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Abstract

Many important endemic and emerging diseases are transmitted by vectors that are biting 

arthropods. The functional traits of vectors can affect pathogen transmission rates directly and also 

through their effect on vector population dynamics. Increasing empirical evidence shows that 

vector traits vary significantly across individuals, populations, and environmental conditions, and 
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at time scales relevant to disease transmission dynamics. Here, we review empirical evidence for 

variation in vector traits and how this trait variation is currently incorporated into mathematical 

models of vector-borne disease transmission. We argue that mechanistically incorporating trait 

variation into these models, by explicitly capturing its effects on vector fitness and abundance, can 

improve the reliability of their predictions in a changing world. We provide a conceptual 

framework for incorporating trait variation into vector-borne disease transmission models, and 

highlight key empirical and theoretical challenges. This framework provides a means to 

conceptualize how traits can be incorporated in vector borne disease systems, and identifies key 

areas in which trait variation can be explored. Determining when and to what extent it is important 

to incorporate trait variation into vector borne disease models remains an important, outstanding 

question.

Keywords

vector-borne disease modeling; traits; population dynamics; transmission; vector ecology; 
reproductive number

INTRODUCTION

Vector-borne diseases (VBDs) remain a serious threat to human health (San Martín et al., 

2010; Dick et al., 2012; Lee et al., 2013; Mead, 2015; CDC, 2016; Faria et al., 2016), 

livestock (Wilson and Mellor, 2009), and agriculture (Taylor et al., 2016). Cycles or episodes 

of VBD disease incidence are driven by a system of interconnected vector, host, and 

pathogen population abundances that vary over time and space. Evidence indicates that the 

behavior and life history of the vector is a key determinant of any VBD’s dynamics because 

it influences pathogen transmission rates between vector and host individuals. These aspects 

of vector biology can be described as functional traits (hereafter, “traits”): measurable 

features of an individual organism that determine its fitness (lifetime reproductive output) 

(McGill et al., 2006; Gibert et al., 2015). As a result, variation in these traits between 

individuals, and within individuals over time determines the abundance (a measure of 

population-level fitness) of the vector population.

Ecological studies show that trait variation is ubiquitous and alters population, community 

and ecosystem level processes, accentuated by underlying non-linearities in the way 

individuals interact with conspecifics, other species, and the environment (Norberg et al., 

2001; Imura et al., 2003; McGill et al., 2006; Agashe, 2009; Gibert et al., 2015). For 

example, intraspecific variation in foraging traits of single consumer species can change 

abundance dynamics of prey across multiple trophic levels in food webs, with the effect 

often being comparable to, and sometimes stronger than, adding new consumer species (Des 

Roches et al., 2018). Similarly, because vector-vector, host-vector and vector-pathogen 

interactions are non-linear, even small within-population and over-time variation in vector 

traits can have significant impacts on disease dynamics due to compounding effects (Lloyd-

Smith et al., 2005; Martin et al., 2019). Furthermore, the traits of ectotherms vary directly 

and non-linearly with fluctuations in environmental conditions. This impact of trait variation 

on VBD dynamics is important because the resultant vector population dynamics typically 
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occur at time scales comparable to pathogen transmission dynamics (May and Anderson, 

1979; Downs et al., 2019). Finally, both vector abundance and transmission dynamics occur 

at faster timescales than at which hosts operate because development and generation times 

scale negatively with body size, and vectors are orders of magnitude smaller than their (plant 

or animal) hosts (Gillooly et al., 2002; Savage et al., 2004). For this reason, vector trait 

variation may potentially be more important than variation in host traits.

Variation in vector traits can change VBD dynamics not just by changing vector abundances 

but also directly by affecting the transmission rate. The full suite of vector traits can be 

classified into three categories in the context of VBDs. First, traits such as vector 

competence (ability to transmit the pathogen to host) and susceptibility directly impact 

disease dynamics by altering the rates at which the pathogen is transmitted and vectors and 

hosts become infected. Second, life history traits such as individual fecundity and longevity 

determine the number of susceptible vectors that enter the system. Third, interaction traits 

such as biting and body velocity affect transmission dynamics both directly by determining 

vector contact rates with hosts, and indirectly through the impact of interactions with other 

species on vector population dynamics. While it is accepted that vector traits are important 

for transmission and are temporally and spatially variable (Smith et al., 2014), for 

tractability, most empirical and theoretical VBD studies include only a small subset of the 

full range vector traits—most commonly, adult vector biting rate, mortality rate and 

competence (Rabinovich and Himschoot, 1990; Caraco et al., 2002; Jeger et al., 2004; Smith 

et al., 2012; Reiner et al., 2013; Shimozako et al., 2017; Van den Bosch and Jeger, 2017).

