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Abstract

Purpose of Review—West Nile virus (WNV) emerged from Central Africa in the 1990s and is 

now endemic throughout much of the world. Twenty years after its introduction in the USA, it is 

becoming apparent that neurological impairments can persist for years following infection. Here, 

we review the epidemiological data in support of such long-term deficits and discuss possible 

mechanisms that drive these persistent manifestations.

Recent Findings—Focusing on the recently discovered antimicrobial roles of amyloid and 

alpha-synuclein, we connect WNV late pathology to overlapping features encountered in 

neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. We also 

summarize new research on microglial activation and engulfment of neural synapses seen in 

recovered WNV as well as in neurodegenerative diseases, and discuss how loss of integrity of the 

blood-brain barrier (BBB) may exacerbate this process.

Summary—Neuroinvasive viral infections such as WNV may be linked epidemiologically and 

mechanistically to neurodegeneration. This may open doors to therapeutic options for hitherto 

untreatable infectious sequelae; additionally, it may also shed light on the possible infectious 

etiologies of age-progressive neurodegenerative dementias.
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Introduction

The neuroinvasive, mosquito-borne West Nile virus (genus Flavivirus, family Flaviviridae) is 

a small, positive-sense, single-stranded RNA virus originating from Central Africa. Its range 

has extended significantly in recent decades, and it now occurs throughout the Americas, 

Europe, Australia, Africa, Asia, and the Middle East [1]. Since its introduction to North 

America in 1999, it is estimated that 3 to 5 million people have been infected by WNV in 

the USA alone [2]. Approximately 1% of WNV infections result in neuroinvasive disease, 

including meningitis, encephalitis, or acute flaccid paralysis/poliomyelitis [3]. While 

clinically apparent neuroinvasive disease is relatively rare, even mild and asymptomatic 

WNV infections have been associated with a significant prevalence of sequelae such as 

memory loss, confusion, and fatigue years later [4, 5]. This has led to some intriguing 

epidemiological and animal-model studies of the acute and late CNS pathology of WNV, 

revealing features that overlap with neurodegenerative dementias such as Alzheimer’s 

disease (AD) and Parkinson’s disease (PD).

In this review, we discuss epidemiological studies on WNV neurological sequelae and delve 

into some key mechanisms that may be driving these long-term symptoms. The literature on 

neurological impairment, following neuroinvasive infections, and research on the etiology of 

neurodegenerative diseases are converging on the role of the innate immune system [6]. In 

both instances, production of antimicrobial peptides and activation of glial cells precede and 

may possibly underlie the ensuing CNS dysfunction. Comorbidities, such as diabetes 

mellitus and hypertension, appear to predispose individuals to both conditions, possibly by 

their vasculopathies or by weakening the blood-brain barrier (BBB). Considering these 

relationships and possibilities opens the door to many new questions. First, do these 

pathogens contribute to age-dependent neurodegeneration and if so, what are the molecular 

pathways affected? Which host factors—environmental as well as genetic—confer not only 

risk but also protection following infection by a neuroinvasive microbe? While we have 

definitely observed high levels of cognitive impairment following alphaviral infection in 

endemic regions (Carrera and Vittor, unpublished data), we will limit our discussion here to 

WNV since the literature is most robust for this pathogen. We will then link the WNV 

findings to recent developments in the two most common neurodegenerative dementias, 

namely AD and PD.

Neurological Sequelae of WNV

WNV infection results in a self-limited febrile illness in 25% of exposed individuals, while 

neuroinvasive disease (meningitis, encephalitis acute flaccid paralysis) occurs in less than 

1% [3]. Following the initial waves of WNV outbreaks throughout North America in the 

early 2000s, it became increasingly clear to clinicians taking care of these patients that the 

acute phase of illness was often followed by a prolonged phase characterized by excessive 
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fatigue, confusion, memory loss, muscle weakness, and occasionally, tremors. The first 

studies to systematically examine the possibility of such long-term sequelae demonstrated 

that indeed, 20 to 60% of patients reported difficulties with these symptoms even after 6 to 

18 months after the initial infection [7–9]. While it was initially hypothesized that patients 

with neuroinvasive disease (encephalitis or meningitis) would report higher rates of ongoing 

symptoms, most studies have shown that even patients with non-neuroinvasive disease 

(WNV fever) reported similar sequelae at equal frequencies [10]. Due to a paucity of data on 

long-term outcomes in people asymptomatically infected with WNV, the fate of this 

population is unknown.

