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Abstract

Gram-negative bacteria of the human gastrointestinal (GI) tract microbiome: (i) are capable of 

generating a broad-spectrum of highly neurotoxic, pro-inflammatory and potentially pathogenic 

molecules; and (ii) these include a highly immunogenic class of amphipathic surface glycolipids 

known as lipopolysaccharide (LPS). Bacteroides fragilis (B. fragilis), a commensal, Gram 

negative, non-motile, non-spore forming obligatory anaerobic bacillus, and one of the most 
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abundant bacteria found in the human GI tract, produces a particularly pro-inflammatory and 

neurotoxic LPS (BF-LPS). BF-LPS: (i) is known to be secreted from the B. fragilis outer 

membrane into the external-medium; (ii) can damage biophysiological barriers via cleavage of 

zonula adherens cell-cell adhesion proteins, thereby disrupting both the GI-tract barrier and the 

blood-brain barrier (BBB); (iii) is able to transit GI-tract barriers into the systemic circulation and 

cross the BBB into the human CNS; and (iv) accumulates within CNS neurons in 

neurodegenerative disorders such as Alzheimer’s disease (AD). This short communication 

provides evidence that the incubation of B. fragilis with aluminum sulfate [Al2(SO4)3] is a potent 

inducer of BF-LPS. The results suggest for the first time that the pro-inflammatory properties of 

aluminum may not only be propagated by aluminum itself, but by a stimulation in the production 

of microbiome-derived BF-LPS and other pro-inflammatory pathogenic microbial products 

normally secreted from human GI-tract-resident microorganisms.

GRAPHICAL ABSTRACT—Gram-negative bacteria such as B. fragilis of the human 

gastrointestinal (GI) tract microbiome generate pro-inflammatory glycolipids known as 

lipopolysaccharide (LPS) and other neurotoxic species, and are amongst the most pro-

inflammatory molecules known. Incubation of aluminum sulfate [Al2(SO4)3] with B. fragilis in 

culture resulted in a significant increase in the release of LPS.
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Overview

The human gastrointestinal (GI)-tract contains a complex and dynamic microbiome 

consisting primarily of anaerobic, Gram-negative bacteria, with archaea, fungi, microbial 

eukaryotes, protozoa, viruses, and other microorganisms making up the remainder [1–5]. 

Together with human host cells the GI-tract microbiome comprises an entire community of 

interacting biological entities referred to as the meta-organism where symbiotic associations 

and microbiome-host interactions are critical to human health and disease [5–12]. These 

disorders include lethal, progressive, age-related, inflammatory neurodegenerative disorders 

of the human CNS such as Alzheimer’s disease (AD) [3–13].

Of the 52 currently recognized divisions of bacteria, humans have co-evolved with just 2 

dominant phyla: Bacteroidetes, representing about ~24% of all human GI-tract resident 

bacteria, and Firmicutes (~72%), with Actinobacteria (~3%), Proteobacteria (~1%) and 

Verrucomicrobia (~0.1%) making up the remainder [1–4,9]. These four major bacterial 

phyla represent the ‘bacterial-core’ of the human GI-tract microbiome [1–4,9–15]. The vast 

majority of all GI-tract microbiota consists of Gram-negative anaerobic bacteria, and 

Bacteroidetes species represent the most abundant Gram-negative anaerobes, outnumbering 

Escherichia coli (E.coli) in abundance by about 100 to 1 in some parts of the GI-tract [1–

5,11–15]. Certain strains of Bacteroidetes species such as Bacteroides fragilis (B. fragilis), 
as a normal commensal microbe of the human GI-tract, are thought to be ordinarily 

beneficial to human health due to their multiple capabilities: (i) to biosynthesize useful 

metabolic co-factors and products such as polysaccharides, transport proteins, volatile fatty 

Alexandrov et al. Page 2

J Inorg Biochem. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acids and other nutrients [9–11]; (ii) to cleave dietary fiber into digestible short-chain fatty 

acids (SCFAs) that include acetate, propionate, and butyrate [9,10,15]; (iii) to function in the 

maintenance, development and homeostasis of the host-immune system [15–19]; (iv) to 

support immunomodulation and protection against pathogens including potentially 

pathogenic GI-tract bacteria [9,15]; and (v) to support glucose homeostasis [9,20,21]. 