The need to predict disease dynamics over long timescales is critical given the rapidly 

changing world we live in. Statistical models (e.g., based on time series analyses) can 

forecast disease dynamics on the short term based on historical and contemporary dynamics. 

For example, the number of dengue cases in a single transmission season can be explained 

using statistical models that do not include biological or environmental information 

(Johansson et al., 2019). However, these methods are phenomenological, and make 

unreliable predictions over longer timescales when disease dynamics are driven by 

underlying non-linearities compounded by trait variation and changing environmental 

conditions. In contrast, mechanistic models, which capture underlying processes can 

improve our ability to predict VBD dynamics at longer temporal and larger spatial scales, as 

is the case more generally for the dynamics of ecological systems (Getz et al., 2018). 

Arguably, mechanistic models of VBD dynamics that capture temporal and spatial changes 

in vector trait variation have even greater potential to predict disease dynamics further into 

the future.

However, mechanistic, trait-based VBD research faces two major challenges. First, for most 

vector species, we lack data on how traits underlying transmission model parameters vary, 

forcing models to use inaccurate parameter values (for example, using the time it takes a 

mosquito to produce a clutch of eggs to infer biting rate) or use data from related species to 

parameterize models (for example, Mordecai et al., 2013; Johnson et al., 2015). Second, 

while trait variation is increasingly being incorporated in various ways into VBD models, we 

require a conceptual framework to prioritize ways in which this complex problem can be 

tackled both empirically and theoretically. Here, we present such a conceptual framework, 
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with hope that it will help the research community better tackle the challenge of developing 

a trait-based VBD approach by summarizing the types of trait data needed for model 

development, and providing a general modeling scaffold that can be adapted for many focal 

VBD systems and questions. Many existing VBD models represent simplifications or special 

cases of this general framework.

This is the ideal time to overcome the challenge of developing trait-based VBD research. 

Recent public health crises have spurred government agencies to support the collection of 

large amounts of data on VBD systems, including vector traits. This, combined with 

innovations in empirical data collection and sharing, means that the necessary data for 

parameterizing and validating trait-based models are now becoming available. At the same 

time, the field of trait-based research is rapidly developing across the broader field of 

ecology, with both the theory and experimental methods growing apace (McGill et al., 2006; 

Pawar et al., 2015b). The many areas of ecology that are currently striving to 

mechanistically incorporate trait variation to understand emergent community or ecosystem 

level dynamics and functioning (e.g., Díaz et al., 2007; Blanchard et al., 2012; Pawar et al., 

2015a; Kissling et al., 2018) provide empirical and theoretical methods that could be 

leveraged for VBD research.

In what follows, we non-exhaustively review the empirical evidence for trait variation and 

covariation and previous efforts to incorporate these types of trait variation into VBD 

dynamics. We highlight gaps in current trait-based approaches, including the types of trait 

variation and covariation that have been overlooked. We then illustrate how a mechanistic 

vector trait-based approach can provide new insights into VBD dynamics, and present a 

conceptual framework that unites most previous approaches and fills existing gaps. We end 

with a discussion of key empirical and theoretical challenges in the way of operationalizing 

trait-based VBD dynamics approaches.

VARIATION IN TRAITS OF DISEASE VECTORS

Each vector trait may vary in three primary dimensions: across individuals in a population at 

a time-point or interval; over time within an individual; and in response to environmental 

conditions (Figure 1). Note that throughout this paper, we often use both the terms “trait” 

and “parameter” for the same property of a vector. This is because when used in a VBD 

model directly, a trait is also a parameter. Thus, mortality rate and fecundity are parameters 

in VBD models, but are also traits because they are directly measurable. In contrast, 

vectorial capacity, for example, is not a trait as it is a derived measure and cannot be directly 

measured.

