program launched a comprehensive, referral-based
pharmacogenetics consult clinic within a UF Health internal medicine clinic. The objective of this article
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is to describe the development of this clinic, its workflow, and early implementation results, along with
challenges encountered, successes, and lessons learned during the first two years of implementation.

2. Materials and Methods

2.1. Clinic Development

Planning for the clinic implementation started about one year prior to launch. Key steps included
selecting a practice site, creating a business model, developing the clinic workflow, establishing a
collaborative practice agreement with physicians, and educating physicians and support staff.

The pharmacogenetics consult clinic was integrated into the chosen general internal medicine clinic
for several reasons. First, an ambulatory care pharmacist already had an established anticoagulation
practice at this site that was well received by the clinic physicians; we aimed to build upon that
positive, interdisciplinary relationship. Second, several physicians at that site had experience with
pharmacogenetic testing through their recent participation in a trial focused around CYP2D6 testing
for opioids in chronic pain patients [28] and were interested in expanding testing for other medications.
Third, medication utilization data (described below) collected from the selected primary care clinic
was favorable.

Due to the established infrastructure of the Precision Medicine Program, in-house testing for
CYPC19 and CYP2D6 was already available to guide prescribing of commonly used medications in
the primary care setting, such as SSRIs [29], certain opioids (i.e., codeine, tramadol, hydrocodone,
and oxycodone) [28,30], and proton pump inhibitors (PPIs) [31,32]. Health system records were queried
for the year prior to clinic launch (1 September 2015-31 August 2016) for the number of patients at
UF Health primary care clinics prescribed these medications. To aid referral volume, the goal was to
identify a primary care clinic that had a large patient population and a high proportion of patients
receiving at least one of these target medications.

Along with selecting a site to launch the clinic, a clinical workflow was created. At that time,
an existing pharmacogenetics consult clinic typically had two visits with the patient [18], and their
model was used as a guide when creating the workflow (Figure 1). The team wanted the pharmacist
to first meet with patients and complete a detailed medication and medical history to determine if
proceeding with pharmacogenetic testing would provide benefit. If testing was not indicated for
current medications, this initial visit would provide an opportunity for the pharmacist to counsel the
patient and the physician on appropriate use of testing for specific medications, increasing likelihood
of reimbursement. After the pharmacogenetic test results were available, a second, dedicated visit was
considered essential to counsel the patient on the results and implications for past, current, and/or
potential future medications.

Given the pilot nature of clinic, the visits were initially allotted 40 min, allowing up to 6 visits per
4-hour session. Since the eventual goal is to offer this clinic as a revenue-generating service, this visit
schedule would allow the pharmacist to be cost neutral at a 0.1 full-time equivalent, based on level 3
Medicare reimbursement estimates and utilizing the general internal medicine physicians as billable
providers. Despite having a business plan in place, grant funding was obtained to cover the initial
costs of pharmacogenetic testing and the pharmacist’s time in clinic (i.e., 4-hour schedule block once
weekly) while workflow procedures were optimized. A collaborative practice agreement was drafted
between the pharmacist and the supervising physicians to outline and authorize the clinical services to
be provided by the pharmacist, including ordering pharmacogenetic tests.

An additional crucial component of the clinic development was education. Prior to launch,
there were several meetings with the medical director and physicians to educate them on the types of
patients to refer (Figure 2), how to refer patients within the electronic health record (EHR), the clinic
workflow, and to solicit feedback. The pharmacist disseminated small, laminated handouts for
physicians with this education. Physicians were educated to refer patients who were experiencing
adverse and/or ineffective response to antidepressants, PPIs, and certain opioids (i.e., codeine, tramadol,
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hydrocodone, and oxycodone). However, physicians were not limited to referring patients only on
these medications (e.g., physician could refer patient on clopidogrel) or patients with current medication
issues (e.g., physician could be planning to start patient on antidepressant). Additionally, the support
staff within the internal medicine clinic were educated on clinic-specific logistics related to scheduling
and documentation.

Patient-PCP Visit

PCP refers patient to Pharmacogenetics Consult Clinic

Pharmacogenetics Consult Clinic
Patient-Pharmacist Visits

- Pharmacogenetics education - Pharmacogenetics education
- Medication reconciliation - Counseling on test results and
- Collection of current/past medication implications
responses - Implement intervention(s) - if PCP accepts
- Sample collection for pharmacogenetic pharmacist’s recommendations

testing (ifapplicable)o 9
@) -H | EE

Pathology Lab processes and analyzes sample Result interpretation and recommendations to PCP

Figure 1. Clinical workflow of the pharmacogenetics consult clinic.
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Pharmacogenetics (PGx) Consult Clinic
Considerations for Referral
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experiencing side effects or ineffectiveness
Antidepressants
Opioids
(codeine, tramadol, oxycodone, hydrocodone)
PPIs

Refer Patient: Order “Appt Req Pharmacogenetics” or REF853
Contact PGx Pharmacist: Send inbasket message to:
P RX UF PMP MONITORING

Figure 2. Educational handout provided to physicians with suggested criteria for patient referral.
2.2. Clinic Workflow

