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Methods: Fifteen patients from 12 families with inherited retinal disorder (IRD) and
harboring GUCY2D variants were ascertained from 730 Japanese families with IRD.
Comprehensive ophthalmological examinations, including visual acuity (VA) measure-
ment, retinal imaging, and electrophysiological assessment were performed to classify
patients into three phenotype subgroups; macular dystrophy (MD), cone-rod dystrophy
(CORD), and Leber congenital amaurosis (LCA). In silico analysis was performed for the
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Results: The median age of onset/examination was 22.0/38.0 years (ranges, 0-55 and
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Introduction

Inherited retinal disorder (IRD) is a leading cause
of blindness,' and includes disorders such as retinitis
pigmentosa (RP), cone/cone-rod dystrophy (CORD),
macular dystrophy (MD), Stargardt disease (STGD),
Leber congenital amaurosis (LCA) and others.! ® IRD
is characterized by heterogeneity both in the clinical
and genetic aspects, with different inheritance patterns,
including autosomal dominant (AD), autosomal reces-
sive (AR), X-linked, and mitochondrial inheritance.”°
Significant clinical and genetic overlap is well-known
in the spectrum of IRD, and diverse clinical pheno-
types, including CORD, MD, STGD, RP, and LCA,
can manifest as a result of pathogenic variants in a
single gene (e.g., ABCA4, BESTI, PRPH2, RPGR,
CRX, GUCY2D, RSI, POCIB, PROMI, CNGA3,
CNGB3).2-37:8:10-18

GUCY2D, denoted as guanylate cyclase 2D
(OMIM: 600179), is located on 17p13.1 and contains
20 exons and encodes one of the two retinal membrane
guanylyl cyclase isozymes expressed in photorecep-
tors.!”-?" Retinal membrane guanylyl cyclase isozymes
synthesize the intracellular messenger of photore-
ceptor excitation, cyclic guanosine monophosphate,
which is regulated by the intracellular Ca’*-sensor
proteins of guanylate cyclase-activating proteins.!®2¢
RetGCs and guanylate cyclase-activating proteins
are responsible for the Ca’" -sensitive restora-
tion of cyclic guanosine monophosphate levels
after the light activation of the phototransduction
cascade.?®

A locus and gene for LCA was first mapped
and identified as GUCY2D (LCAIl) in 1995 and
1996.1%-27 Since then, more than 200 variants in the
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fundus (40.0%). There were 11 patients with generalized cone-rod dysfunction (78.6%),
two with entire functional loss (14.3%), and one with confined macular dysfunction
(7.1%). There were nine families with ADCORD, one with ARCORD, one with ADMD, and
one with ARLCA. Ten GUCY2D variants were identified, including four novel variants
(p.Val56GlyfsTer262, p.Met246lle, p.Arg761Trp, p.Glu874Lys).

Conclusions: This large cohort study delineates the disease spectrum of GUCY2D-RD.
Diverse clinical presentations with various severities of ADCORD and the early-onset
severe phenotype of ARLCA are illustrated. A relatively lower prevalence of GUCY2D-RD
for ADCORD and ARLCA in the Japanese population was revealed.

Translational Relevance: The obtained data help to monitor and counsel patients,
especially in East Asia, as well as to design future therapeutic approaches.

GUCY2D gene have been associated with a wide range
of different phenotypes of IRDs.”!?:20:28-3% Sharon
et al. reported that 88% of GUCY2D-associated
retinal disorder (GUCY2D-RD) is AR-LCA, whereas
pathogenic heterozygous missense GUCYZ2D variants
cause AD-CORD.? In that, pathogenic GUCY2D
variants are one of the major causes of LCA, as well as
a major cause of AD-CORD.?® Recently, Stunkel et al.
identified five patients with AR congenital night blind-
ness caused by biallelic GUCY2D variants, which may
slowly progress to mild retinitis pigmentosa.*’ Thus,
AR-LCA, AD-CORD, and AR congenital night blind-
ness are the main clinical presentations of GUCY2D-
RD.

Studies of GUCY2D-RD have been conducted
separately for each phenotype, such as CORD or
RP/LCA; thus, it has been hard to comprehensively
understand the disorder with diverse clinical manifes-
tations and different modes of inheritance. To grasp the
whole picture of GUCY2D-RD, large cohort studies
with standardized clinical and genetic investigations for
IRD in total are required.

The purpose of this study was to characterize the
clinical and molecular genetic features of GUCY2D-
RD in a large nationwide cohort of Japanese subjects
diagnosed with IRD.

The protocol of this study followed the tenets of
the Declaration of Helsinki. Informed consent was
obtained from all affected subjects and unaffected
subjects after explanation of the nature and possi-
ble consequences of the study. This research was
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approved by the Institutional Review Board of the
National Institute of Sensory Organs, National Hospi-
tal Organization Tokyo Medical Center (Reference
R18-029).