Across-Individual Variation

The traits of individuals in a population typically vary within any temporal snapshot, either 

because of genetic variation, phenotypic plasticity, or both (Agashe, 2009; Bolnick et al., 

2011). In general, heterogeneity in individual transmission potential can have large 

consequences for disease dynamics (Woolhouse et al., 1997; Lloyd-Smith et al., 2005). In 

VBD systems in particular, variation across individual vectors in traits such as biting rate, 

host preference, and longevity can lead to subgroups of the vector population having 
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disproportionate effects on mean population fitness, abundance, transmission potential, and 

ultimately disease dynamics. Evidence for this kind of trait variation in vectors includes: 

variation among individuals in the extrinsic incubation period (EIP; time required to become 

infectious) (Ohm et al., 2018); nutritional status-driven variation in vector competence and 

behaviors linked to transmission (Takken et al., 2013; Shapiro et al., 2016); and body size-

driven variation in feeding, assimilation, and respiration, and therefore development, 

mortality, and transmission rates (Renshaw et al., 1994; De Xue et al., 1995; Kindlmann and 

Dixon, 2003) (as expected from Metabolic Theory of Ecology; Brown et al., 2004; Savage, 

2004; Amarasekare and Savage, 2012). Individual variation in age-specific mortality is 

particularly important for transmission (Clements and Paterson, 1981; Harrington et al., 

2001, 2008; Styer et al., 2007). One such source of variation is infection status itself, which 

can generate a distribution of traits within a population. For example, recent evidence from 

several different systems has demonstrated that infected vectors exhibit altered foraging 

behaviors (Murdock et al., 2017; Eigenbrode et al., 2018). In such cases, assuming average 

values for traits such as biting rate can lead to significant underestimations of transmission 

potential (Cator et al., 2014).

Variation Over Time in an Individual

The trait values of any given individual in a population typically also vary over time, 

typically due to physiological, morphological, or behavioral changes driven by ontological 

development or senescence. For transmission to occur, a vector must survive long enough 

after acquiring the parasite to become infectious (extrinsic incubation period, EIP), which 

can be a large proportion of the vector lifespan. Older vector individuals are: (i) more likely 

to be infected because they are more likely to have been exposed, (ii) more likely to be 

infectious because they are more likely to have survived EIP, and (iii) are more likely to 

transmit the pathogen onward because they are alive to bite subsequent hosts after becoming 

infectious. Therefore, variation in vector lifespan itself as a trait can disproportionately 

contribute to transmission. There is evidence for age-specific changes in vector immune 

function (Christensen et al., 2005; Hillyer et al., 2005; Laughton et al., 2014), flight 

performance (Nayar and Sauerman, 1973), feeding behavior (Alto et al., 2003; Den Otter et 

al., 2008; Bohbot et al., 2013), mortality rates (Bellan, 2010) and competence (Soliman et 

al., 1993). When multiple life stages of the vector contact hosts (e.g., ticks), transmission 

efficiency may also vary with stage (Caraco et al., 2002; Coletta-Filho et al., 2014). All these 

time-dependent changes in vector traits could lead to significant variation in the number of 

infectious vectors and their contact rates with hosts.

Environmentally Driven Variation

The majority of vectors are small ectotherms, so their behavioral, life history, and interaction 

traits environmentally sensitive. Variation due to environmental drivers may have both short- 

or long-term effects on vector traits. At present, most of the data on this kind of variation 

come from studies on temperature as a driver. In particular, numerous studies have measured 

effects of variation in environmental temperature on vector life history traits (Kersting et al., 

1999; Bayoh and Lindsay, 2003; Delatte et al., 2009; Ciota et al., 2014) and competence 

(Kramer et al., 1983; Murral et al., 1996; Dohm et al., 2002; Paweska et al., 2002; Wittmann 

et al., 2002). Other environmental variables such as humidity, precipitation, and nutrient 

Cator et al. Page 5

Front Ecol Evol. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



availability also directly affect vector traits at different life stages (Wittmann et al., 2002; de 

Costa et al., 2010; Takken et al., 2013; Shapiro et al., 2016). However, compared to 

temperature, fewer data exist on these drivers, and models that incorporate these other 

variables are faced with a significant parameterization challenge. In Section 3 below, we 

address this issue further in the context of past modeling approaches to capture 

environmental effects on VBD dynamics.