However, when stressed, B. fragilis release an extensive and complex array of highly 

neurotoxic, pro-inflammatory and potentially pathogenic molecules that promotes the 

establishment in the GI-tract microbiome of bacterial dysbiosis [3,6,7,23,24–29]. Secreted 

neurotoxins of B. fragilis comprise six major classes of secreted molecules and include, in 

order of abundance, lipopolysaccharide (LPS), lipooligosaccharide (LOS; consisting of 

smaller versions of full sized LPS), bacterial amyloids, endotoxins (such as fragilysin), 

exotoxins, and small non-coding RNA (sncRNA) [5–8,23–26] (Figure 1 and 2). The most 

prevalent non-spore forming, Gram-negative GI-tract bacterial phylum, Bacteroides, makes 

up around one quarter of the cells in a typical Western GI-tract microbiome; these cells 

harbor as much as ~250 mg of LPS, making BF-LPS one of the highest-abundance 

microbial-derived amphipathic, neurotoxic molecules in the human GI-tract [11,16,26–31]. 

LPS, also known as lipoglycan, bacterial endotoxin, bacterial sugar-lipid or glycolipid, are 

50–100 kDa self-aggregating, thermostable components consisting of a lipid and a 

polysaccharide composed of an O-antigen, an outer core and an inner core covalently linked, 

and are the most densely-packed surface molecules found within the outer membrane of 

Gram-negative bacteria (Figure 1). Typically LPS stimulates the release of tumor necrosis 

factor alpha (TNFα), interleukin-1β (IL-1β), gamma interferon (IFNγ), interleukin 8 (IL-8), 

CXC ligand 8 (CXCL8) and other inflammatory cytokines and chemokines in various cell 

types, leading to an acute inflammatory response towards these bacterial molecular 

pathogens, which in the host orchestrates a robust anti-infectious, innate-immune response 

[22,25–33].

The neurobiological effects of environmentally abundant, neurotoxic metals on the growth 

and behavior of Gl-tract resident bacteria such as B. fragilis and their secreted 

lipopolysaccharides such as BF-LPS and other neurotoxic exudates are not well understood 

and incompletely characterized. In this communication we report for the first time the 

significant induction of BF-LPS by aluminum (sulfate). Interestingly, the pro-inflammatory 

effects of aluminum [26–28] may be supplemented via the actions of aluminum-induced 

neurotoxic glycolipids such as BF-LPS which along with fragilysin are known: (i) to disrupt 

normal bio-physiological barriers [26,30–33]; and (ii) to stimulate innate-immune signaling 

and support the pro-inflammatory neurodegeneration of central nervous system (CNS) 

tissues [26–30].

Bacteroides fragilis (B. fragilis; ATCC 23745; American Type Culture Collection, Manassas 

VA, USA) [26,2934] were propagated in ATCC® Medium 1490 (modified chopped meat 

medium; www.atcc.org/~/media/85260BB7A69A4640A5BB1042498807E4.ashx; https://

www.atcc.org/~/media/EB141471E3D04ED9B6E940B3A505BE4C.ashx; last accessed 7 

October 2019) under anaerobic conditions at 37°C (under Biosafety Level 2; BSL-2; https://

www.vumc.org/safety/basics-biosafety-level-2; last accessed 7 October 2019) using either 

broth tubes or blood agar plates according to the supplier’s instructions [ATCC; ATCCusers/
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downloads/ 23745%20(1).pdf; last accessed 7 October 2019] and as previously described 

[26,31–35]; ATCC Medium 1490 was supplemented with degassed solutions containing 

metal sulfates [Na2SO4; MgSO4; In2(SO4)3; Ga2(SO4)3; or aluminum sulfate [Al2(SO4)3]; 

see details below] and made up to 0 (control), 50, 100 and 500 nM using sodium-, 

magnesium-, indium-, gallium- or aluminum-sulfate in ultrapure water (Invitrogen-