Upon referral by a general internal medicine physician, the clinical pharmacist saw patients in one
or two visits, depending on whether a pharmacogenetic test was ordered (Figure 1). During the first
visit, the pharmacist educated the patient on pharmacogenetics, discussing key concepts, and tailoring
the discussion to the patient’s current and/or past medications with pharmacogenetic implications.
An important part of this discussion was the benefits, risks, and limitations of pharmacogenetic
testing [33], to ensure that practical expectations were set and that the patient was fully informed
before making the decision to undergo testing. Next, the pharmacist took a thorough medication
and medical history, with emphasis on current and/or past medications influenced by CYP2C19
and/or CYP2Dé6 testing, including but not limited to SSRIs, PPIs, clopidogrel, CYP2D6-guided opioids
(i.e., codeine, tramadol, hydrocodone, oxycodone), and ondansetron. If the pharmacist concluded
that pharmacogenetic testing was warranted based on this discussion and the patient was agreeable,
the pharmacist collected a buccal sample from the patient for testing at the end of the visit, avoiding any
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possible delays in sample collection that often occur with off-site collection. Once grant funds for initial
pharmacogenetic tests were exhausted in February 2019, the team began billing patients’” insurance
for testing. Moving forward, at this part of the visit, the pharmacist always had a conversation with
the patient about potential max out-of-pocket cost for pharmacogenetic testing, in the event their
insurance provider did not cover the test(s). If the patient was agreeable with this cost, then the
sample was collected. In a couple cases due to lower cost or ability to test for additional genes,
the patient opted to get pharmacogenetic testing from an external commercial laboratory that met
the pharmacist’s criteria for clinical use (e.g., the laboratory was Clinical Laboratory Improvement
Amendments (CLIA) certified, the genetic variants tested and allele assignment were consistent with
in-house laboratory testing as approved by internal regulatory body, variants tested were representative
of the patient population, the laboratory’s methodology was judged to be satisfactory (including testing
for CYP2D6 copy number variation), and raw genotypes were provided). Whereas in a few cases,
patients had previous pharmacogenetic test results from a commercial laboratory, which were used to
guide treatment decisions without retesting if the laboratory met above criteria.

After the sample was collected, a courier transferred it to the in-house College of American
Pathologists (CAP)/CLIA-certified clinical laboratory (UF Health Pathology Laboratories, Gainesville,
FL, USA), where it was processed and analyzed for CYP2C19 and/or CYP2D6 variants on separate
platforms. Panel testing, which included CYP2C19 and CYP2D6, among 7 other pharmacogenes
(i.e., GatorPGx panel [34]), became available from the laboratory in July 2019. Information on the
laboratory, testing platforms, tested variants, and genotype translation are detailed in Table S1. Once the
laboratory uploaded the results into the EHR (typically <1 week later), the pharmacist wrote a note
containing an interpretation of the results and any necessary recommendations. The pharmacist
developed the recommendations by considering patient-specific factors (e.g., interacting medications,
current/past response to medications informed by CYP2C19/CYP2D6), the reason(s) for referral, and the
CYP2C19 and/or CYP2D6 result interpretation, with guidance from evidence-based, pharmacogenetic
guidelines and primary literature. Interacting medications (e.g., moderate or strong CYP2D6
inhibitors) [35] were an important consideration, as patients” predicted phenotype could have changed
due to these concomitant medications, which could lead to phenoconversion [36,37]. Phenoconversion
is a phenomenon by which an individual’s genotype-predicted phenotype is changed into another by
an environmental factor like a drug interaction [37]. For example, a patient classified as a CYP2D6
normal metabolizer based on genotype alone can phenoconvert to a poor metabolizer if he/she is
taking a strong CYP2D6 inhibitor like bupropion, fluoxetine, or paroxetine [35,36]. The pharmacist
approached phenoconversion as previously described [28] with one exception, as detailed in Table S2.
The consult note was then routed to the referring physician and if necessary, to specialists managing
one or more of the target medications. The pharmacists and physicians discussed the recommendations,
which strengthened the collaborative nature of the consult service.

When the patient returned for the second visit (typically 2—4 weeks later based on patient
availability and 4-hour once weekly clinic schedule), the pharmacist reiterated important educational
concepts from the previous visit and counseled the patient on the pharmacogenetic test results.
The pharmacist discussed how the results may impact the patient’s response to current and/or potential
future medications, as well as how the results may explain certain responses the patient had to previous
medications. Interventions were implemented at this visit if the physician had already accepted the
pharmacist’s recommendations. Patients were provided a one-page, double-sided handout with a
summary of their results, result interpretation (i.e., phenotype based on genotype alone and drug
interactions if applicable), and impacted current and potential future medications. The pharmacist
educated the patient on the importance of sharing this document with other healthcare providers,
and explained that certain medication additions, discontinuations, or dose changes could alter the
interpretation of these results [35-37]. In cases of medication changes like these, physicians could refer
patients back to the consult clinic for an additional visit to reevaluate the patient’s results with respect
to these changes. Due to the importance of face-to-face counseling offered to patients at this second
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visit, the pharmacist made every effort to see the patient in-person. In extenuating circumstances when
the patient was unable to return to clinic, the pharmacist performed the second visit via telephone.

Operational and clinical metrics were collected by the pharmacist for the 2-year timeframe
following the launch of the clinic to evaluate the feasibility, sustainability, and clinical usefulness of

the service. These metrics are listed and defined in Table 1. Data were collected in accordance with

the Declaration of Helsinki with quality improvement project approval by the University of Florida

Health Sebastian.

