Skip to main content
. 2020 Jul 13;12(7):1884. doi: 10.3390/cancers12071884

Table 2.

Characteristics of the deep-learning models according to tumor classification, tumor microenvironment analysis, and prognosis prediction of colorectal cancers using pathologic image analysis.

Model
No.
Feature Task Dataset External Cross-Validation Base Model Performance Author/Team Year Country Ref.
1 Tumor Classification 6 classes (cancer subtypes): NL/ADC/MC/SC/PC/CCTA 717 patches Not done AlexNet Accuracy—97.5% Xu 2017 China [38]
2 5 classes (polyp subtypes): 2074 patches 936 WSI Not done ResNet Accuracy—93.0% Korbar 2017 USA [39]
NL/HP/SSP/TSA/TA/TVA-VA,
3 3 classes: NL/AD/ADC 30 multispectral image patches Not done CNN Accuracy—99.2% Haj-Hassan 2017 France [40]
4 2 classes: NL/Tumor 57 WSI (10,280 patches) Not done VGG Accuracy—93.5%, Yoon 2018 South Korea [41]
Sensitivity—95.1%
Specificity—92.8%
5 3 classes: NL/AD/ADC 27 WSI (13,500 patches) Not done VGG16 Accuracy—96 % Ponzio 2018 Italy [42]
6 4 classes: NL/HP/AD/ADC 393 WSI Not done CNN Accuracy—80% Sena 2019 Italy [43]
(12,565 patches)
7 3 classes: NL/AD/ADC 4036 WSI Not done CNN/RNN AUCs—0.96 (ADC) Iizuka 2020 Japan [44]
0.99 (AD)
8. 2 classes: NL/Tumor 94 WSI, Done using 378 DACHS data ResNet18 AUC > 0.99 Kather 2019 Germany [45]
370 TCGA-KR,
(60,894 patches)
378 TCGA-DX,
(93,408 patches)
9 Tumor Microenvironment Analysis Classification, Segmentation and Detection: EC/IC/FC/MC 21,135 patches Not done DCRN/R2U-Net Classification Alom 2018 USA [46]
F1-score—0.81
AUC—0.96
Accuracy—91.1%
Segmentation
Accuracy—92.1%
Detection
F1 score—0.831
10 Detection of immune cell
CD3+, CD8+
28 WSI IHC Not done FCN/LSM/U-Net FI score—0.80
Sensitivity—74.0%
Precision—86
Swiderska-Chadaj 2019 Netherland [47]
11 Detection and classification
EC/IC/FC/MC
853 patches &
142 TCGA images
Not done CNN Detection
Accuracy—65% Classification
Accuracy—76 %
Shapcott 2019 UK [48]
12 Classification of 9 cell types
ADI, BAC, DEB, LYM, MUC, SM, NL, SC and EC
86 WSI (100,000) NCT&UMM Not done VGG19 Accuracy—94–99% Kather 2019 Germany [20]
13 Prognosis Prediction 5-year disease-specific survival 420 TMA Not done LSTM AUC—0.69 Bychkov 2018 Finland [49]
14 Survival predictions 25 DACHS WSI Not done VGG19 Accuracy—94–99% Kather 2019 Germany [20]
862 TCGA WSI
409 DACHS WSI
15 MSI predictions 360 TCGA- DX
(93,408 patches)
378 TCGA- KR
(60,894 patches)
Done using 378 DACHS data ResNet18 AUC
TCGA-DX—0.77
TCGA-KR—0.84
Kather 2019 Germany [45]

NL, normal mucosa; ADC, adenocarcinoma; MC, mucinous carcinoma; SC, serrated carcinoma; PC, papillary carcinoma; CCTA, cribriform comedo-type adenocarcinoma; HP, hyperplastic polyp; SSP, sessile serrated polyp; TSA, traditional serrated adenoma; TA, tubular adenoma; TVA, tubulovillous adenoma; VA, villous adenoma; WSI, whole slide images; TCGA, The Cancer Genome Atlas; DACHs, Darmkrebs Chancen der Verhütung durch Screening; ResNet, residual network architecture; VGG, visual geometry group; AD, adenoma; CNN, convolution neural network; RNN, recurrent neural network; AUC, area under the curve; IHC, immunohistochemistry; TMA, tissue microarray; EC, epithelial cell; SC, stromal cells; DCNN, deep convolution neural network; MCC, Matthew correlation coefficient; MC, miscellaneous; DCRN, densely connected recurrent convolutional network; R2U-Net, recurrent residual U-Net; FCN, fully convolutional networks; IC, inflammatory cell; FC, fibroblast cell; ADI, adipose; BAC, background; DEB, debris; LYM, lymphocytes; MUC, mucus; SM, smooth muscle; LSM, locality-sensitive method; LSTM, long short-term memory; MSI, microsatellite instability.