ThermoFisher Scientific UltraPure™ DNase/RNase-Free Distilled Water; cat no. 10977015 

or equivalent); these cultures were incubated anaerobically at 37°C for 48 hrs with or 

without metal sulfate additives; total fragilysin, LPS, bacterial amyloid and sncRNA were 

isolated as previously described, and/or characterized by our group or our collaborators, or 

were purchased from commercial sources for use as control markers [4–8,34–37]. Cultures 

of B. fragilis were incubated in parallel with aluminum sulfate [Al2(SO4)3; ultrapure reagent 

~99.99 %; CAS Number 10043–01-3; Sigma-Aldrich 202614, St Louis MO, USA; https://

www.sigmaaldrich.com/catalog/product/aldrich/202614?

lang=en&region=US&gclid=EAlalQobChMIIathY244wIV6R-Bh1niQ6DEAMYASAAEg 

JkffDBwE; last accessed 7 October 2019] or sodium sulfate (Na2SO4; anhydrous, granular, 

free-flowing, Redi-Dri™, ACS reagent, >99.9%; CAS Number 7757–82-6; Sigma Aldrich 

1066370500); magnesium sulfate (MgSO4; anhydrous, ReagentPlus™, >99.5%; CAS 

Number 7487–88-9; Sigma Aldrich M7506); indium sulfate [In2(SO4)3; CAS Number 

304655–87-6; Sigma Aldrich 288721]; gallium sulfate [Ga2(SO4)3; >99.9%; CAS Number 

13494–91-2; Sigma Aldrich 254207; last accessed 7 October 2019] as metal sulfate controls. 

Stock solutions of 0.1 to 0.5 M of these metal sulfates were made up in ultrapure water and 

added to the ATCC® B. fragilis incubation Medium 1490 to a ambient concentration of 0 

(control), 50, 100 and 500 nM; virtually identical results were obtained when stock metal 

sulfate solutions were directly added to B. fragilis cultures. LPS was extracted from B. 

fragilis according to established standard methods hot phenol-water methods or as 

previously described with some modifications [34–37]; alternately LPS was purchased from 

commercial sources and used according to the supplier’s instructions (LPS L8–274; Sigma 

Aldrich; https://www.sigmaaldrich.com/Graphics/COfAInfo/SigmaSAPQM/SPEC/L8/

L8274/L8274-BULKSIG MA.pdf). All protein concentrations were quantified using a Qubit 

Fluorometric Protein Assay Kit (Cat Number Q33212; sensitivity 12.5 μg/ml to 5 mg/ml) 

and/or by using antibodies specific for LPS, fragilysin, bacterial amyloid and sncRNA 

according to the supplier’s instruction and as previously described [4–8,14,26,30–37].

As mentioned earlier, the human Gl-tract microbiome-resident Gram-negative bacillus B. 
fragilis produces a notable assortment of soluble neurotoxins that are shed from the bacterial 

surface into their immediate environment (Figure 1 and 2); all of these Gl-tract 

microbiome-derived neurotoxins, and especially LPS, were found to be induced by nM 

levels of aluminum sulfate in B. fragilis cultures; for example in B. fragilis cultures just 50 

nM aluminum sulfate after 24 hrs increased BF-LPS to levels 8.1-fold over control and the 

results are highly significant (Figure 3). Four other monovalent-, divalent- or trivalent-metal 

sulfates - sodium sulfate (Na2SO4), magnesium sulfate (MgSO4); indium sulfate [In2(SO4)3] 

or gallium sulfate [Ga2(SO4)3] displayed an inability to induce BF-LPS to the extent 

observed with aluminum sulfate [Al2(SO4)3] addition at any concentration tested. 