As more time elapsed since WNV first arrived in North America, it became possible to study 

these sequelae over longer periods of time. Though the studies are still few in number, it 

appears that significant portions of patients with WNV have ongoing symptoms years after 

the acute phase of illness [4, 11]. For example, Murray et al. [4] note that at 8 years from 

initial infection (neuroinvasive and febrile WNV), 40% of patients still reported sequelae 

[4]. Fatigue, weakness, and depression were most common, and interestingly, 9% of these 

patients reported memory loss and confusion. Poor recovery was associated with older age 

and diabetes.

These self-reported symptoms were further substantiated in a series of studies utilizing 

various batteries of neuropsychological tests [5, 11–13, 14••, 15, 16]. Most of these studies 

have included two groups of subjects—those who initially suffered from WNV 

neuroinvasive disease, and others who had WNV fever. The emerging themes from these 

studies are that psychomotor speed, memory, and executive functions are impacted 

significantly. In addition, as with the self-reported symptoms, the objective measures of 

cognitive impairment do not appear to differ significantly between the neuroinvasive and 

non-neuroinvasive groups [5, 12, 13]. Assessments are mostly performed 1 year after the 

onset of the initial illness. Samaan et al. [11], however, evaluated subjects whose time since 

infection ranged from less than 1 month up to 4 years. Not only did the authors demonstrate 

that a sizeable proportion of patients had ongoing motor function deficits (69%), executive 

function deficits (30%), and verbal learning and memory deficits (30%), but they showed 

that these impairments were more pronounced in subjects with longer intervals since their 

initial illness.

A caveat of these studies is that only few studies include healthy, or normative controls in 

their analyses [15, 17]. In a study that included age- and sex-matched controls, Balakrishnan 

et al. [17] followed up patients 1 year after illness due to WNV encephalitis. Cognitive 

impairment was determined using the Mini-Mental Status Exam (MMSE; probable dementia 

MMSE score < 21). The authors report a 57% (95% CI 22.5–76.1%) attributable risk of 

WNV encephalitis for probable dementia, with a crude relative risk of 2.3 (95% CI 1.3–4.2). 

Notably, of the 40 cases initially identified as having had WNV encephalitis, 10 had died 

within a year. On the other hand, Sejvar et al. [15] found that motor deficits persisted 1.5 

years after illness onset, but did not find a significant difference in neurocognitive 

performance in WNV patients compared to normative controls using the Cambridge 

Neuropsychological Testing Automated Battery (CANTAB [18]).
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A recent study extended these findings further by conducting magnetic resonance imaging 

(MRI) on a subset of a cohort of patients with WNV neuroinvasive disease or WNV fever 

[14••]. The population included subjects at 0 to 11 years following initial infection, 25–31% 

of whom demonstrated memory impairments on cognitive testing. Compared to age- and 

sex-matched controls, significant bilateral frontal and limbic cortical thinning was observed 

in WNV subjects. A review of MRI findings (Table 1) reveals that acute illness is 

characterized predominantly by abnormalities in the thalami and basal ganglia, though many 

other structures can be affected. Late findings include cortical thinning in structures within 

the frontal, temporal, and limbic cortices and regional atrophy in the thalami, basal ganglia, 

cerebellum, and brain stem. Interestingly, several of these affected structures are also 

atrophied in AD [39] (e.g. posterior cingulate cortex and insular cortex, and the 

hippocampus and entorhinal regions in the temporal lobe) and PD [40] (e.g., substantia nigra 

within the basal ganglia and thalamic connections).

Taken together, the preponderance of epidemiological evidence suggests that cognitive 

impairment following WNV infection is common, and that its occurrence does not correlate 

with severity of the initial presentation (neuroinvasive cases and febrile WNV infections). 