Participants from the Japan Eye Genetics
Consortium Study

Participants with a clinical diagnosis of IRD
and available genetic data by whole-exome sequenc-
ing (WES) were studies between 2008 and 2018
as part of the Japan Eye Genetics Consor-
tium Study (JEGC studies; http://www.jegc.org/)
conducted in collaboration of 38 institutes all over
Japan.*! A total of 1294 subjects from 730 families
were reviewed, including 30 families with AD-
CORD/MD/STGD (defined as families with clear AD
family history) and 41 families with AR or sporadic
LCA.

Clinical Examinations

A detailed history was obtained in all affected
subjects and unaffected family members (where avail-
able). The onset of disease was defined as the
age when any visual symptom was first noted by
patients or parents or when the subject was first
diagnosed. The duration of disease was defined as
the time between the onset of disease and the latest
examination.

Comprehensive ophthalmological investigations
were performed, including measurements of the best-
corrected decimal visual acuity (BCVA) converted to
the logarithm of the minimum angle of resolution
(LogMAR) units, ophthalmoscopy, fundus photogra-
phy, fundus autofluorescence (FAF) imaging, spectral-
domain optical coherence tomography (SD-OCT),
visual field testing, and electrophysiological assess-
ments mainly according to the international standards
of the International Society for Clinical Electrophysi-
ology of Vision.#>#

Phenotype Subgroup

For the purpose of this study, the phenotype
subgroup was defined based on clinical findings such
as disease onset, symptoms, natural course, affected
part on retinal imaging, the pattern of retinal dysfunc-
tion, and the history and phenotype of affected family
members, partially according to the previous report!?:
LCA (including early-onset RP), a severe retinal
dystrophy with early onset (<10 years) and complete
loss of retinal function; RP (including rod-cone dystro-
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phy), a progressive retinal dystrophy initially often
affecting the peripheral retina with generalized rod
dysfunction; CORD, a progressive retinal dystro-
phy initially often affecting the macula with gener-
alized cone dysfunction; MD, a progressive retinal
dystrophy presenting macular atrophy with confined
macular dysfunction despite no abnormal general-
ized retinal function; and SNB, a stationary night
blindness presenting congenital or early-onset night
blindness, often affecting generalized rod function
despite essentially normal visual acuity (VA) and no
atrophy.

GUCY2D Variant Detection

Genomic DNA was extracted from affected subjects
and unaffected family members (where available for
cosegregation analysis). WES with target analysis of
301 retinal disease-associated genes (RetNET) was
performed based on the previously published method
and through the Phenopolis platform.*-4¢ The identi-
fied variants were filtered with the allele frequency (less
than 1%) of the Human Genetic Variation Database
(HGVD), which provides the allele frequency of the
general Japanese population. Depth and coverage for
the target exons were examined with the integrative
Genomics Viewer.

Disease-causing variants were determined from the
detected variants in the 301 retinal-disease-associated
genes, considering the clinical findings of the affected
subjects, the pattern of inheritance in the pedigree, and
the results of cosegregation analysis.

In Silico Molecular Genetic Analysis

Sequence variant nomenclature was performed
according to the guidelines of the Human Genome
Variation Society (HGVS). The allele frequency of all
detected GUCY2D variants in the HGVD, Integra-
tive Japanese Genome Variation (iIJGVD 2k), the
1000 Genomes Project, and the genome Aggregation
Database (gnomAD) was established according to the
previous method.*!

All detected GUCY2D variants were analyzed
with the following prediction programs; Mutation-
Taster, FATHMM, SIFT, PROVEAN, and PolyPhen-
2. Evolutional conservation scores were calculated
for all detected GUCY2D variants by the UCSC
database. Pathogenicity classification of all detected
GUCY2D variants was performed based on the guide-
lines of the American College of Medical Genetics and
Genomics.’
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Pedigrees of 12 Japanese families with inherited retinal disorder harboring GUCY2D variants. The solid squares and circles (men

and women, respectively) represent the affected subjects and the white icons represent the unaffected family members. The slash symbol
indicates deceased individuals. The generation number is noted on the left. The proband is marked by an arrow; the clinically investigated

individuals are indicated by a cross.

Participants

Fifteen affected subjects from 12 families with a
clinical diagnosis of IRD and harboring GUCY2D
variants were ascertained. The detailed demographic
features and summarized genetic results are provided
in Table 1, and the pedigrees of 12 families are shown
in Figure 1.

All affected and unaffected subjects were Japanese,
and any mixture with other ethnicity was not reported.
There were four families with clear AD family history
(4/12, 33.3%; families 4-7), and eight sporadic families
with no affected family members than the proband
(8/12, 66.7%; families 1-3, 8-12). There were four
families with unknown familial information (families 3,
9, 11, 12). Consanguineous marriage was not reported
in any of the 12 families.