Interestingly: (i) the increase in BF-LPS abundance at 50 nM aluminum sulfate is not 

linearly proportionate to increases in LPS at 100 nM and 500 nM aluminum sulfate 
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suggesting that the system may become rapidly saturated at the relatively lower 

concentrations of applied aluminum sulfate; (ii) an excess of aluminum sulfate added may 

be reacting with other components of the system under study; and (iii) at higher 

concentrations of aluminum sulfate (~100 nM and 500 nM) in this experimental test system 

other B. fragilis-secreted neurotoxins become induced above basal levels and the results are 

again highly significant (Figure 3). For example, at 500 nM [Al2(SO4)3] the neurotoxins 

LPS, fragilysin, bacterial amyloid and sncRNA were increased, respectively to 13.5-fold, 

2.1-fold, 4.5-fold and 3.5-fold over control (Figure 3). While aluminum itself is pro-

inflammatory, as measured by its ability to induce the pro-inflammatory transcription factor 

NF-kB (p50/p65) complex and up-regulate pathogenic microRNAs (miRNAs) such as 

miRNA-146a that support inflammation [25,28], aluminum-mediated induction of LPS and 

other neurotoxins such as LPS, fragilysin, bacterial amyloid and sncRNA may also 

contribute to the pro-inflammatory actions of aluminum-sulfate in the human GI-tract and 

the CNS [25–28]. Aluminum-induced up-regulation of microbiome-derived LPS may also 

contribute to systemic inflammation, a potential precursor to the development of AD 

[17,45,46,50], however this pathological mechanism is not well understood and requires 

additional study (Figure 3).

One of the highest abundance Gram-negative bacteria-derived neurotoxins in the human 

microbiome, BF-LPS, is also the most abundant pro-inflammatory glycolipid in the human 

GI-tract [11,14,16,26,27,31,29,36–39] (Figure 1 and 2). Besides BF-LPS, B. fragilis also 

secretes neurotoxins in less abundance and these include the metalloproteinase fragilysin, a 

variety of different types of bacterial amyloid and sncRNA, as well as other as yet poorly 

characterized secreted microbial molecules [5–9,11,26,33,38], (Figure 2). Both BF-LPS 

shed from the exterior membrane surface of and the B. fragilis endotoxin fragilysin have 

been shown to cleave the zonula adherens protein, E-cadherin and thus disrupt normally 

homeostatic biophysiological membrane barriers [11–14,16–18,26,38,39]. When secreted 

neurotoxins of enterotoxigenic strains of B. fragilis leak through normally protective bio-

physiological-mucosal barriers they can cause substantial inflammatory pathology 

systemically that can contribute to significant mortality and morbidity [38,39]. Dietary 

intake of fiber may have a determining role in regulating the composition, organization and 

stoichiometry of the GI-tract microbiome; for example Bacteroidetes species proliferate in 

porcine models fed high-fat diets that are deprived of sufficient dietary fiber and the 

presence of aluminum may potentiate these effects [38,40; unpublished observations]. 

Interestingly, based on the evolution of the NF-kB (p50/p65) pro-inflammatory transcription 

factor, BF-LPs has been recently shown to be the most inflammation-inducing glycolipid 

compared to TNFα, Aβ40 peptide, Aβ42 peptide, IL-1β, the combination of Ap42 peptide 

and IL-1β together or E. coli LPS (EC-LPS) [26]. Importantly, aluminum may represent an 

important ingested dietary factor capable of inducing pro-inflammatory signaling in the 

human GI-tract, systemic circulation and CNS via the initial up-regulation of neurotoxic 

glycolipids such as BF-LPS.

Lastly, aluminum is a pervasive neurotoxic element in our biosphere that is being 

increasingly mobilized both into our environment and into multiple aspects of our daily life 

through the air, the food we eat and the water we drink [42–45]. This is well above and 
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beyond the contribution of alum [as KAl SO4 2 ⋅ 12H2O4 ] added to drinking water supplies 

worldwide to produce a clear, ‘finished’ water product [42–45]. Aluminum sulfate-induced 

up-regulation of LPS and other bacterial-derived neurotoxins may make a significant 

contribution: (i) via selective cadherin cleavage to biophysiological barrier disruption to 

allowing other neurotoxins access via systemic circulation into CNS compartments [11–

14,16–19,39]; (ii) towards systemic inflammation, sometimes referred to as a precursor to 

inflammatory neurodegenerative diseases such as AD [45–51]; (iii) to the accumulation of 

pro-inflammatory LPS within the human brain parenchyma and neuronal cytoplasm [5–