Table 1. Operational and clinical metrics collected by the pharmacist on the pharmacogenetics

consult clinic.

Operational Metrics

Definitions/Examples/Comments

Number of referrals by general IM physicians

Total, by month

Types of referrals by general IM physicians

e Therapeutic area(s) of medication(s) identified by the referring IM
physician as warranting drug therapy optimization with PGx (e.g.,
psychiatry, gastroenterology, pain, or combinations of these areas)

e Word of mouth (including how patient learned about the service
[e.g., family member])

Number of referred patients lost to F/U,
with reason

Example reasons: patient was unable to be contacted, patient decided
against scheduling (e.g., cost, time, transportation)

Number of patients completing one or two
visits, including reason for completion of
single visit

Example reasons for completion of only single visit:

o  PGx testing was not recommended by pharmacist

e  DPatient declined PGx testing (e.g., due to cost)

e Patient was unable to return for visit 2, therefore pharmacist
emailed them the PGx test result handout and conducted a
telephone encounter

Visit length

Approximate, in minutes

Number of patients recommended to receive
and advised against PGx testing (with reason) !

Example reasons why patients were advised against testing: patient

was responding appropriately to or not currently taking medications
with CYP2C19/CYP2D6 evidence

Number of patients with PGx tests ordered 1
including test type

Types: name of gene or assay of PGx test (e.g., CYP2C19, CYP2D6,
CYP2C19 and CYP2D6, GatorPGx panel [i.e., 9 pharmacogene panel
offered by internal lab,

Table S1])

Number of patients who refused PGx testing,
including reason !

Example reasons: cost, privacy concerns, unsure of value

Genotyping acceptance rate by patient

_ Number of patients with PGx tests ordered
~ Number of patients with PGx tests ordered+Number of patients refusing PGx testing

Number of patients with previously ordered
PGx testing !

Included whether the PGx test met internal established criteria
(described in text above) or whether the patient had to repeat testing

PGx test turnaround time

Time between sample collection and result being placed in the electronic
health record

Clinical Metrics

Definitions/Examples/Comments

Patient demographics

Age, sex, race/ethnicity

Number of patients referred for guidance on
one medication but pharmacist identified other
medications that could potentially be impacted

by CYP2C19/CYP2Dé6

Example: Of the patients referred solely for psychiatric medication
guidance, X% were taking at least one other medication that could be
impacted by CYP2C19 or CYP2D6 (X% PPI, X% CYP2D6-guided opioid,
X% clopidogrel).

° Included drug class of other medications identified, unless
gene-drug effect applied to single drug; excluded patients w/o

PGx testing
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Table 1. Cont.

Operational Metrics

Definitions/Examples/Comments

Pharmacogenetic test results

CYP2C19 and/or CYP2D6 genotype and phenotype per lab; determined
predicted phenotype based on drug interactions (Table 52)

Number of patients on moderate and/or strong
CYP2D6 inhibitor [35]

Moderate CYP2D6 inhibitor: duloxetine, mirabegron
Strong CYP2D6 inhibitor: bupropion, paroxetine, fluoxetine

Number of patients taking/planning to take 2
genotype-guided medication

Number and names of genotype-guided
medications (visit 1)

Genotype-guided medications: Current/ planned ? medications that
could be impacted by CYP2C19 and/or CYP2D6 per CPIC and/or DPWG
guidelines [23,29,30,38,39]:

. SSRIs except fluoxetine, venlafaxine, aripiprazole, PPIs, certain
opioids (i.e., codeine, tramadol, hydrocodone, oxycodone),
clopidogrel, ondansetron

e  Summarized descriptive statistics for medications, excluding
patients w/o testing

Number of patients with at least one actionable
phenotype

Actionable phenotype: Phenotype warranting change in prescribing,
dependent on gene-drug pair, as defined by CPIC and/or DPWG
[23,29,30,38,39]

Number of patients with a recommendation to
modify a dose or change a medication

Included recommendations pertaining to genotype-guided medications
and medications relating to referral type (e.g., H2 receptor antagonist for
patient referred for uncontrolled GERD/ lack of PPI effectiveness)

Number/type of recommendations

Type: New medication, alternative medication, discontinue medication,
dose change T|

_ Number of recommendations accepted by the physician
~ Number of recommendations provided to the physician

e Recommendations were considered to be accepted if there
was a dosage or drug therapy change made consistent with
the recommendation and (1) documentation within the EHR
acknowledging the recommendation or (2) in-person/ telephone/
electronic confirmation of recommendation acceptance with
the physician.

e  Excluded recommendations if patient was lost to F/U with physician
after PGx visit

Recommendation acceptance rate

CPIC: Clinical Pharmacogenetics Implementation Consortium; DPWG: Dutch Pharmacogenetics Working Group;
EHR: electronic health record; F/U: follow-up; GERD: gastroesophageal reflux disease; IM: internal medicine;
PGx: pharmacogenetic; PPI: proton pump inhibitor; SSRI: selective serotonin reuptake inhibitor; w/o: without.
! These metrics were also summarized separately once the clinic began billing for PGx testing. 2 Planned medication:
Medication that the patient is not currently taking but their physician is considering having them start or switch to
this medication (e.g., patient may be treatment naive to genotype-guided medication class or may have had history
of adverse drug reaction and/or lack of effectiveness with past use of this genotype-guided medication class).