Mechanistic Covariation Between Traits

Most traits covary with others because they are mechanistically linked through physiology 

(Charnov, 1993; Brown et al., 2004). This is very much true for vectors as well. For 

example, mosquitoes infected with bird malaria parasites exhibit reduced fecundity, which in 

turn increases longevity (Vézilier et al., 2012). This kind of trait covariation often appears in 

the form of life-history trade-offs (Charnov, 1993) and affects both vector population 

abundance and disease transmission rate. This is important because covariation between 

(mechanistically linked) traits implies that variation in a trait indirectly related to disease 

transmission, such as fecundity, can influence horizontal (host to host) transmission of 

pathogens by influencing another trait that does, such as biting rate (fecundity and biting rate 

covary positively). Also, covariation between life-history traits such as adult lifespan and 

fecundity (which covary negatively) can change VBD dynamics indirectly by altering vector 

population dynamics. Therefore, it is important for trait-based transmission models to 

account for mechanistic covariation between traits. Indeed, there is recent evidence that 

accounting for this can yield new insights into disease dynamics. In particular, recent work 

using Metabolic Theory of Ecology to incorporate trait variation into micro- and macro-

parasite disease transmission has resulted in models that more accurately capture disease 

dynamics, by linking traits connected to metabolic rate, such as fecundity and mortality rate 

(Molnár et al., 2017; Kirk et al., 2018, 2019). To our knowledge, no such examples currently 

exist in VBD research, but similar efforts there are likely to prove fruitful.

EXISTING APPROACHES FOR INCORPORATING TRAITS INTO VECTOR-

BORNE DISEASE DYNAMICS

Here we provide a brief overview of how traits and trait variation have been incorporated 

into mathematical models of VBD dynamics to put our conceptual framework (Section 5 

below) into context and identify gaps in existing knowledge.

Classical Compartment Models

Classical compartment models focus on the proportion of different (Susceptible, Exposed, 

Infected, Recovered) sub-populations of the host and vector, assuming total abundances of 

the two species are constant. For example, the Ross-Macdonald model for malaria 

transmission by a mosquito (SI Section 1), and its extensions (including for non-mosquito 

vectors) (Macdonald, 1957; Smith et al., 2012; Reiner et al., 2013) focuses exclusively on 

the parameters governing the transmission rate of the pathogen between susceptible and 

infected vector and host subpopulations, most of which are mosquito traits. It yields a 

relatively simple equation for the basic reproduction number of the disease (R0)—the 

number of new infectious cases that would arise from a single infectious case introduced 
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into a fully susceptible host population—which quantifies its transmission potential or risk 

(Macdonald, 1957; Smith et al., 2012) (see SI section 1 for derivation):

R0 = V a2bce−μP

Hdμ

1
2 (1)

Here, V is vector density, a is per-vector biting rate (bites/day), b is the proportion of the 

bites by infective mosquitoes that produce infection in susceptible humans, c is the 

proportion of bites by susceptible mosquitoes on infectious humans that infect mosquitoes 

(thus, bc is vector competence), μ is adult vector mortality rate, P is the extrinsic incubation 

period (pathogen incubation period within the vector), H is host density, and d is the rate at 

which infected hosts recover and acquire immunity. Note that equation 1 emerges from an 

extension of the original Ross-Macdonald model, which did not include vector competence 

or EIP of the pathogen (P) in this way.

Thus, classical compartment models incorporate some vector infection and life history traits; 

in the above example, biting rate, vector competence, extrinsic incubation period, and 

mortality rate. However, these traits are assumed to be independent of each other despite the 

fact that they covary (e.g., mortality and biting rates), with potentially compounding effects 

on transmission. Further, compartment models generally assume that vector and host traits 

do not affect total vector population size, and that these traits do not vary across individuals, 

over time, or across environments (Figure 1). We note that there is some debate about the 

precise form of the R0 equation based on classical compartment models because its exact 

form depends on the method used to derive it (Li and Blakeley, 2011). We used the next-

generation matrix method (SI section 1). However, all versions of R0 are just different 

convolutions of the same parameters or traits as in equation 1, and all assume that traits to 

not vary or covary.