There were five affected females (5/15, 33.3%) and
10 affected males (10/15, 66.7%). The median age at

the latest examination of the 15 affected subjects was
38.0 years (range, 1-73).

Onset, Chief Complaint, and Visual Acuity

The median age of onset and duration of disease
of the 12 affected subjects with available records was
22.0 years (range, 0-55), and 11.5 years (range, 1-40),
respectively.

Four subjects had childhood-onset of 15 years or
earlier (4/12, 33.3%; patients 1, 2, 7, 13). Later onset of
disease (45 years or later) was reported in one subject
(1712, 8.3%; patient 15).

Reduced visual acuity/poor visual acuity was
reported as a chief complaint at the initial visit in 12
of 14 affected subjects with available records (12/14,
85.7%; patients 1, 2, 4-9, 12-14,15), one with photo-
phobia (1/14, 7.1%; patient 11), and one with night
blindness (1/14, 7.1%; patient 3).

The median BCVA in the right and left eyes of the 12
affected subjects with available records was 0.80 (range,
0.00-1.52) and 0.70 (range, 0.10-1.52) LogM AR units,
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Fundus photographs and fundus autofluorescence images of 14 patients with GUCY2D-associated retinal disorder (GUCY2D-RD;

patients 2-15). Fundus photographs and fundus autofluorescence (FAF) images of the right eyes demonstrated macular atrophy in seven
affected subjects (patients 4,5, 7,9, 10, 12, 13) with intrachoroidal cavitation in three subjects (patients 5, left; 10, left; 13) and slight fine dots
at the macula in two subjects (patients 4, 9). Atrophic change at the posterior pole extending to the periphery was observed in patient 7 and
subtle diffuse disturbance at the posterior pole with vessel attenuation was found in patient 7. Normal fundus appearance was noted in five
subjects (patients 1, 2, 6, 8, 14). Patient 11 had essentially normal retinal appearance except for optic disk cupping. The atrophic changes
were more evident on FAF images. A loss of AF signal at the macula was identified in five subjects (patients 5, 7, 10, 12, 13). Increased AF
signal at the macula was observed in five subjects (patients 2, 4, 6, 8, 11). A patchy area of decreased AF signal at the posterior pole extending
to the periphery surrounded by a ring of increased AF signal was found in patient 7.

respectively. One of the two subjects with unavailable
LogMAR VA testing had nystagmus (patient 1). Four
subjects of 13 with available records had relatively
favorable VA (4/13, 30.8%, patients 2, 6, 8, 11; 0.22 or
better LogMAR units in the better eye), five subjects
had intermediate VA (5/13, 38.5%, patients 4, 9, 10, 14,
15; between 0.22 and 1.0 LogMAR units in the better
eye), and four subjects had poor VA (4/13, 30.8%;
patients 3, 5, 7, 13; 1.0 or worse LogMAR units in the
better eye).

Retinal Imaging and Morphological Findings

Fundus photographs were obtained in 14 affected
subjects (patients 2—15), and FAF images were available
in 12 affected subjects (patients 2, 4-13, 15). A descrip-
tion of funduscopy was available in one subject (patient
1). The representative images are presented in Figure 2,
and the detailed findings are described in Table 2.

Macular atrophy was identified in seven affected
subjects (7/15,46.7%; patients 4, 5,7,9, 10, 12, 13), with
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intrachoroidal cavitation in three subjects (patients 5,
10, 13) and slight fine dots at the macula in two subjects
(patients 4, 9). Atrophic change at the posterior pole
extending to the periphery was observed in one subject
(1/15, 6.7%; patient 7). Subtle diffuse disturbance at the
posterior pole with vessel attenuation was found in two
subjects (2/15, 13.3%; patients 3, 15). Normal fundus
appearance was noted in five subjects (5/15, 33.3%;
patients 1, 2, 6, 8, 14). One subject had a normal retinal
appearance except for optic disk cupping (1/15, 6.7%,
patient 11).

The retinal atrophy at the macula was more evident
on FAF images, and the loss of AF signal at the macula
was identified in five subjects (5/12, 41.7%, patients 5,
7, 10, 12, 13). Increased AF signal at the macula was
observed in five subjects (5/12, 41.7%; patients 2, 4,
6, 8, 11), one of whom showed subtle fine dots at the
macula and the other four subjects had no abnormal
findings at the macula on fundus photography. One
subject showed patchy areas of decreased AF signal
at the posterior pole extending to the periphery (1/12,
8.3%; patient 7).

