Table 2. The performance of the classification tasks by SNV-SVM, Random Forest, Naive Bayes and Blastn.
| Accuracy | Precision | Recall | F-measure | AUC | Time (s) | ||
|---|---|---|---|---|---|---|---|
| Genus classification | SNV-SVM | 0.990 | 0.987 | 0.992 | 0.990 | 0.998 | 0.553 |
| Random Forest | 0.980 | 0.974 | 0.988 | 0.981 | 0.997 | 3.158 | |
| Naive Bayes | 0.867 | 0.871 | 0.896 | 0.884 | 0.923 | 1.717 | |
| Blastn | 0.990 | 0.990 | 0.990 | 0.990 | 0.995 | 5.718 | |
| Genome component classification | SNV-SVM | 0.995 | 0.995 | 0.995 | 0.995 | 0.998 | 1.148 |
| Random Forest | 0.995 | 0.996 | 0.996 | 0.996 | 0.996 | 2.765 | |
| Naive Bayes | 0.982 | 0.976 | 0.988 | 0.981 | 0.995 | 2.050 | |
| Blastn | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 3.745 | |
| Mono-or bipartite DNA-A classification |
SNV-SVM | 0.987 | 0.985 | 0.991 | 0.988 | 0.998 | 0.293 |
| Random Forest | 0.952 | 0.947 | 0.953 | 0.952 | 0.980 | 1.862 | |
| Naive Bayes | 0.977 | 0.967 | 0.987 | 0.977 | 0.973 | 0.219 | |
| Blastn | 0.818 | 0.750 | 0.844 | 0.794 | 0.834 | 1.050 |