Ferrero Office of Clinical Quality and Patient Safety. Patient characteristics were summarized
using descriptive statistics. For patients with pharmacogenetic test results, the frequency of CYP2C19
and CYP2D6 phenotypes (based on genotype alone) were compiled and compared to a reference
population of similar ancestry to the majority of the clinic patients [40-43] (i.e., European) using Fisher’s
exact test. p-values less than 0.05 were considered significant. Statistical analyses were performed
using SAS v. 9.4 (SAS Institute, Cary, NC, USA).

3. Results

3.1. Medication Utilization

In the 12 months prior to launch of the pharmacogenetics consult clinic, the internal medicine site
that was chosen to house this clinic had the largest patient base of all the queried primary care clinics;
in this time frame, 9423 unique patients were seen and nearly 60% of patients were taking at least one
target medication (Table 2).
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Table 2. Medication utilization at selected internal medicine site. -

CYP2D6-Guided Opioid (i.e., Codeine, SSRI PPI Any of These
Tramadol, Hydrocodone, Oxycodone) Medications
4015 (42.6%) 1955 (20.7%) 2985 (31.7%) 5445 (57.8%)

! Visits: 1 September 2015-31 August 2016; out of 9423 total patients seen at this site during this period.
PPI: proton pump inhibitor; SSRI: selective serotonin reuptake inhibitor.

3.2. Operational Metrics

In the first two years after clinic launch, 119 patients were referred by general internal medicine
physicians to the pharmacogenetics consult clinic (Figure 3), and of these patients, 76% were seen in
clinic and 24% were unable to be contacted or decided against scheduling. Physicians referred patients
for guidance on medications for psychiatry, gastroenterology, pain, cardiology, and/or combinations
of these medications. Over half of the patients seen in clinic were referred based on the use of
a psychiatric medication (e.g., SSRI, SNRI), followed by gastrointestinal medication (i.e., PPI) and
patient word-of-mouth (Figure 4). For the latter, patients asked their physicians to refer them after
learning about clinic via several mechanisms, including the internet (n = 2), family or friends (n = 5),
and conferences (n = 2).

18 IM provider meeting; started screening

physician schedules; increased number
16 of supervising providers
IM provider meeting;

; patient
14 case conference; offered
free physician genotyping

IM provider meeting;
expanded services to
2nd IM site; resident

12 noon conference
R One-on-one
©
= patient case
‘g 10 reviews IM provider
oc meeting;
s IM One-on-one &
F s provu_:ler patient case
‘g meeting reviews
E: I
=

6 Patient case

conference
A
N Clinic
launch
PR |
o
S N SV o S S LA ECRN TS E D NS S S PR

A F T ST ST G T TS e 0 T S

oy x?'@ Oé N (,‘?:‘(\ o & < w7 Q-@' Qé T o B < Lo Q-@z
&F o® < Qq'\,ZSQ « i S Q\,bc\" « i

Figure 3. Number of referrals by IM physicians to the pharmacogenetics consult clinic per month,
including captions of interventions taken to engage physicians and increase referrals. Similar colored
captions indicate similar interventions. Dotted line indicates trend line. IM: Internal Medicine.

Of the 91 patients seen in clinic, one-third had one face-to-face visit with the pharmacist and
two-thirds completed both visits (Figure 5). Reasons for only one visit included: pharmacogenetic
testing was not recommended, the patient declined testing due to cost, the patient had a combined
first and second visit at physician request, the patient was lost to follow-up after their first visit and
their results were mailed to them, or patients were unable to return to clinic for their second visit
(e.g., scheduling conflicts or transportation challenges) and the visit was conducted over the phone.
Typically, first visits lasted 40-60 min, whereas second visits lasted 20-30 min. Interestingly, one patient
had a third visit, as a year later they decided to undergo additional pharmacogenetic testing on a
psychotropic commercial panel containing pharmacodynamic genes (i.e., genes encoding the serotonin
transporter and a serotonin receptor), and they wanted further education on these new results.
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m Psych
Gastro
m Word of mouth
m Pain
m Psych and Gastro
m Psych and Pain
Gastro and Pain
m Cardio

Figure 4. Number of referrals to the pharmacogenetics consult clinic by referral type
(i.e., therapeutic area(s) of medication(s) identified by referring internal medicine physician as
warranting drug therapy optimization with pharmacogenetics [n = 91], based on suggested referral
criteria). Cardio: Cardiology; Gastro: Gastroenterology; Psych: Psychiatry.

Single visit: PGx testing not
recommended

Single visit: Declined PGx
testing due to cost

m Single visit: Combined visit 1
and 2 at physician request

Single visit: Lost to F/U
(mailed PGx test results)

m Single visit: Unable to return
for visit 2 (phone encounter)

B Completed both visits

Figure 5. Number of patients completing one (n = 30) or two visits (n = 61) to the pharmacogenetics
consult clinic, with reason for completion of single visit. F/U: follow-up; PGx: pharmacogenetic.