On neuropsychological testing, the domains most affected in WNV patients include 

psychomotor, memory, and executive function. While these studies have definitely advanced 

our understanding of long-term clinical and neuropsychiatric outcomes of WNV, the lack of 

healthy controls and asymptomatically infected individuals in most studies hampers our 

ability to accurately define the extent of neurological sequelae following WNV exposure.

CNS Infection in WNV Patients

Following peripheral infection, WNV accesses the CNS via one or more of four pathways: 

free virus crosses the BBB via passive transport through the endothelium [41], peripheral 

inflammation (e.g., due to tumor necrosis factor-α (TNF-α)) weakens the tight junctions of 

the BBB allowing the virus to “leak” in [42], infected virus leukocytes are trafficked across 

the BBB in a “trojan horse” fashion [41], or it infects peripheral nerves with retrograde 

axonal flow into the CNS [43]. Once the virus enters the brain, it can replicate in astrocytes, 

microglia, and neurons [44, 45], which produce pro-inflammatory cytokines such as type I 

interferons (IFN-α, IFN-β), type III interferons (IFN-λ), TNF-α, and interleukin-1β 
(IL-1β). Direct neuronal injury is incurred via apoptosis of infected cells [46] or by 

secondary insults due to the ensuing inflammation [47]. The innate immune response (i.e., 

pro-inflammatory cytokines, antimicrobial peptides, phagocytes, natural killer cells, and γδ 
T cells), complement, and the adaptive immune response are all critical for clearance of 

virus and survival [48]. WNV persistence in the CNS has been studied in mice, revealing 

that in immunecompetent mice, infectious virus is typically found up to 1 month after 

infection [49]. Thereafter, WNV RNA remains detectable for up to 6 months post infection 

(p.i.). However, Appler et al. demonstrated that infectious virus appears to reactivate beyond 

1 month p.i. upon treatment with cyclophosphamide, suggesting that lymphocytes function 

to restrict the replication of WNV [49]. Detailed analysis of these lymphocyte 

subpopulations showed that activated, virus-specific CD4+ and CD8+ T cells as well as 

plasma cells remained in the CNS even at 4 months p.i. [50]. Importantly, regulatory T cells 
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(Tregs) were also present at elevated levels, likely preventing neuronal injury due to ongoing 

inflammation.

Misfolded Protein or Antimicrobial Peptide?

As it has become clear that WNV is associated with long-term neurological deficits, a 

growing body of research indicates that neurodegenerative diseases may in turn be 

associated with an infectious trigger. The most prevalent neurodegenerative dementia, AD, 

currently affects 5.7 million Americans [51]. Hallmark pathological features of AD include 

amyloid (neuritic) plaques, which are extracellular β amyloid (Aβ) aggregates and 

intraneuronal neurofibrillary tangles (NFTs), which are comprised of hyperphosphorylated 

and aberrantly folded tau protein [52]. The progressive accumulation of these 

proteinopathies in selectively vulnerable brain regions, such as the hippocampus and cortex, 

are associated with increased brain inflammation, neuritic pathology, neurodegeneration, and 

brain atrophy. The prevailing paradigm for late-onset sporadic forms of AD (the most 

common manifestation), the Amyloid Cascade Hypothesis, posits that deposition of Aβ 
leads to harmful Aβ aggregates and to the pathological tau alterations that result in NFT 

which cause neuronal dysfunction and cell death [53]. Clinical trials targeting extracellular 

Aβ have successfully reduced levels of Aβ in the brain, but this has not correlated with an 

improvement or slowing of clinical progression of AD in most cases, albeit in already 

symptomatic subjects [54–58]. Though Aβ is posited to be the initial trigger for AD, most, if 

not all studies agree that Aβ is present even in brains of neurologically healthy aged 

individuals. Also interestingly, Aβ is conserved in organisms across kingdoms over 400 

million years, including prokaryotes [59].