Classical compartment models have been extended to incorporate vector population 

dynamics by adding vector life-stage compartments (Anderson and May, 1979; May and 

Anderson, 1979; Hoshi et al., 2014; Johnson et al., 2018; Ng et al., 2018) (Anderson-May 

type models). These models introduce additional parameters or traits for vector life history, 

which correspond to directly measurable vector traits such as mortality and fecundity, or 

parameters that can be derived from stage-specific survivorship and development time (see 

SI section 1.2). In these studies as well vector trait variation and co-variation were not 

initially considered.

Extensions of Classical Compartment Models That Include Trait Variation

We now consider extensions of classical compartment models that have included trait 

variation. These can be classified into a few distinct categories that have tacked different 

aspects of the challenge of a fully trait-based VBD study.

Classical Compartment Models With Trait Variation

Several studies have incorporated trait variation directly into the classical compartment 

(Ross-Macdonald type) models. For example, extensions of the Ross-Macdonald model to 

Cator et al. Page 7

Front Ecol Evol. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incorporate parasite latency in malaria vectors are common (Reiner et al., 2013). Such 

efforts have led to several new insights. Specifically, several studies have shown that 

variation in single traits such as age-specific vector mortality drives changes in the predicted 

sensitivity of R0 to vector control (Styer et al., 2007; Bellan, 2010; Novoseltsev et al., 2012). 

There are also many studies showing how variation in single life history traits, such as 

longevity or biting rate, associated with infection (McElhany et al., 1995; Koella, 2005; 

Lefèvre and Thomas, 2008) or nutrition (Shapiro et al., 2016) affects transmission. More 

recently, it has been reported that incorporating individual variation in EIP in mosquitoes 

derived from empirical data leads to elevated risk of dengue (Kamiya et al., 2019). 

Nevertheless, across all these studies, variation in certain traits, such as heterogeneity in 

host-vector contact rate or vector traits such as fecundity tend to be systematically 

overlooked (Reiner et al., 2013).

Anderson-May Type Models With Trait Variation

In another class of studies, aspects of vector ecology have been added to Anderson-May type 

models (classic compartment models combined with vector life stage compartments) (SI 

section 1.3). These aspects include environmental drivers (Beck-Johnson et al., 2013; El 

Moustaid and Johnson, 2019) and species interactions (Depinay et al., 2004; Nakazawa et 

al., 2012). Crowder et al. (2019) modeled the effect of species interactions on transmission 

of persistent and non-persistent plant pathogens by assessing the predicted impact of 

mutualistic, predator-prey, and competitive pressures on vector fecundity, mortality, and 

movement. They found that species interactions can alter the rates of pathogen spread in 

these systems through changes in vector movement (Crowder et al., 2019). This is one of 

few examples where there has been an effort to include the third class of vector traits—

species interaction traits. In our proposed framework below, we illustrate how this class of 

interaction traits can be incorporated into modeling and empirical studies, and emphasize the 

potential importance of doing so. Most recently, environment-driven trait variation has been 

incorporated by modeling the effects of precipitation and temperature on multiple vector 

traits. In these studies, traits are allowed to covary across environmental states because they 

share a common driver, but nevertheless, are not explicitly, mechanistically linked (e.g., in 

the form a tradeo between adult fecundity and survivorship). For example, Parham and 

Michael (2010) derived an equation for vector population size as a function of traits using a 

statistical approach, then allowed these traits to vary as functions of environmental 

conditions. Mordecai et al. (2013,2017,2019) built upon this approach to include empirically 

derived, non-monotonic thermal responses for life-history and transmission traits. Brand et 

al. (2016) took a similar approach by allowing biting rate and EIP parameters to depend on 

temperature. Other studies have used empirically derived relationships of density-

dependence of individual vector traits (e.g., mortality) (Caraco et al., 2002; Hancock et al., 

2016; Caminade et al., 2017; Siraj et al., 2017; Liu-Helmersson et al., 2019).