8,49–52]; and/or (iv) to the LPS-mediated disruption of homeostatic genetic activities 

involving brain gene transcription in CNS neurons [4–8;48–53]. Ingested aluminum 

particularly over the long term might contribute chronically to AD-type change and promote 

AD as a disease transformation rather than a disease state where epigenetics may play a role 

in both cause and eventual treatment [54–56]. If dietary aluminum crosses GI-tract barriers 

to access aluminum-sensitive Gram-negative bacterial species such as B. fragilis, to produce 

increased amounts of BF-LPS, aluminum may ultimately increase LPS abundance in the 

systemic circulation and eventually cross the BBB into the CNS (57–62). There is recent 

evidence that LPS: (i) can both disrupt and transverse the BBB to gain access to the brain 

parenchyma, associate with senile plaques (characteristic lesions of the AD brain) and 

interact with the nuclear envelope of neurons [6,8,48,49,52,60,61]; (ii) functions to increase 

blood-brain barrier permeability to Thioflavin-S (MW ~319), to 14C-sucrose (MW ~342) 

and to 99mTc-albumin (MW 66,500)’ in experimental mouse models [59,60]; and (iii) this 

suggests that LPS-mediated BBB-disruption may allow the entry of other pathogenic GI-

tract-derived neurotoxins such as fragilysin (MW ~20,600), LOS (MW <10,000), bacterial 

amyloid (CsgA-His; MW~13,900), and/or sncRNA (MW~14,100) into the brain. We 

speculate that combinations of environmentally abundant metals or other ingested ‘dietary’ 

factors which stimulate the profusion of neurotoxins derived from anaerobic Gram-negative 

bacteria and other constituents of the GI-tract microbiome may significantly contribute to 

the initiation, development and/or propagation of inflammatory neurodegeneration and 

related neurological disease processes with an inflammatory component.
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Abbreviations

AD Alzheimer’s disease

BBB blood brain barrier

BF Bacteroides fragilis (B. fragilis)

BF-LPS LPS from B. fragilis

CNS central nervous system

GI gastrointestinal

LOS lipooligosaccharide

LPS lipopolysaccharide

miRNA microRNA

NF-kB (p50/p65) nuclear factor for kappa B p50/p65 subunit

sncRNA small, non-coding RNA
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HIGHLIGHTS

• the human gastrointestinal (GI)-tract microbiome contains an abundance of 

Bacteroides fragilis;

• Bacteroides fragilis generates pro-inflammatory glycolipid lipopolysaccharide 

(BF-LPS); aluminum sulfate [Al2(SO4)3] significantly induces the generation 

of BF-LPS;

• this may contribute to human systemic inflammation and neuro-inflammatory 

disease.
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FIGURE 1 - 
Typical structure and organization of an anaerobic Gram-negative bacterial cell membrane 

and its containment of a lipopolysaccharide (LPS) coated surface (purple and red spheres); 

the two horizontal layers include an external (outer) and an internal (inner) membrane, both 

layers contain both integral (gray) and transmembrane (beige) globular proteins; the 

membranes are separated by an interwoven peptidoglycan layer and a periplasmic space; 

transmembrane protein complexes such as porin that transverse the inner membrane 

facilitate molecular communication and LPS transport between the bacterial cell interior to 

the bacterial outer membrane surface (dashed arrow) but the mechanisms are not well 

understood [20,47,57–59]. The outer surface of the external membrane contains a dense 

layer of LPS with lipids anchored in the membrane (purple spheres), and long core 

polysaccharide and O-polysaccharide side chains extending outward (red spheres); the 

externally facing LPS are highly thermostable, neurotoxic, pathogenic, extremely pro-

inflammatory and a potent trigger of robust antigenic responses within the human immune 

system; LPS are constantly shed into the external environment where they may find their 

way past the GI-tract barrier into the systemic circulation and past the BBB into the brain 

parenchyma [1–5,9,15–18,39,50,57–62]; the mechanism of the induction of LPS and other 