New studies suggest that Aβ may actually serve a protective, innate immune function role as 

an antimicrobial peptide (AMP) [60]. In vitro, the Aβ42 and Aβ40 (differently cleaved 

forms of Aβ peptide) oligomers were shown to potently inhibit the growth of the yeast 

Candida albicans, the gram-negative bacteria Escherichia coli, and gram-positive bacteria 

Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus pneumoniae, 
Streptococcus agalactiae, Enterococcus faecalis, and Listeria monocytogenes. No inhibitory 

activity was detected against Streptococcus mitis, Streptococcus pyogenes, Streptococcus 
salivarius, or Pseudomonas aeruginosa [61]. The same group then examined the 

antimicrobial activity of Aβ in vivo in mouse and nematode models [62]. They found that 

Aβ oligomers bound to microbial cell wall carbohydrates and ultimately entrapped 

Salmonella typhimurium in the mouse model, and similarly interacted with Candida albicans 
in the nematode model.

A separate group went on to demonstrate that Aβ has antiviral properties as well [63, 64]. 

Infected neuroglioma H4 cells with herpes simplex virus-1 (HSV-1) resulted in the secretion 

of Aβ42 and the production of the inflammatory cytokines TNF-α and IL-1β. When they 

transferred the conditioned media from the HSV-1 infected cells to a de novo neuroglioma 

culture, the cells were refractory to HSV-1 infection. Subsequently, Eimer et al. went on to 

show that Aβ oligomers bound HSV-1 and human herpesvirus 6A and 6B surface 

glycoproteins, which caused the rapid seeding and deposition of additional Aβ [65]. 

Amyloid has been known to be elevated in HIV-infected brains as well and was recently 
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shown to bind HIV-1 [66]. Interestingly, HIV-1 gag protein promotes secretase-dependent 

cleavage of the amyloid precursor protein (APP) into Aβ40 and Aβ42 isoforms. Viruses that 

are not known to establish latency in the CNS also are recognized by Aβ. In vitro, 

respiratory syncytial virus (RSV) was shown to bind amyloid [67], and Aβ42 was 

demonstrated to inhibit influenza A viral replication [68]. No studies on Aβ and WNV 

infection have been reported, but given the broad antimicrobial activity of Aβ and the 

neuroinvasive nature of WNV, it can be reasonably deduced that there may be increased Aβ 
production due to WNV infection, as a protective means for viral containment.

Evidence is also mounting for a potential antimicrobial role of α-synuclein (Asyn), the 

protein associated with PD. Asyn has been shown to have antimicrobial activity against 

bacteria (E. coli, S. aureus) and fungi (Aspergillusflavus, A.fumigatus, Rhizoctonia solani) 
[69], and infection of Asyn-knockout mice with WNV resulted in dramatically increased 

viral titers in the brain compared to wild-type control mice, with a 95% mortality rate (vs. 

20% in controls) [70••]. The authors replicated these findings with Venezuelan equine 

encephalitis (VEE) virus (family Togaviridae, genus Alphavirus) vaccine strain TC-83 in the 

Asyn-knockout mice; TC-83 is not neuroinvasive in wild-type mice, demonstrating that 

Asyn restricts neuroinvasion. The authors further linked this to humans by showing 

increased Asyn expression in primary neuronal cell cultures infected with WNV.

CD-1 outbred mice, when infected with Western equine encephalitis virus (WEEV) and 

rescued with passive immunotherapy (WEEV E1 antibodies) [71], provided additional 

evidence of a link between viral infection and neurodegenerative proteinopathies. This 

served as a model of recovered alphaviral infection, with demonstration of complete viral 

clearance from the CNS 8 weeks p.i. The recovered mice had Asyn aggregates in the 

hippocampus, cortex, substantia nigra and mammillary bodies, and deficits consistent with 

parkinsonism (tremors, dyskinesia, rigidity) as well. The mice also had a 4- to 6-fold 

upregulation of genes linked to AD (APP, phospholipase D1 and D2, Akt1, and Pten) and 

PD (Park7, Aldh1a1, Irgm1). Chronic microglial and astrocyte activation, also seen in AD 

[72] and PD [73], were observed in the recovered brains.