Classic Compartment and Anderson-May Type Models With Individual-Level Trait Variation

Another class of studies has simultaneously incorporated individual-level variation in 

multiple vector transmission and life-history traits into classic compartment or Anderson-

May type VBD models. Some of these studies also include the time axis of individual trait 

variation (Figure 1B). For example, Brand et al. (2016) determined the number of infectious 
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bites delivered by midges by combining the EIP of bluetongue virus, age-specific biting rate, 

and mortality. They found that calculating model parameters from trait variation in this way 

can dramatically change R0 and the estimated impact of vector control. However, while 

midge age-specific biting rate and survival were used to determine whether an individual 

survives through EIP, the model does not mechanistically link these two traits. Similarly, 

Brady et al. (2016) incorporated variation in adult female mosquito blood feeding, egg 

laying, and accounted for differences in larval ecology (but not explicitly as larval traits) to 

re-calculate vectorial capacity, and showed that this increased the relative importance of 

larval vector control methods. Thus, in all these efforts, fine-scale, often individual-level 

variation in traits has been incorporated, but the traits are still not mechanistically linked, 

which we argue is fundamentally important to emergent VBD dynamics. This shortcoming 

has been addressed to a degree by studies that use individual or agent-based models to 

simulate trait variation across individuals, allowing population level properties to emerge 

“naturally” and drive VBD dynamics. This individual-based approach implicitly includes 

trait covariation, and in a variety of VBD systems has provided key insights into the role of 

trait variation in these systems (Rabinovich and Himschoot, 1990; Focks et al., 1993a,b; 

Bomblies et al., 2008; Eckho, 2011; North et al., 2013; Killeen and Chitnis, 2014). However, 

these studies rely on computer simulations that are not analytically tractable, and require 

very detailed biological data for accurate parameterization. For example, there is no 

straightforward way to determine which traits are important by performing an elasticity or 

sensitivity analysis (e.g., Brady et al., 2016; Section 4.1 below). They are useful in that they 

provide predictions tightly linked with biological data in specific scenarios or systems, but 

do not yield generalizable information about the relationships between parameters and 

transmission.

In summary, vector trait variation has been incorporated in various ways in a large body of 

previous studies. This has provided important insights into how much vector population 

dynamics matter to VBD dynamics. However, most studies do not address trait variation and 

mechanistic links between traits systematically or comprehensively, and typically exclude a 

potentially important class of trait variation in the form of interaction traits. Below, we 

present a framework for incorporating the effects of the full suite of vector trait variation and 

covariation, through the vector’s individual fitness and abundance dynamics, to VBD 

dynamics. Our objective is not to encourage any one study to tackle the full scope of the 

challenge inherent in a fully trait-based approach, but to provide a conceptually unified 

framework that puts into context previous efforts, and which can help future theoretical and 

empirical studies to prioritize which aspects of the challenge to tackle first. It can also 

provide a general modeling scaffold that can be adapted for focal VBD systems and 

questions. Ultimately, we hope that this will facilitate the development of approaches for 

modeling and empirically validating fully trait-based VBD systems. To motivate the need for 

trait-based approaches, we first provide an example to illustrate how mechanistically 

incorporating traits into VBD models can lead to novel predictions about vector population 

dynamics and therefore transmission.
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INCORPORATING TRAIT VARIATION MECHANISTICALLY INTO VBD MODELS: AN 
EXAMPLE

We use the effect of temperature on trait variation (a type of environment-driven variation; 

Figure 1C) and model its effect on transmission as an example, and show how a mechanistic 

trait-based approach can be used to understand the importance of specific traits though 

sensitivity analyses. Temperature is a ubiquitous driver of trait variation in both adult and 

juvenile vector traits. To incorporate this trait variation and co-variation among traits into 

transmission, we model the effects of temperature-driven life-stage specific trait variation on 

vector population dynamics by deriving a mechanistic model for population density, V. This 

model applies to any class of vector with holometabolous life stages such as mosquitoes. We 

consider this trait-based abundance model to be mechanistic because, for example, unlike 

the statistical model derived by Parham and Michael (2010), it depends explicitly on the 

vector’s intrinsic growth rate, rm, which is itself derived from multiple traits using life-

history theory. Full details of the model are provided in SI section 3. Briefly, rm is a function 

of adult peak fecundity (bpk), age-related fecundity-decline rate (κ), adult mortality rate (μ) 

and juvenile development time (α) and juvenile mortality (μJ). Variation (and co-variation) 

in each of these traits across temperature is characterized by the thermal performance curve 

of each trait. By incorporating such environment-driven trait variation into a vector 

population abundance model we can derive the R0 of the disease dynamic over time (Figure 

2). The transmission compartments of the model can apply to a wide range of pathogens and 

parasites.