GI-tract microbiome-derived neurotoxins by aluminum sulfate is not known; (source; figure 

adapted from https://www.dreamstime.com/stock-illustration-structure-gram-negative-

bacteria-cell-wall-labeled-d-illustration-image84181743; last accessed 7 October 2019).
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FIGURE 2 - 
Comparable to all other anaerobic Gram-negative bacilli, the gastrointestinal (GI) tract 

abundant Bacteroides fragilis is capable, when stressed, of releasing a broad spectrum of 

highly neurotoxic, pro-inflammatory and potentially pathogenic molecules; these comprise 

six major classes of secreted molecules and include bacterial amyloids, endotoxins, 

exotoxins, lipooligosacahride (LOS; consisting of smaller isoforms of LPS), 

lipopolysaccharide (LPS; in this photo yellowish filamentous structures associated with 

some B. fragilis bacillus rods) and small non-coding RNAs (sncRNA; some similar in size to 

microRNAs). For example, the human GI tract-abundant B. fragilis secretes the endotoxin-

LPS B. fragilis LPS (BF-LPS) which has been shown to be strongly pro-inflammatory and 

extremely neurotoxic toward human CNS neurons in primary culture; BF-LPS may be the 

most pro-inflammatory bacterial-derived glycolipid known [5,6,26,51–53]. While the phyla 

Bacteriodetes (representing about ~24% of all GI-tract bacteria), Firmicutes (~72% of all 

GI-tract bacteria), Actinobacteria, Proteobacteria, and Verrumicrobia (together, typically 

~4% of all GI-tract bacteria), are the most common microbes in the human GI tract 

microbiome it should be kept in mind that other microbes including fungi, protozoa, viruses, 

and other commensal microorganisms may also contribute neurotoxic exudates which are 

highly toxic, pro-inflammatory and detrimental to the homeostasis of CNS neurons; 

(micrograph of B. fragilis shown; the original photo is shown courtesy of Rosa Rubicondior; 

http://rosarubicondior.blogspot.com/2014/11/evolving-cooperation-but-for-who-or-

what.html; last accessed 7 October 2019).
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FIGURE 3 - 
The human GI-tract microbiome-resident Bacteroides fragilis (B. fragilis) produces an array 

of soluble neurotoxins (such as fragilysin, LOS, LPS, bacterial amyloid, sncRNA and 

others) that are secreted into their immediate environment (see text); many of these 

neurotoxins are known to cross both the GI-tract intestinal barrier into the systemic 

circulation and induce a systemic inflammation; some of these neurotoxins may cross the 

blood brain barrier (BBB) to access the brain parenchyma in the aging human BBB or in 

transgenic murine models for AD and other neurodegenerative disease states [39,51,57–62]. 

All of these GI-tract microbiome-derived neurotoxins and especially lipopolysaccharide 

(LPS) are induced by nM levels of aluminum sulfate in B. fragilis cultures; interestingly (i) 
the increase in LPS at 50 nM aluminum sulfate is not proportionate to increases in LPS at 

100 nM and 500 nM aluminum sulfate suggesting that the system may become rapidly 

saturated at the relatively lower concentrations of applied aluminum sulfate; and (ii) at 

higher concentrations of aluminum sulfate (~500 nM) in this system other B. fragilis-
secreted neurotoxins such as fragilysin, bacterial amyloid and sncRNA become induced 

above basal levels and the results are significant; while aluminum itself is pro-inflammatory 

as measured by its ability to induce the pro-inflammatory transcription factor NF-kB (p50/

p65) complex [26–28], aluminum-mediated induction of LPS and other inflammation-

supporting neurotoxins such as LPS may also contribute to the pro-inflammatory actions of 

aluminum-sulfate in both the human GI-tract and the human CNS [42,43,56]. Aluminum-

induced up-regulation of microbiome-derived LPS may also contribute to systemic 

inflammation but this pathological mechanism is not well understood and requires further 

study; in Figure 3 a dashed horizontal line at 1.0 is included for ease of comparison; N=3 to 
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5 experiments per determination; data in the bar graph represents the mean and one standard 

deviation of that mean; *p<0.05; **p<0.001 (ANOVA).
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