SD-OCT images were obtained in 14 affected
subjects (patients 2—-15), and the representative images
are presented in Figure 3. One subject had an epireti-
nal membrane (patient 3, right). Outer retinal disrup-
tion at the fovea and/or parafovea was identified in six
subjects (6/14, 42.9%; patients 5, 7, 9, 10, 12, 13), three
of whom showed intrachoroidal cavitation (patients 5,
left; 10, left; 13). A relatively preserved photoreceptor
ellipsoid zone (EZ) line at the fovea was found in six
subjects (6/14, 42.9%; patients 2, 3, 6, 8, 11, 15), one of
whom showed outer retinal disruption at the parafovea
(patient 3).

Visual Fields and Electrophysiological
Findings

The detailed findings of visual fields and electro-
physiological assessments are described in Table 3.
Visual field testing was performed in nine affected
subjects (patients 2, 4-9, 12, 13), with Goldmann
perimetry (seven subjects) and Humphrey visual field
analyzer (four subjects). Central scotoma was detected
in eight subjects (8/9, 88.9%; patients 4-9, 12, 13) and
paracentral scotoma was observed in all nine subjects
(9/9; 100%). Peripheral visual loss was found in four
subjects (4/9, 44.4%; patients 2, 5-7).

Full-field electroretinograms were recorded in 14
affected subjects (patients 2-9, 11-15). Multifocal
ERGs (mfERGs) were recorded in three subjects
(patients 4, 6, 11), and focal macular ERGs (FMERGS)
were obtained in one subject (patient 15).
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Undetectable light-adapted (LA) responses were
demonstrated in seven subjects (7/14, 50.0%; patients
1-3, 5, 7, 11, 13), with undetectable dark-adapted
(DA) responses in two subjects (patients 1, 3), severely
decreased DA responses in two subjects (patients 2,
7), moderately decreased DA responses in one subject
(patient 13), and mildly decreased DA responses in
two subjects (patients 5, 11). Severely decreased LA
responses were identified in four subjects (4/14, 28.6%;
patients 6, 8, 12, 14), with moderately decreased
DA responses in one subject (patient 12) and mildly
decreased DA responses in three subjects (patients 6,
8, 14). Moderately decreased LA responses with mildly
decreased DA responses were shown in one subject
(1/14, 7.1%; patient 9). Mildly decreased LA responses
with normal DA responses were found in one subject
(1/14, 7.1%; patient 4). Normal responses both in LA
and DA conditions were noted in one subject (1/14,
7.1%; patient 15). A lower b-to-a ratio (ratio of b wave
to a wave for dark-adapted bright flash responses was
less than 0.9) was observed in three subjects (3/14,
21.4%; patients 5, 11, 14). Reduced central responses
were detected by mfERG in three subjects (patients 4,
6, 11), and reduced central focal responses were demon-
strated by FMERGsS in one subject (patient 15).

Generalized entire loss of function was identified
in two subjects (2/14, 14.3%; patients 1, 3), general-
ized cone rod dysfunction was found in 11 subjects
(11/14, 78.6%; patients 2, 4, 5-9, 11-14), and confined
macular dysfunction was noted in one subject (1/14,
7.1%; patient 15).

Phenotype Subgroups

Phenotype subgroup classification was performed
in all 15 affected subjects. There were 13 subjects with
CORD (13/15, 86.7%; patients 2—14), one with MD
(1/15, 6.7%; patient 15), and one with LCA (1/15, 6.7%;
patient 1). There were no subjects with RP or SNB.

The mean age of onset of the 13 subjects with
CORD/one with MD/one with LCA was 20.0 (range,
0-41)/55/0 years, with the mean duration of disease of
14.7 (range,0-40)/1.0/16.0 years, respectively. The mean
VA for eyes with CORD/MD was 0.73 (range, 0.00-
1.52)/0.52 in LogMAR units.

There were two severe CORD subjects with poor
VA and severe retinal dysfunction (patients 3, 7), six
moderate CORD subjects with intermediate severity
of VA or retinal function (patients 2, 4, 5, 9, 13, 14),
and three mild CORD subjects with relatively favorable
VA and relatively preserved generalized rod function
(patients 6, 8, 11). Two subjects with CORD were
unavailable for severity assessment because of unavail-
able VA or electrophysiological data.
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Patient 2, CO Patient 7,CORD, 6-III:1
[c.238_. 252de| p. A80 _L84del];[c.G2620A, p.E874K] [c. G2513A p.R838H]

Patient 8, CORD, 7-II:5
[c.G2513A, p.R838H]

Patient 3,CORD, 3-1I:7
[c.C2281T, p.R761W]

Patient 9, CORD, 7-11:3

Patient 4 , CORD, 4-Ill:1
[c.G2513A, p.R838H]

[c.C2512T, p.R838C]

Patient 10, CORD, 7-1:2

Patient 5,CORD, 4-II:2
[c.G2513A, p.R838H]

