Table 2.
Model No. |
Feature | Task | Dataset | External Cross-Validation | Base Model | Performance | Author/Team | Year | Country | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | Tumor Classification | 6 classes (cancer subtypes): NL/ADC/MC/SC/PC/CCTA | 717 patches | Not done | AlexNet | Accuracy—97.5% | Xu | 2017 | China | [38] |
2 | 5 classes (polyp subtypes): | 2074 patches 936 WSI | Not done | ResNet | Accuracy—93.0% | Korbar | 2017 | USA | [39] | |
NL/HP/SSP/TSA/TA/TVA-VA, | ||||||||||
3 | 3 classes: NL/AD/ADC | 30 multispectral image patches | Not done | CNN | Accuracy—99.2% | Haj-Hassan | 2017 | France | [40] | |
4 | 2 classes: NL/Tumor | 57 WSI (10,280 patches) | Not done | VGG | Accuracy—93.5%, | Yoon | 2018 | South Korea | [41] | |
Sensitivity—95.1% | ||||||||||
Specificity—92.8% | ||||||||||
5 | 3 classes: NL/AD/ADC | 27 WSI (13,500 patches) | Not done | VGG16 | Accuracy—96 % | Ponzio | 2018 | Italy | [42] | |
6 | 4 classes: NL/HP/AD/ADC | 393 WSI | Not done | CNN | Accuracy—80% | Sena | 2019 | Italy | [43] | |
(12,565 patches) | ||||||||||
7 | 3 classes: NL/AD/ADC | 4036 WSI | Not done | CNN/RNN | AUCs—0.96 (ADC) | Iizuka | 2020 | Japan | [44] | |
0.99 (AD) | ||||||||||
8. | 2 classes: NL/Tumor | 94 WSI, | Done using 378 DACHS data | ResNet18 | AUC > 0.99 | Kather | 2019 | Germany | [45] | |
370 TCGA-KR, | ||||||||||
(60,894 patches) | ||||||||||
378 TCGA-DX, | ||||||||||
(93,408 patches) | ||||||||||
9 | Tumor Microenvironment Analysis | Classification, Segmentation and Detection: EC/IC/FC/MC | 21,135 patches | Not done | DCRN/R2U-Net | Classification | Alom | 2018 | USA | [46] |
F1-score—0.81 | ||||||||||
AUC—0.96 | ||||||||||
Accuracy—91.1% | ||||||||||
Segmentation | ||||||||||
Accuracy—92.1% | ||||||||||
Detection | ||||||||||
F1 score—0.831 | ||||||||||
10 | Detection of immune cell CD3+, CD8+ |
28 WSI IHC | Not done | FCN/LSM/U-Net | FI score—0.80 Sensitivity—74.0% Precision—86 |
Swiderska-Chadaj | 2019 | Netherland | [47] | |
11 | Detection and classification EC/IC/FC/MC |
853 patches & 142 TCGA images |
Not done | CNN |
Detection Accuracy—65% Classification Accuracy—76 % |
Shapcott | 2019 | UK | [48] | |
12 | Classification of 9 cell types ADI, BAC, DEB, LYM, MUC, SM, NL, SC and EC |
86 WSI (100,000) NCT&UMM | Not done | VGG19 | Accuracy—94–99% | Kather | 2019 | Germany | [20] | |
13 | Prognosis Prediction | 5-year disease-specific survival | 420 TMA | Not done | LSTM | AUC—0.69 | Bychkov | 2018 | Finland | [49] |
14 | Survival predictions | 25 DACHS WSI | Not done | VGG19 | Accuracy—94–99% | Kather | 2019 | Germany | [20] | |
862 TCGA WSI | ||||||||||
409 DACHS WSI | ||||||||||
15 | MSI predictions | 360 TCGA- DX (93,408 patches) 378 TCGA- KR (60,894 patches) |
Done using 378 DACHS data | ResNet18 | AUC TCGA-DX—0.77 TCGA-KR—0.84 |
Kather | 2019 | Germany | [45] |
NL, normal mucosa; ADC, adenocarcinoma; MC, mucinous carcinoma; SC, serrated carcinoma; PC, papillary carcinoma; CCTA, cribriform comedo-type adenocarcinoma; HP, hyperplastic polyp; SSP, sessile serrated polyp; TSA, traditional serrated adenoma; TA, tubular adenoma; TVA, tubulovillous adenoma; VA, villous adenoma; WSI, whole slide images; TCGA, The Cancer Genome Atlas; DACHs, Darmkrebs Chancen der Verhütung durch Screening; ResNet, residual network architecture; VGG, visual geometry group; AD, adenoma; CNN, convolution neural network; RNN, recurrent neural network; AUC, area under the curve; IHC, immunohistochemistry; TMA, tissue microarray; EC, epithelial cell; SC, stromal cells; DCNN, deep convolution neural network; MCC, Matthew correlation coefficient; MC, miscellaneous; DCRN, densely connected recurrent convolutional network; R2U-Net, recurrent residual U-Net; FCN, fully convolutional networks; IC, inflammatory cell; FC, fibroblast cell; ADI, adipose; BAC, background; DEB, debris; LYM, lymphocytes; MUC, mucus; SM, smooth muscle; LSM, locality-sensitive method; LSTM, long short-term memory; MSI, microsatellite instability.