Overall, the pharmacist recommended pharmacogenetic testing for 93% (82/88) of clinic patients;
three patients had prior CYP2C19 and CYP2D6 testing performed by a commercial laboratory and based
on satisfactory evaluation by the pharmacist, testing was not repeated. The pharmacist advised against
testing for four patients who were not currently taking medications that could be guided by testing and
for two patients who were responding as expected to their medications. Of the patients the pharmacist
recommended to undergo testing, 8.5% (7/82) refused due to cost, indicating a patient genotyping
acceptance rate of 91.5% (75/82). Including patients with previous test results, seventy-eight patients
in total had pharmacogenetic testing, of which, 70% received testing for both CYP2C19 and CYP2D6,
13% for CYP2C19 only, and 3% for CYP2D6 only, while 9% underwent testing on the GatorPGx panel,
and 6% received testing via commercial laboratory assay (containing CYP2C19 and CYP2D6) (Figure 6).
For samples genotyped in the in-house clinical laboratory, the median turnaround time from sample
collection to result generation in the EHR was 5 (IQR 3-8) days for CYP2C19, 6 (IQR 4-8) days for
CYP2D6, and 4 (IQR 4-5) days for the GatorPGx panel.
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m Both CYP2C19 and CYP2D6
CYP2C19 only

m CYP2D6 only

m GatorPGX panel

m Commercial laboratory assay
(current: n=2; previous: n=3)

Figure 6. Number of patients (n = 78) with pharmacogenetic test results by gene/assay.

After billing began for pharmacogenetic testing in February 2019 until data was collected through
early September 2019, 36 patients were seen in clinic. Excluding two patients who had previous
pharmacogenetic test results from an approved commercial laboratory, the pharmacist recommended
pharmacogenetic testing for 91% (31/34) of patients, of which, 6% declined in-house testing due to cost
and opted for testing from a commercial laboratory approved by the pharmacist (and then returned for
a second visit), 23% declined any testing due to cost, and 71% underwent in-house testing.

3.3. Clinical Metrics

A total of 91 patients completed the first visit (Table 3). Mean age was 57 years, 67% were female,
and 91% were European American. Of patients referred solely for psychiatric medication guidance
who received testing, 52% (23/44) were taking at least one other medication that could be impacted by
CYP2C19/CYP2D6 (39% PPI, 18% CYP2D6-guided opioid, 9% ondansetron, 2% clopidogrel). Of patients
referred solely for PPI guidance who received testing, one-third (5/15) were taking at least one other
genotype-guided medication (20% CYP2C19-guided SSRI, 13% CYP2D6-guided opioid).

Table 3. Characteristics of the pharmacogenetics consult clinic patients.

Characteristics N=91
Age, years 57 +18
Sex, female 61 (67.0)
Race/ethnicity
European American 83 (91.2)
African American 3(3.3)
LatinX 2(2.2)
Unspecified 2(2.2)
Native Hawaiian/Pacific Islander 1(1.1)

Data are displayed as mean + standard deviation or n (%).

Of the patients tested for CYP2C19 and/or CYP2D6, 95% (74/78) were currently taking or planning
to take a medication that could be guided by at least one of these genes. Testing was ordered for
four patients who were not currently taking any medication with strong pharmacogenetic evidence,
but based on their past medical history, there was believed to be a high likelihood of them needing such
a medication in the future. As such, the pharmacist provided recommendations solely pertaining to
potential future therapies to their referring physicians. Of the 74 patients who were currently prescribed
(82%) and/or planning to start a medication (39%) that could be impacted by CYP2C19 and/or CYP2D6
(Table 1), there was a total sum of 123 genotype-guided medications (Table S3). On average, each of
these patients was prescribed or planning to start 1.7 + 0.8 genotype-guided medications (range 1 to 4).
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In comparison to population values for individuals of European ancestry [38—41], there was a
significant difference in the frequencies of CYP2D6 phenotypes (P = 0.02) and trending difference in the
frequencies of CYP2C19 phenotypes for clinic patients (P = 0.06; Table 4), both based on genotype alone.

Table 4. Frequency of CYP2C19 and CYP2D6 phenotypes in the pharmacogenetics consult clinic

patients compared to a European reference population. !

CYP2C19 Phenotype PGx Clinic Patients 2 (n = 76) European Reference Population [40,42,43]
UM 6(7.9) 47
RM 22 (28.9) 27.2
NM 23 (30.3) 39.6
™M 20 (26.3) 26.0
PM 5 (6.6) 24

CYP2D6 Phenotype PGx Clinic Patients 3 (n = 68) European Reference Population [41-43]

UM 2(2.9) 3.3
NM-UM 3(4.4) 1.1
NM 48 (70.6) 74.9
™M 6 (8.8) 7.2
PM 8 (11.8) 6.1
Indeterminate 1(1.5) 7.4

Data are displayed as n (%) or %. UM: ultra-rapid metabolizer; NM-UM: normal to ultra-rapid metabolizer;
RM: rapid metabolizer; NM: normal metabolizer; IM: intermediate metabolizer; PM: poor metabolizer;
PGx: pharmacogenetics; N/A: not applicable. ! Fisher’s exact test comparisons were made for genotype-derived
phenotypes between clinic patients and a reference population derived from Europe. 2 Fisher’s exact test, P = 0.06.
3 Fisher’s exact test, P = 0.02.