[c.G2513A, p.R838H]

Patient 6,CORD, 5-1II:5

Patient 11, CORD, 8-1I:2
[c.G2513A, p.R838H] atient 11, ,

[c.G2513A, p.R838H]

Figure 3.
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Patient 12, CORD, 9-11I:3
[c.G2521A, p.E841K]

' "{k ”‘ﬂ w\m\\ W\

e

Patient 13, CORD, 10-112
[c.G2704T, p.VA02L]

Patient 14, CORD, 11-12
[c.T2747C, p.1916T]

Patient 15, MD 12-1:5
[c.T2747C, p.1916T]

Spectral-domain optical coherence tomographic images of 11 patients with GUCY2D-RD (patients 2, 3, 6-11, 13-15). Spectral-

domain optical coherence tomography of the right eye demonstrated outer retinal disruption at the fovea in six subjects (patients 5, 7, 9,
10, 12, 13) and at the parafovea in six subjects (patients 3, 5, 7, 10, 12, 13) with intrachoroidal cavitation in one subject (patient 13, right).
A relatively preserved photoreceptor ellipsoid zone (EZ) line at the fovea was found in six subjects (patients 2, 3, 6, 8, 11, 15), one of whom
showed outer retinal disruption at the parafovea (patient 3). One subject had an epiretinal membrane (patient 3).

GUCY2D Variants

The variant data of 15 affected and seven
unaffected subjects from 12 families are summa-
rized in Table 4. Ten GUCY2D variants were identi-

fied in the heterozygous state: c.167_168delTG,
p-Val56GlyfsTer262; c.238_252del, p.Ala80_Leu84del;
¢.738G>C, p.Met246lle; ¢.2281C>T, p.Arg761Trp;
c.2513G>A, p.Arg838His; ¢.2512C>T, p.Arg838Cys;
c.2521G>A, p.Glu841Lys; ¢.2620G>A, p.Glu874Lys;
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Table 4. Summary of Detected Variants of 15 Affected and 7 Unaffected Subjects from 12 Families with GUCY2D-

RD
Affected/
Family ID Subject ID Unaffected Exon Nucleotide and Amino Acid Changes State
1(MUO0T) 1-11:2 (patient 1) Affected 2 ¢167_168delTG, p.Val56GlyfsTer262 Heterozygous
3 ¢.738G>C, p.Met246lle Heterozygous
2 (TMCO01) 2-11:2 (patient 2) Affected 2 ¢.238_252del, p.Ala80_Leu84del Compound
heterozygous
14 ¢.2620G>A, p.Glu874Lys
2-1:1 Unaffected 14 ¢.2620G>A, p.Glu874Lys Heterozygous
2-1:2 Unaffected 2 ¢.226_240del, p.Ala76_Ala80del Heterozygous
3 (NUO01) 3-1I.7 (patient 3) Affected 12 ¢.2281C>T, p.Arg761Trp Heterozygous
4 (KDUO1) 4-11:1 (patient4)  Affected 13 c2512C>T, p.Arg838Cys Heterozygous
4-11:2 (patient 5) Affected 13 c2512C>T, p.Arg838Cys Heterozygous
4-11:1 Unaffected 13 c2512C>T, p.Arg838Cys ND
5 (GU01) 5-111:5 (patient 6) Affected 13 ¢.2513G>A, p.Arg838His Heterozygous
6 (TMC02) 6-1ll:1 (patient 7) Affected 13 ¢.2513G>A, p.Arg838His Heterozygous
7 (Juo1) 7-1I:5 (patient 8) Affected 13 ¢.2513G>A, p.Arg838His Heterozygous
7-11:3 (patient 9) Affected 13 ¢.2513G>A, p.Arg838His Heterozygous
7-1:2 (patient 10)  Affected 13 ¢.2513G>A, p.Arg838His Heterozygous
8 (JU02) 8-11:2 (patient 11)  Affected 13 ¢.2513G>A, p.Arg838His Heterozygous
(de novo)
8-1:2 Unaffected 13 ¢.2513G>A, p.Arg838His ND
8-1:1 Unaffected 13 ¢.2513G>A, p.Arg838His ND
9 (KDUO02) 9-1ll:3 (patient 12)  Affected 13 ¢.2521G>A, p.Glu841Lys Heterozygous
10 (TMC03)  10-lI:2 (patient 13)  Affected 14  ¢c.2704G>T, p.Val902Leu Heterozygous
(de novo)
10-1:2 Unaffected 14  ¢.2704G>T, p.Val902Leu ND
10-1:1 Unaffected 14  ¢.2704G>T, p.Val902Leu ND
11 (NU02) 11-1I:2 (patient 14)  Affected 14 c2747T7>C, p.lle916Thr Heterozygous
12 (MUO02) 12-1I:5 (patient 15)  Affected 14  c2747T7>C, p.lle916Thr Heterozygous

GUCY2D transcript ID: NM_000180.3
ND, not detected
Novel variants are shown in italic.