While Aβ and Asyn may function as antimicrobial peptides, when produced in excess, or if 

clearance mechanisms fail, these proteins can trigger a neurotoxic cascade. Therapeutic 

interventions to clear these proteins have not yet produced clinical improvement or slowing 

of decline in AD, though some argue that patients need to undergo therapy earlier, in the 

presymptomatic state [74]. Anti-a-synuclein therapies (e.g., monoclonal antibodies) are 

currently in clinical trials [75, 76]; it remains to be seen if these will be successful.

Microglial Activation and Synaptic Engulfment

The cellular endpoint along the path of neurodegeneration constitutes the loss of neurons 

and synapses. Direct neuronal injury and death result from the acute phase of neuroinvasive 

West Nile disease [77]. Following viral clearance, however, progressive neurodegeneration is 

caused by complement-mediated microglial synaptic engulfment [78••] that shares similarity 

to the neurotoxic cascades seen in AD [72, 79–82] and PD [73]. Complement activation 

plays an important role in limiting WNV replication, though it can also lead to excessive 
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inflammation [83]. All three complement pathways (classical, lectin, and alternative 

pathways) are engaged during WNV infection and lead to neutralization of virions and lysis 

of WNV-infected cells [84]. Mice depleted of microglia prior to WNV infection have 

increased mortality and elevated CNS viral titers following infection, demonstrating that 

microglia are crucial in limiting WNV disease [85]. However, Vasek et al. recently 

demonstrated that in mice infected with an attenuated WNV strain, complement C1q in 

concert with activated microglia led to neurodegeneration [78••]. The authors noted error-

prone slower learning in the infected animals when submitted to spatial memory testing, 

which was attributed to persistent phagocytic microglia that drove complement-mediated 

(C1qA) CA3 synaptic terminal engulfment and remodeling in the hippocampus. An 

accompanying examination of postmortem brain tissue from patients with WNV 

neuroinvasive disease also showed reduced CA3 presynaptic terminals in the hippocampus 

and in the entorhinal cortex, compared to their age-matched controls [78••].

IFN-γ also plays an important role in hippocampal neurogenesis and synapse formation [86, 

87]. Garber et al. demonstrated that hippocampus-resident memory WNV-specific T cells 

secrete IFN-γ, which activate microglia; this led to a loss ofpresynaptic terminals and spatial 

learning defects in the infected mice [88•]. These studies build on the mounting evidence of 

the importance of microglia, the brain’s resident macrophages, in AD and PD [89–91]. 

Indeed, it is now appreciated that there is a complex interplay between the immune system 

and neurodegeneration [92]. Microglia are crucial for pathogen host defense as well as 

neural circuit pruning [79]. Microglial activation, mediated by the pro-inflammatory 

cytokines IL-6, TNF-α, and IFN-γ, is also critical for clearance of Aβ deposits [93–95], 

whereas anti-inflammatory cytokines IL-4 and IL-10 actually promote the deposition of Aβ 
[96, 97]. Proper microglial function is therefore protective in AD, but prolonged activation 

may lead to synaptoxicity and neuronal injury [92]. Based on murine models, excessive 

accumulation of Aβ andhyperphosphorylated tau may induce microglia into this 

pathological activation [98]. Furthermore, in murine AD models, microglia can induce 

astrocytes into a neurotoxic state via release of IL-1α, TNF-α, and C1q complement [98]. In 

WNV, reactive changes in microglia and astrocytes persist for weeks after viral clearance, 

which may result in induction of such a pathological state as well, [78••, 99•]. Interestingly, 

in mice, antiviral CD8+ T cells have been shown to persist for months in the CNS in 

clusters; these are presumed to be prior infection hot spots, irrespective of persisting antigen 

[100]. Though controversial in AD, T cells and antigen presentation have been thought to 

play an important role in the pathogenesis of PD [101].