Twenty-four percent (16/68) of patients with CYP2D6 test results had a drug interaction with
a moderate and/or strong CYP2D6 inhibitor (duloxetine, n = 3; bupropion, n = 8; paroxetine,
n = 1; both duloxetine and bupropion, n = 3; both duloxetine and fluoxetine, n = 1), likely causing
phenoconversion. Overall, including CYP2Dé6 drug interactions, nearly 80% (62/78) of patients had
at least one CYP2D6 or CYP2C19 phenotype other than normal metabolizer. When considering the
patients’ specific current/planned medications that could be impacted by their CYP2C19/CYP2D6
phenotype results (including drug interactions), 77% (57/74) of patients had at least one actionable
phenotype that would make conventional prescribing of genotype-guided medications unfavorable.

The pharmacist made 64 total recommendations to physicians to modify a dose or change a
medication for 59% (46/78) of patients (Table S3). Excluding two patients who were lost to follow-up
with their physician, recommendations were provided on half of the total genotype-guided medications
(Table S3), suggesting that physicians consider starting a new (n = 17) or alternative medication (n = 16),
discontinuing a medication (n = 9), and/or making a dose change (increase [n = 13]; decrease [n = 7]).
Eighty-seven percent of recommendations (54/62) were accepted.

4. Discussion

4.1. Successes

Initial data from our clinic suggest that a pharmacist-led pharmacogenetics consult clinic within
an internal medicine setting is feasible, as demonstrated by the medication utilization data, types of
referrals, high percentage of patients recommended to receive pharmacogenetic testing, high patient
acceptance rate of testing, and reasonable test turnaround time. This type of service is also clinically
useful, as illustrated by the substantial number of patients taking additional genotype-guided
medications than indicated by referral, large percentage of patients taking/planning to take a
genotype-guided medication, significantly higher and marginally higher frequencies of CYP2D6
and CYP2C19 genotypes (respectively) than expected compared to a reference population, number of
patients with relevant drug-drug interactions resulting in probable phenoconversion, high percentage
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of patients with at least one actionable CYP2C19 or CYP2D6 phenotype, number of recommendations,
high recommendation acceptance rate, and number of word-of-mouth referrals.

First, medication utilization data showed that our chosen internal medicine clinic site had a large
patient panel (~9500 patients) and high proportion (~60%) of patients receiving at least one target
medication (i.e., SSRI, PPI, or CYP2D6-guided opioid [codeine, tramadol, hydrocodone, oxycodone]),
indicating feasibility of launching a pharmacogenetics consult clinic at that site. Second, as anticipated
based on medication utilization data and physician education on types of patients to refer, most patients
(nearly 90%) were referred for guidance on antidepressants, PPIs, and/or opioids. Over half of
referrals for clinic patients were related to a psychiatric medication (e.g., SSRI, SNRI) and 10% were
referred based on word-of-mouth. Third, the pharmacist recommended pharmacogenetic testing
for 93% of clinic patients, highlighting that our method of identifying patients who are suitable for
pharmacogenetic testing (based on their experience of side effects or lack of effectiveness while taking
certain antidepressants, opioids, and/or PPIs) is effective. Fourth, patients accepted the pharmacist’s
recommendation to undergo genotyping at an overall rate of 91% for two years and rate of 77% for the
last 6 months when patients’ insurance was billed for testing. Although possible out-of-pocket cost
of testing discouraged a quarter of patients from testing in that 6-month time frame, this rate seems
reasonable in light of the current reimbursement climate. Still, a large percentage of patients underwent
testing, enabling the pharmacist to interpret the results, provide guidance to the physician, and educate
the patient on the results face-to-face nearly 80% (62/78) of the time, followed by phone consultation
17% (13/78) of the time. Lastly, our data further suggest that a pharmacist-led pharmacogenetics
consult clinic is feasible, determined from the practical testing turnaround time (median 4-6 days),
allowing patients to return as soon as two weeks later to receive counseling on their results and
potentially have changes made to their medications in effort to optimize their treatment for depression,
anxiety, gastroesophageal reflux disease (GERD), and/or chronic pain.

Moving beyond feasibility, our data demonstrates that a pharmacist-led pharmacogenetics consult
clinic is clinically useful. A considerable number of patients were taking other genotype-guided
medications than indicated by referral, illustrating value added by the pharmacist in identifying
additional opportunities to optimize the patient’s medication regimen. One such example involved a
patient who was referred to clinic for uncontrolled depression while taking a CYP2C19-guided SSRI;
upon medication reconciliation, the pharmacist learned that the patient was taking a CYP2D6-guided
opioid as well. Furthermore, the number of patients taking other genotype-guided medications
supports the clinical utility of pharmacogene panel-based testing that includes CYP2C19 and CYP2Dé.
This corroborates the findings from a recent study led by El Rouby and colleagues, which assessed
the prevalence of drugs that can be guided by 5 pharmacogenes (i.e., CYP2C19, CYP2D6, CYP2C9,
VKORC1-1639, SLCO1B1) and opportunities for genotype-guided prescribing among patients with
percutaneous coronary intervention [44]. This investigation uncovered a high prevalence of actionable
phenotypes in the University of Florida Health cohort and a national cohort of privately insured
patients, ultimately supporting the value of panel-based pharmacogenetic testing.

