Skip to main content
. 2020 Aug 5;19:123. doi: 10.1186/s12933-020-01102-8

Table 3.

Multiple linear regression analyses of PWV (see “Methods”—“Statistical analysis” for details)

Dependent variable: PWV Main effects model Model with effect modification
Beta (p value) Beta (p value)
Age, years 0.06 (0.13) 0.07(0.10)
MATSUDA − 0.26 (< 0.001) − 0.27 (< 0.001)
HDL cholesterol, mg/dl 0.08 (0.04) 0.07 (0.06))
Hemoglobin, g/dl 0.007 (0.85) 0.02 (0.60)
AST, U/l 0.04 (0.35) 0.03 (0.41)
γGT, U/l − 0.02 (0.62) − 0.03 (0.47)
e-GFR, ml/min/1.73 m2 − 0.11 (0.003) − 0.10 (0.009)
Ferritin, ng/ml 0.37 (< 0.001) 0.19 (0.01)
hs-CRP, mg/l 0.20 (< 0.001) 0.05 (0.42)
Ferritin * hs-CRP 0.28 (0.004) (see Fig. 2)

Data are standardised regression coefficients (beta) and p values

By forcing gender into the main effect model does not modify the ferritin-PWV relationship (beta = 0.39, p < 0.001) and this was also true when forcing transferrin saturation (beta = 0.37, p < 0.001). In the same model, neither gender (beta = − 0.06, p = 0.16) nor transferrin saturation (beta = 0.07, p = 0.08) were related to PWV

PWV pulse wave velocity, HDL high density lipoproteins, hs-CRP high sensitivity C reactive protein, AST aspartate aminotransferase, γGT γ-glutamyltransferase, e-GFR estimated glomerular filtration rate