In PD, pro-inflammatory microglia have also been implicated in dopaminergic neuron loss, 

mediated by aberrant activation of the complement system [73, 102]. Bodea et al. [102] 

repeatedly injected mice with bacterial LPS, resulting in elevated plasma levels of TNF-α 
and IL-113. This, in turn, elevated the levels of these cytokines in the brain and stimulated 

microglia into a prolonged activated state. Expression of complement C1q, C3, and C4b was 

upregulated, and there was a 40% loss of dopaminergic neurons in the substantia nigra. In 

C3-deficient mice, no loss of dopaminergic neurons occurred, suggesting that neuron loss 

was mediated by complement-mediated glial phagocytosis. This is strikingly similar to the 

process described in AD and in WNV-infected mice above. Microglia have also been shown 

to engulf Asyn, though aggregated forms of Asyn may actually inhibit phagocytosis by 

Vittor et al. Page 7

Curr Trop Med Rep. Author manuscript; available in PMC 2020 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



blocking FcyR signaling leading to accumulation of extracellular Asyn [103]. In addition, 

the importance of microglia in PD as well as AD has emerged from genomewide association 

studies (GWAS), in which the triggering receptor expressed on myeloid cells 2 (TREM2) 

gene has been identified as a genetic risk factor for both diseases [104, 105]. TREM2, a cell 

surface receptor expressed on myeloid cells, promotes microglial survival, activation, 

cytokine release, and phagocytosis [106]. It plays a crucial role in synaptic pruning during 

postnatal development, but TREM2 signaling may also serve as a switch between a 

homeostatic and neurodegenerative microglial phenotype [107]. While research on TREM2 

in WNV is nascent, Garber et al. noted increased microglial expression of TREM2 isolated 

from mouse brain infected with an attenuated strain of WNV [99•].

Healthy brain function has been compared to the planetary science concept of a “Goldilocks 

zone,” in that it may also require an immune environment that is balanced and just right 

[92]. CNS infections such as WNV cause a sizeable inflammatory response [108], and as 

such, are highly likely to disturb this delicate balance.

Disruption of the BBB

The BBB is comprised of vascular endothelial cells and basal lamina lining the 

microvasculature of the CNS and the pericytes and astrocytic foot processes that surround 

them. Inter-endothelial tight junctions, lack of fenestration, and specialized transport 

mechanisms are key features of the BBB [109]. These serve to minimize the entry of 

pathogens, fluid, and entrained molecules into the CNS. A compromised BBB, therefore, 

can lead to an influx of pathogens and neurotoxic agents with trigger CNS inflammation and 

possibly neurodegeneration [110, 111]. Murine studies have demonstrated that amyloid 

protein upregulates the gelatinase matrix metalloproteinase-9 (MMP-9), which in turn 

degrades the basal lamina and the tight junction in acute injury (though MMPs also play a 

role in angiogenesis and remodeling) [112]. A detailed examination was provided in a recent 

study using a 3D AD BBB model with neurons expressing mutations in the amyloid 

precursor protein (APP) and PSEN1 genes [113]. This model demonstrated increased BBB 

permeability due to diminished expression of tight junction proteins, resulting from 

increased levels of matrix metalloproteinase-2, reactive oxygen species (ROS), interferon-γ 
(IFN-γ), and aggregation of Aβ onto the endothelium [113].

The BBB plays a central role in WNV infection as well. Early host responses are triggered 

when WNV activates pattern recognition receptors (PRRs), including Toll-like receptors 

(TLR 3, TLR 7), RIG-I-like receptors (RLRs), and NODlike receptors [114]. This results in 

the production of type I and III interferons (IFNs) as well as other antiviral cytokines. In 

mice, type 1 and III IFNs promote the integrity of the BBB by enhancing tight junction 

formation, thereby restricting the neuroinvasive capacity of WNV [115]. However, type 

IIIFN (IFN-γ) secreted by T cells during WNV infection compromises the BBB by 

promoting transendothelial migration of CD4+ T cells [116] as well as by causing junctional 

breakdown and cell-cell separation [117]. This is a double-edged sword, in that T cells are 

crucial for WNV clearance in the CNS [118].
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In addition to IFNs, TNF-α mediates BBB permeability in WNV infection. In a murine 

model of WNV CNS infection, γδ T cells proliferate by day 2 after WNV infection. These 

cells reduce viral burden and inhibit viral CNS infiltration by secretion of IFN-γ and TGF-β, 

respectively, but simultaneously increase BBB permeability by producing TNF-α [119]. 

These pro-inflammatory and anti-inflammatory effector functions are mediated by different 

γδ T cell subsets. In aged mice, Vγ4+ cells comprise a larger proportion compared to 

younger mice, and it is these cells that secrete TNF-α, which compromises the BBB [119]. 