In line with the value of panel-based pharmacogenetic testing, the development and
implementation of the GatorPGx panel (Table S1) was successful [34]. Our experience with ordering
and utilizing the results has been positive; the panel enables us to provide guidance on additional
medications, at a lower out-of-pocket cost to patients compared to the current cost for individual
CYP2C19 and CYP2D6 testing. Plus, unlike many commercial labs whose pharmacogenetic test results
do not interface with our EHR, these results are entered by our lab as discrete (structured) data into the
EHR, allowing our program-developed clinical decision support alerts to fire. If/when one of the clinic
patient’s physicians orders a medication for a patient whose genotype results place them at risk for
adverse effects/ineffectiveness, then a pop-up alert would briefly explain the scope of the problem and
provide recommendation(s) to the physician suggesting an alternative drug/dose [10,45].

Another measure of the clinical usefulness of our service was the large percentage (95%) of
patients taking/planning to take a medication guided by CYP2D6 and/or CYP2C19. Moreover, based on
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genotype alone, we observed significantly higher and marginally higher frequencies of CYP2D6 and
CYP2C19 genotypes, respectively, in clinic patients compared to a European reference population.
Before considering CYP2D6 drug interactions, we observed almost two times more CYP2D6 poor
metabolizers in clinic compared to the reference population, which would increase at least 2-fold more
after considering phenoconversion. Additionally, in clinic we observed 50% more CYP2C19 ultra-rapid
metabolizers and almost three times more CYP2C19 poor metabolizers compared to the reference
population. Collectively, including drug interactions, we observed a high percentage (77%) of patients
with at least one actionable CYP2C19 or CYP2D6 phenotype, which would make usual prescribing of
genotype-guided medications unfavorable. Together, the large percentage of patients taking/planning
to start a genotype-guided medication, the higher than expected genotype frequencies observed in
clinic patients, and the high percentage of patients with at least one actionable phenotype highlights
that the general internal medicine providers are correctly identifying patients to refer to clinic based on
our suggested referral criteria, emphasizing that our education on who to refer has been successful.

The pharmacist educated physicians primarily on two key aspects: (1) identifying the relevant
CYP2D6 or CYP2C19 genotype-guided medications that the patient is taking and (2) assessing whether
the patient has experienced side effects or ineffectiveness while taking one or more of those medications.
These possible medication responses (i.e., toxicity/efficacy issues) are precisely what we would expect
to see in patients with actionable phenotypes, such as increased adverse effects in a CYP2C19 poor
metabolizer who chronically takes PPIs (e.g., more frequent respiratory infections) or inadequate
response to escitalopram in a CYP2C19 ultra-rapid metabolizer. Since over half of our clinic patients
were referred for uncontrolled depression and/or anxiety or intolerable adverse effects from certain
antidepressants, we often encountered patients who had already tried or failed several antidepressants.
The high percentage of patients with at least one actionable phenotype exemplifies the potential of
pharmacogenetics to reduce trial-and-error prescribing, an approach that would prove especially
beneficial for patients with depression. A meta-analysis of five randomized clinical trials conducted
by Bousman et al. showed that patients receiving genotype-guided therapy were 1.71 times more
likely to achieve symptom remission compared to patients receiving the usual trial-and-error approach,
supporting the utility of pharmacogenetics to guide depression therapy [46].

Other data that reinforces the usefulness of the pharmacogenetics consult clinic includes our
observation of drug interactions that could alter patients’ phenotypes in nearly a quarter of patients;
this relatively high frequency of drug interactions shows the importance of considering genotype in the
context of drug interactions, something that pharmacists are uniquely trained to do, thus emphasizing
the value of pharmacists in pharmacogenetics clinics. In addition, the pharmacist made 64 total
recommendations to physicians suggesting changing a medication/dose for nearly 60% of clinic
patients, which were frequently accepted. This high recommendation acceptance rate suggests that
the general internal medicine physicians trust or rely on the expertise of the pharmacist in ordering
pharmacogenetic tests when appropriate, interpreting results, and providing sound recommendations.
The interdisciplinary collaboration between the pharmacist and primary care physicians has been
instrumental to the early success of this clinic.

Lastly, a pharmacist-led pharmacogenetics consult clinic in collaboration with general internal
medicine physicians holds the promise to improve patient care with a high level of patient satisfaction.
Several patients have told their friends and family about their positive experience, which has contributed
to word-of-mouth referrals comprising 10% of referred patients seen in clinic. This organic form of
advertising for our service illustrates patient value of receiving pharmacogenetic testing and counseling
on the implications of the results. Further, it suggests that this subset of patients who spread the word
and those who in turn sought out a referral from their physician are proactive in their healthcare,
highlighting the potential of pharmacogenetics as a tool to empower patients to become more proactive
in their own healthcare and illustrating the benefit of positive patient testimonials.
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4.2. Challenges

As anticipated, potential out-of-pocket cost of pharmacogenetic testing was a barrier we
encountered once we began billing patients’ insurance for testing. Of patients for whom
pharmacogenetic testing was recommended after billing for testing began, 6% declined in-house testing
and received testing from a commercial laboratory and nearly a quarter of patients declined any testing
due to potential out-of-pocket cost. Reimbursement data by testing indications (e.g., ICD-10 codes
for depression, anxiety, GERD) is needed to educate patients on which insurance providers are
generally reimbursing for CYP2C19, CYP2D6, and/or panel testing. Although from our experience,
these data cannot always provide answers for patients or their physicians regarding test coverage with
100% certainty. Otherwise, adequate support staff are needed to complete prior authorizations before
testing to justify medical necessity and to submit appeals for denied claims in scenarios where testing is
deemed warranted (e.g., based on current/past medication response history and past medical history).
In some cases where testing was indicated but cost was an issue for the patient, we recommended that
they proceed solely with testing for a single gene (e.g., CYP2C19) instead of testing on the GatorPGx
panel or forgoing testing altogether, based on the likelihood of the patient having an “actionable” result
for that gene (e.g., patient with uncontrolled depression was referred to clinic because they failed
escitalopram, a CYP2C19-guided SSRI) and cheaper cost.