Whole-exome sequencing with targeted analysis for retinal disease-causing genes on RetNET (https://sph.uth.edu/retnet/)
was performed in 15 affected and 7 unaffected subjects from 12 families.

c.2704G>T, p-Val902Leu; and
p.11e916Thr (NM_000180.3).

There were eight missense variants, one with a 2-
bp deletion leading to a frame shift, and one with
an in-frame deletion. Three variants were identi-
fied in multiple families: p.Arg838Cys (families 4, 5),
p.Arg838His (families 6-8), and p.I1e916Thr (families
11, 12). Intrafamiliar cosegregation analysis was
performed in five families (families 2, 4, 7, 8, 10),
and the de novo (patient 11, p.Arg838His; patient
10, p.Val902Leu), compound heterozygous (patient
2; p.Ala80_Leu84del, p.Glu874Lys), and heterozy-
gous (patient 4, p.Arg838Cys; patient 8, p.Arg838His;
patient 11, p.Arg838His) states were confirmed.

c.2747T>C,

GUCY2D-RD caused by six detected variants has
been reported before: CORD for p.Ala80_Leu84del’;
ADCORD for p.Arg838His;***® ADCORD for
p.Arg838Cys,”3*  ADCORD for p.Glu841Lys,*
ADCORD for p.Val902Leu,?® ADCORD for
p.11e916Thr.??> Four variants have never been reported;
p.Val56GlyfsTer262, p.Met246lle, p.Arg761Trp, and
p.Glu874Lys.

In Silico Molecular Genetic Analysis

The detailed results of in silico molecular genetic
analyses for the 10 detected GUCY2D variants are


https://sph.uth.edu/retnet/
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Homo sapiens

Mus _musculus
Rattus_norvegicus
Xenopus_tropicalis
Macaca mulatta

Canis lupus familiaris
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Figure4. Multiple alignment of eight species of GUCY2D. The alignment was performed with the Clustal Omega program (https://www.ebi.
ac.uk/Tools/msa/clustalo/) and the amino-acid-sequence alignment was numbered in accordance with the Homo sapiens GUCY2D sequence
(ENST00000254854.4). *Complete conservation across the eight species. The positions of eight missense variant residues are highlighted
with gray background: p.Met246lle, p.Arg761Trp, p.Arg838His, p.Arg838Cys, p.Glu841Lys, p.Glu874Lys, p.Val902Leu, and p.lle916.

presented in Supplementary Tables S1 and S2. A Seven variants are located in exons 12-
schematic genetic and protein structure of GUCY2D 14  (p.Arg761Trp, p.Arg838His, p.Arg838Clys,
and multiple alignments of eight species of GUCY2D p.Glu841Lys, p-Glu874Lys, p-Val902Leu,
are shown in Figures 4 and 5. p.11e916Thr), which are presumably associated
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Figure 5.

A schematic genetic and protein structure of GUCY2D and the location of the detected variants. The GUCY2D gene

(ENST00000254854.4) contains 20 exons that encode a protein containing an extracellular domain, transmembrane domain, kinase-like
domain, dimerization domain, catalytic domain, and others (Lazar et al., 2014). The 10 variants detected in this study are presented. The four
novel variants are shown: p.Val56GlyfsTer262, p.Met246lle, p.Arg761Trp, and p.Glu874Lys.

with the dimerization domain in the GUCY2D
protein, and the other missense variant was
in exon 3, which is associated with the extra-
cellular domain (Fig. 4). Complete evolution-
ary conservation was confirmed in six missense
variants (p.Met246lle, p.Arg838His, p.Arg838Clys,
p.Glu841Lys, p.Glu874Lys, p.Val902Leu) and
relatively high conservation was found in two variants
(p-Arg761Trp, p.1le916Thr) (Fig. 5).

The allele frequency available for three
GUCY2D variants (p.Ala80_Leu84del, p.Arg761Trp,
and p.Arg838Cys) in the East Asian/South
Asian/African/European  (non-Finnish)  general
population  was  0.0%/0.000055%/0.00085%/0.0%,
0.0%/0.0%/0.0%/0.000045%, and
0.0%/0.0%/0.0%/0.0%,  respectively. All detected
GUCY2D variants were not found in the general
Japanese population according to the HGVD and
1IJGVD databases.