TNF-α induces BBB endothelial cells to increase expression of adhesion molecules (i.e., 

selectins, vascular endothelial cell adhesion molecule-1 (VCAM-1), intercellular cell 

adhesion molecule-1 (ICAM-1)) [120]. This leads to endothelial adhesion of circulating 

leukocytes, which in turn produce reactive oxygen species and proteases that damage the 

microvessels [121]. Activated microglia also produce TNF-α, as well as IL-1|3, reactive 

oxygen species, and nitric oxide, all of which contribute to enhancing BBB permeability 

[122].

Thus, WNV infection leads to the production of cytokines that promote BBB integrity as 

well as permeability, and host factors, such as age, modulate the balance of the two. Indeed, 

normal aging in itself appears to be associated with BBB breakdown [123]. Compared to 

young mice, aged mice demonstrated significantly higher levels of inflammation (TNF-α), 

leading to extravasation of circulating IgG in the cortex and hippocampus—mostly 

attributable to diminished tight junction complex expression [123]. Hypertension is also a 

significant factor in BBB breakdown, mediated by angiotensin II-driven downregulation of 

key BBB protein constituents (endothelial barrier antigen, transferrin receptor) [124]. 

Diabetes mellitus also impairs the BBB integrity [125]; in vitro models of the BBB under 

hyperglycemic conditions demonstrated the expression of numerous pro-inflammatory 

cytokines (TNF-α, IL-6, IL-1, and IL-4) in astrocytes [125], which may also act to 

compromise the tight junction complex. It is no coincidence, then, that WNV neuroinvasive 

disease occurs predominantly in the elderly, and that hypertension and diabetes mellitus are 

prominent risk factors as well [126–128].

From this, we can surmise that a compromised BBB will be more permissive to the entry of 

WNV as well as other microbes and injurious molecules, which in turn activate microglia 

and lead to the upregulation of Aβ and/or Asyn as antimicrobial peptides. Persistent 

microglial activation and excess production, or lack of clearance of Aβ and/or Asyn may 

lead to complement-mediated synaptoxicity, and ultimately neurodegeneration.

Conclusion

The frequency with which cognitive and psychomotor deficits persist long after WNV 

exposure, coupled with the continued transmission of WNV in the USA and worldwide, 

underscores the importance of understanding the pathways underlying these impairments. 

Furthermore, the world is experiencing the emergence of ongoing outbreaks due to other 

neuroinvasive arboviruses such as Zika virus, eastern equine encephalitis virus, VEE virus, 

and Japanese encephalitis virus, to name just a few. Many of these are also associated with 

long-term neurological sequelae [129,130]. While there are no therapies nor prognoses 
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available at present, critical progress has been made in recent years to assess the relationship 

between neuroinvasive viral infection and neurodegenerative diseases.

It is becoming clear that there are convergent mechanisms resulting in neuronal loss [131]. 

The data thus far suggest that hosts who are older, have diabetes, hypertension, or other 

disorders associated with BBB-damage are more susceptible to neuroinvasive WNV 

infection and subsequent neurological sequelae, as well as to neurodegenerative diseases. In 

the case of WNV, this may be mediated by enhanced viral entry into the CNS, but additional 

factors play an important role in residual cognitive and psychomotor impairments. Abnormal 

BBB permeability may lead to CNS entry of peripheral antigens that activate microglia, 

which then precipitates a neurodegenerative phenotype that results in synaptotoxicity [132, 

133]. Infection stimulates production of Aβ and Asyn, which aggregate in the setting of a 

viral or bacterial brain infection [59, 60]. The inciting infection and initial host response lead 

to an aberrant inflammatory response, excess elevation of Aβ and/or Asyn, and in time, 

neurodegenerative changes [59] (Box 1, Fig. 1).