Lastly, a continual challenge has been maintaining a steady referral rate, which has implications
for the sustainability of the clinic. We have learned that the physical presence of the pharmacist in
clinic is very important, as this visibility reminds physicians to refer patients and allows for discussion
of recent recommendations. However, in order to justify additional clinic sessions to increase the
pharmacist’s time in clinic, the referral volume would need to be higher, which presents a dilemma.
One strategy that has proven helpful to increase referrals is to conduct periodic education sessions with
the physicians, either individually or in group meetings, using that opportunity to review patient cases
from clinic. These sessions illustrate the potential clinical value of the service and remind physicians
about the types of patients to refer. Immediately after conducting these sessions, there were increases
in referrals, although these spikes were not sustained. Similar to another pharmacogenetics clinic
during its first two years [18], referrals returned close to baseline after several weeks.

In order to improve sustainability of the clinic, the pharmacogenetics-expert pharmacist and
Precision Medicine Program colleagues undertook several key measures, as shown in Figure 3.
In an attempt to increase referrals and engage physicians who had not yet referred their patients,
we offered physicians free personal pharmacogenetic testing [26,47]. The pharmacist reviewed the
results with each physician one-on-one to ensure understanding of these results and implications for
their current/potential future medications. The intent of this activity was not only to familiarize them
with the process and education that their patients receive upon result interpretation, but to illustrate
the clinical relevance and ability of these results to inform commonly prescribed medications. Secondly,
one and a half years after clinic launch, we opened up referrals to a second internal medicine clinic
that was recently established, which was also directed by our medical director (who was a champion
for our service). Additionally, we designed flyers and brochures to display in patient exam rooms,
which advertise the availability of the service directly to patients and show common medications
that can be impacted by the genes that we are testing. The aim of these flyers and brochures was to
encourage dialogue between the patient and their physician about the pharmacogenetics consult clinic,
with the goal to increase referrals.

While these advertising resources have been useful, other strategies to increase referral rates
appear to have been more effective, including pharmacist attendance at twice monthly provider
meetings and expansion of physicians’ role in clinic. First, pharmacist attendance at the provider
meetings allowed for brief discussion with the physicians about eligible patients for referral and the
pharmacist could follow-up on recommendations before/after the meeting. This meeting also served
a serendipitous purpose on a few occasions, as it provided an opportunity for several providers to
champion the service, vocalizing their and their patients’ satisfaction/excitement with our service.
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Second, we expanded physicians’ role in clinic after the service workflow had been optimized with
the two initial supervising physicians, by creating a rotating schedule of six interested attending
physicians. This schedule was utilized whenever a patient’s primary care physician was not working
at the internal medicine clinic at the time of their patient’s visit with the pharmacogenetics pharmacist.
Expansion of physicians’ role in clinic was advantageous because it allowed for increased problem
solving between pharmacist and physicians, ultimately strengthening the collaboration. One future
direction to build upon this productive collaboration could be to integrate the pharmacogenetics service
into other conventional pharmacy operations in clinical practice—i.e., this service could become an
aspect/component of anticoagulation, deprescribing consultation, prior authorization reviews, and/or
collaborative hypertension clinics.

5. Conclusions

In our experience, implementation of a pharmacist-led pharmacogenetics consult clinic in
collaboration with general internal medicine physicians was shown to be feasible, as demonstrated by
medication utilization data, high percentage of patients recommended to receive pharmacogenetic
testing, high patient acceptance rate of testing, and test turnaround time, and clinically useful to
provide guidance on commonly prescribed medications, as illustrated by the large percentage of
patients taking/planning to take a genotype-guided medication, high percentage of patients with
at least one actionable CYP2C19 or CYP2D6 phenotype, high recommendation acceptance rate,
and number of word-of-mouth referrals. In agreement with other pharmacist-led pharmacogenetics
clinics, maintaining constant referral rates is challenging, however, utilizing strategies to increase
visibility and dialogue between pharmacist and physicians can serve as a solution to increase referral
volume until more consistent approaches/models are identified to achieve sustainability. For the first
two years post clinic launch, data is currently being collected from physician notes in the EHR related
to clinic patients’ response to the pharmacist’s genotype-guided interventions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/7/2274/s1,
Table S1: Pharmacogenetic testing processes, Table S2: CYP2D6 phenotype translation, Table S3: Patients’ current
and planned medications that could be guided by CYP2C19 and CYP2D6 testing, along with number
of recommendations suggesting that physicians consider a change in medication/dose and number of
accepted recommendations.
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