General prediction, functional prediction, and
conservation were assessed for the 10 GUCY2D
variants, and the pathogenicity classification accord-
ing to the American College of Medical Genetics
and Genomics guidelines was pathogenic for the
four missense variants (p.Arg838His, p.Arg838Clys,
p.Glu841Lys, p.Val902Leu); likely pathogenic for the
truncating variant, the in-frame deletion variant,
and the missense variant (p.ValS6GlyfsTer262,
p.Ala80_LeuS4del, p.Ile916Thr, respectively); and

uncertain significance for the three missense variants
(p.Met246lle, p.Arg761Trp, p.Glu874Lys).

Overall, 10 disease-causing variants in the GUCY2D
gene were ascertained in nine families with ADCORD,
one family with ARCORD, one family with MD, and
one family with ARLCA. Together with the clinical
features of the affected subjects and the models of
inheritance in the pedigree, 10 disease-causing variants
in the GUCY2D gene were determined.

The detailed clinical and genetic characteristics of
a cohort of 15 affected subjects from 12 families
with GUCY2D-RD are illustrated in a nationwide
cohort with IRD in Japan. Different clinical presenta-
tions were identified with different inheritance patterns,
including ADCORD with various severities, severe
ARLCA, severe ARCORD, and mild ADMD.

To our knowledge, this large cohort of GUCY2D-
RD patients includes the highest number of ADCORD
patients to date. Four of 30 families (13.3%) with AD-
CORD/MD/STGD in the JEGC IRD cohort were
associated with ADGUCY2D-CORD. The propor-
tion of GUCY2D-RD in molecularly confirmed AD-
CORD/MD/STGD in the JEGC cohort was 27.2%
(6/22 families). In a previous report of a Chinese
cohort, Jiang et al. reported nine unrelated probands
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with GUCY2D-RD ascertained from 74 probands with
CORD (9/74, 12.2%) and seven of 15 ADCORD
families had GUCY2D-RD (7/15, 46.7%).” The
proportion of GUCY2D-RD in molecularly confirmed
ADCORD was 34.6% in a UK cohort and 29.4% in
a French cohort.>* Given these results, the preva-
lence of GUCY2D-RD for CORD in Japan was
not as high as that in other populations in Asia or
Europe; however, GUCY2D-RD is amajor cause of the
ADCORD.

One family with ARLCA was ascertained from 41
families with AR or sporadic LCA in the JEGC cohort
(1/41 families, 2.4%). The proportion of GUCY2D-
RD for molecularly confirmed LCA in the JEGC
cohort was 5.3% (1/19 families). Hosono et al. reported
two families with ARLCA in 34 Japanese families
with LCA (2/34, 5.9%).%¢ In previous reports of
Chinese cohorts, Wang et al. reported the prevalence
of GUCY2D-RD as 10.7% (14/131 LCA families), and
Xu et al. reported the prevalence as 10.7% (17/159
LCA families).*>>° In European cohorts, GUCY2D-
RD accounts for approximately 10% to 20% of LCA.*
These findings imply the low prevalence of ARLCA in
the Japanese population, although data from a larger
cohort of ARGUCY2D-LCA patients are still to draw
conclusions.

In the present study of Japanese GUCY2D-RD,
there were no patients with SNB. There was one
12-year-old subject with night blindness, favorable
VA, normal fundus, and compound heterozygous
GUCY2D variants (patient 2). These findings were
consistent with the spectrum of SNB; however, this
subject demonstrated undetectable generalized cone
function with severely decreased rod function, which is
not compatible with the striking ERG features of SNB
(undetectable rod responses with identical traces for a
single cone and DA bright flash ERGs).*

Thirteen affected subjects from nine families
with molecularly confirmed GUCY2D-associated
ADCORD demonstrated various findings, in terms
of onset (0-41 years), the duration of disease (0-
40 years), VA (0.0-1.52) in LogMAR units, fundus
appearance (normal to extended atrophy, without/with
intrachoroidal cavitation), and morphological finding
(EZ preservation at the fovea to outer retinal disrup-
tion at the macula and paramacula); however, ocular
symptoms such as reduced VA/poor VA, photophobia,
and the pattern of dysfunction in electrophysiology
with early involvement of generalized cone function
were commonly shared.

Several reports have described patients with
COD/CORD showing a coloboma-like macular
atrophy caused by pathogenic variants in several genes,
such as NMNATI1,>"52 ADAM9,” GUCAIA,>* and
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GUCY2D.> In the present study, an intrachoroidal
cavitation resembling coloboma-like macular atrophy
was presented in three subjects bilaterally or unilat-
erally. Poor visual acuity was observed in the eyes
with intrachoroidal cavitation; thus, this strik-
ing finding implies severe central visual loss. The
mechanism that causes the coloboma-like macular
atrophy/intrachoroidal cavitation remains uncertain.