This proposed sequence is not limited to WNV. Early work connecting an infectious agent to 

AD was performed by Itzhaki et al. in the 1990s, who examined the role of herpes simplex 

virus-1 (HSV-1) in AD [134, 135]. Her group found that the presence of HSV-1 DNA, 

coupled with the presence of an apolipoprotein E4 allele (apoE; apoE4 is strongly associated 

with AD), was correlated with AD. A subsequent population-based study examined the 

association between HSV-1 and AD, reporting twice the risk for AD in reactivated HSV-1 

(defined by the presence of HSV-1 IgM) as well as an interaction with ApoE4 [136, 137]. 

An expanding suite of pathogens has since been identified that promotes this pattern of 

neurodegeneration, including spirochetes [138], HIV [139–141], Chlamydia pneumoniae 
[142], Porphyromonas gingivalis [143], human herpesvirus-6A (HHV-6A), and HHV-7 

[144]. Post-encephalitic parkinsonism and encephalitis lethargica, conditions that 

significantly overlap with PD, have been associated with infectious etiologies for a century 

[145]. In this sense, an infectious association with PD has long been entertained. Specific 

pathogens that have been considered include influenza A virus [146], Porphyromonas 
gingivalis [147], Helicobacter pylori [148], hepatitis C virus [149] , and gram-negative 

bacterial gastrointestinal infections [150] .

Moving forward, studies that further our mechanistic understanding are crucial. ApoE is 

ofparticular interest in its potential ability to modify the effect of a neurotropic virus. 

Apolipoprotein E (ApoE) is a cholesterol carrier that binds to cell surface receptors to 

deliver lipids as well as the Aβ peptide in the CNS [151]. The apolipoprotein E E4 allele, 

which confers a strong risk for AD, has also been associated with higher CNS viral loads 

[152]. In a murine model of acute HSV-1 infection, apoE4 mice had a 10-fold increased 

number of HSV-1 genomic copies compared to apoE3 mice, and apoE3 mice had in turn a 

10-fold higher number of genomic copies than mice lacking apoE [152]. The HSV-1 

genomic copy number is directly linked to the risk of reactivation [153], thus explaining how 

apoE may influence HSV-1 reactivation. While no such connection has been made to WNV, 

the capsid protein of another flavivirus, dengue virus, has been shown to bind to the apoE 

component of very low-density lipoprotein (VLDL) and thought to thus “hitch a ride” to 

distant organs [154].
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Looking to modify disease outcomes, could we learn about neuroprotective factors and 

resilience from people fully recovered from neuroinvasive pathogens? What mechanisms 

promote a return to microglial homeostasis in such individuals? And while there is 

epidemiological and MRI evidence for cognitive and other neurological deficits in WNV-

exposed patients suggesting syndromes similar to those seen in neurodegenerative diseases, 

data on WNV exposure in people with known AD or PD are lacking. In AD as well as 

psychiatric diseases, efforts to study the “brain microbiome” are expanding with the 

increasing recognition that microbes are permanent residents ofthe CNS and can also 

distally influence a wide range of neurological functions [155]. Such studies will help to 

establish the role played by latent microbes such as HSV-1, HHV-6A/B, and HHV-7. 

However, these studies will not address infections that are transient but leave a lasting 

imprint, as described for WNV. To understand the impact of these types of pathogens, 

carefully designed epidemiological studies will prove important in assessing the magnitude 

of the link between neuroinvasive viral exposure and subsequent neurodegeneration. 

Bringing together experts in infectious disease, neuroscience and neurology will help deepen 

our understanding of the intricacies of how pathogens may trigger neurodegenerative 

cascades, ultimately with the aim of improving outcomes for people living with chronic 

sequelae of infectious diseases as well as patients devastated by dementias.
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Box 1.

Proposed pathways underlying WNV-mediated reduction in neural 
resilience and cognitive damage leading to neurodegenerative dementias:

• Neuroinvasion → complement mediated neuronal damage and 

synaptotoxicity

• White matter injury → impaired cognition

• Chronic inflammation → dysfunctional immunity → reduced Aβ clearance 

increased hyperphosphorylated tau

• Impaired BBB → vascular instability → impaired brain metabolism

• Selective neuronal vulnerability and progressive brain organ failure
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Fig. 1. 
Conceptual model of the role of WNV and the multifactorial cascade leading to 

neurodegenerative dementia
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