All eight subjects with normal or subtle changes
demonstrated generalized retinal dysfunction (patients
2-4, 6, 8, 9, 11, 14), which is crucial to make
a clinical diagnosis of GUCY2D-RD. Interestingly,
a lower b-to-a ratio in dark-adapted bright flash
responses was identified in three subjects (3/14,
21.4%). This electronegative finding is also observed
in the early stage of other CORD and may not
be specific for GUCY2D-RD.!!~13:16:56 These findings
are consistent with previous reports of ADGUCY2D-
CORD.?-3%:37.38  Therefore, comprehensive clinical
investigations, including electrophysiological assess-
ments, are essential for the diagnosis and monitoring
of GUCY2D-RD.

Ten GUCY2D variants were identified in our
cohort, including six previously reported and four
novel variants. Six pathogenic and three likely
pathogenic variants have been previously reported, and
the phenotype subgroups determined in our cohort
were compatible with those of the previous reports,
whereas the phenotype subgroup for p.11e916Thr in
our cohort was MD, and the phenotype subgroup for
this variant in the previous report was CORD. Two
variants (p.Arg838His, p.Val902Leu) were found in the
de novo state in our cohort (patients 11, 13), and these
variants were also identified as de novo in the previous
report.’!-* Because haplotype analysis around these
variants was not performed, the possibility of the
nonpaternity cannot be formally excluded in these
families (families 8, 10). Therefore, it is more precise to
describe these variants not found in parents as “most
likely de novo.” A different inheritance pattern of
ADCORD was described for p.Ala80_Leu84del in the
previous report’; however, the detailed information of
the parents of the proband was not shown. Thus, the
disease causation by this variant, in our case with AR
inheritance (patient 2), is still unclear.

Four novel GUCY2D variants were found in our
cohort: one variant with likely pathogenic frameshift
(p.Val56GlyfsTer262) and three variants of uncertain
significance (p.Met246lle, p.Arg761Trp, p.Glu874Lys).
Two variants in the compound heterozygous state
(p.Val56GlyfsTer262, p.Met246lle) were found in a
subject with ARLCA (Patient 1). Because there
are no candidate variants for the other ARLCA-
associated genes, the putative causation of these
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two GUCY2D variants is predicted. One missense
variant (p.Arg761Trp) was found in a subject with
night blindness, normal fundus, relatively preserved
foveal structure, and a loss of generalized retinal
function. Although there were no candidate variants
causative for ARRP, ARCORD, and ARLCA, further
detailed analyses with more samples/information of
the other family members are required to decide the
conclusive genetic diagnosis. Another missense variant
(p.Glu874Lys) was identified with the aforementioned
in-frame deletion variant (p.Ala80_Leu84del) in a
subject with ARCORD (patient 2). Given the clinically
examined unaffected mother harboring this variant
(p.Glu874Lys), the possibility that the disease was
caused by this variant in an AR manner cannot be
excluded.

This study has several limitations. The selection
bias related to disease severity is inherent because it is
uncommon for genetically affected subjects with good
vision to visit clinics or hospitals. The resources of
clinical information or genomic DNA from unaffected
family members are limited in our cohort, and it was
hard to conclusively determine the inheritance pattern
in most families. Further information on clinical and
genetic assessment both in affected and unaffected
subjects could improve the accuracy of clinical inher-
itance, as well as molecularly confirmed inheritance.

The data of the current study were obtained from
the JEGC IRD database. The clinical data from
patients registered from multiple institutions were
uploaded into the database and shared among the
JEGC study group. However, the examination devices
used at the different institutions could have been differ-
ent because the diagnostic criteria and monitoring
methods were shared. It is of note that the informa-
tion was collected retrospectively, and that some of
the interpatient variability may be due to differences
in methods of testing patients in different institutions.
Therefore, a detailed quantitative analysis could not be
performed.

WES with targeted analysis applied in the current
study could miss the disease-causing variants in the
genes outside of the target (301 retinal disease-
associated genes) and structural variants, including
large deletions in the target region. More compre-
hensive gene screening and analysis by methods such
as long-read whole-genome sequencing could help to
determine the genetic aberrations, including structural
and noncoding variants, in our cohort. The molecu-
lar mechanisms of some AD missense, AR missense,
and AR in-frame deletion variants have not yet been
clarified, and further functional investigation for each
variant is required to draw concludes on the disease
causation.
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In conclusion, this nationwide large cohort study
delineates the clinical and genetic characteristics of
GUCY2D-RD, including nine ADCORD families,
one ARCORD family, one MD family, and one
ARLCA family. Diverse clinical presentations with
various severities were demonstrated in ADCORD,
and an early-onset severe phenotype was shown in
ARLCA. A relatively low prevalence of GUCY2D-RD
for ADCORD and ARLCA in the Japanese population
was identified compared to the other populations. This
information helps to monitor and counsel patients,
especially in East Asia, as well as to design future thera-
peutic approaches.
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