We contrast this trait-based model with a phenomenological modeling approach that has 

been used in previous studies. Under the previous approach, abundance (V) is directly 

associated with temperature by fitting a time-series model or where abundance is assumed, a 
priori, to follow a sinusoidal function (Bacaër and Guernaoui, 2006; Bacaër, 2007; Bacaër 

and Ouifki, 2007; Bacaër and Ait Dads, 2012; Hoshi et al., 2014; Johnson et al., 2018; Ng et 

al., 2018). This results in a disease dynamic where R0 tracks temperature variation with 

some time lag (Figure 2). In contrast, using the trait-based approach that maps traits through 

parameters to vector population size, vector populations emerge earlier in the year and 

persist later into the cooler late summer season with a dip in the warmest period of the 

summer. These differences in V in turn extend the period of annual transmission with an 

early and late summer peak. The trait-based model predicts a longer transmission season 

than the phenomenological model and a decrease in transmission risk in the warmest period. 

The latter result contradicts the general “warmer is better for vectors” view (also see 

Mordecai et al., 2013). These results are also consistent with those of Molnár (2013), who 

used metabolic theory to mechanistically model the effect of temperature-driven trait 

variation on infection rate of an endothermic host by a nematode parasite. They found that a 

continuous spring-to-fall transmission season morphed into two distinct transmission 

seasons as the climate warmed. In both cases, these novel predictions arise from 

mechanistically linked trait thermal performance curves, in contrast to the simpler sinusoidal 

seasonal forcing of vector population size. The similarity in predicted disease dynamics 

across these very different systems suggests that mechanistically incorporating trait variation 

can reveal general constraints on VBD systems — in this case, the effect of temperature on 

VBD dynamics through life-history traits.
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The example we have developed here also illustrates a key theoretical point we raised at the 

start. If vector traits change at the same or shorter timescales (here, driven by within-year 

temperature change) than the rate of pathogen transmission, the classical approach will fail 

to capture important aspects of contemporary and future disease dynamics (Anderson and 

May, 1981; Heesterbeek and Roberts, 1995; Bacaër, 2007) because they do not capture how 

variation in key vector traits or parameters (e.g., a, b, c, μ) interact, and how this sets the 

timescales of the dynamics. In our example, this timescale of abundance fluctuations, set by 

the inverse of growth rate rm arises from the mechanisms built in via the underlying traits.

A Trait Sensitivity Analyses

A major advantage of a mechanistic trait-based approach is that it allows investigation of the 

impact of different, covarying traits on disease dynamics through underlying (fitness) effects 

on population growth and abundance. For example, a trait sensitivity analysis of the 

population intrinsic growth rate, rm, in the above trait-based model allows us to investigate 

the relative importance of juvenile versus adult traits in determining effects of temperature 

on abundance (and therefore transmission) (Figure 3, SI section 4). This leads to a key 

insight: juvenile traits are expected to play a major role in determining vector intrinsic 

growth rate, abundance, and transmission across temperatures. In particular, the thermal 

sensitivity of abundance (V) and the underlying population intrinsic growth rate (rm) is 

driven by the temperature-driven variation in larval stage traits. Such results provide 

quantitative targets for validation using field data. Sensitivity analyses of transmission 

measures with respect to traits also allow key traits to be identified, guiding further empirical 

and theoretical work on the contributions of traits to VBD system dynamics. For example, 

hypotheses can be tested about how different control strategies targeting specific traits could 

work using such a model.

TOWARDS A TRAIT-BASED FRAMEWORK FOR VBD RESEARCH

As the above example illustrates, incorporating trait variation mechanistically in VBD 

models can capture novel dynamics and provides the opportunity to investigate the relative 

importance of individual traits for VBD transmission. In the field of VBD dynamics 

research, a framework for implementing such a trait-based approach is largely missing. We 

now present a framework for incorporate infection, life history, and interaction traits— and 

variation in these traits within individuals, populations, and across environments—into 

models of VBD dynamics. This scaffold can be adapted for any focal VBD system, trait(s), 

and environment of interest to ask specific questions about how trait variation affects 

dynamics. The framework is illustrated in Figure 4, with a more detailed description in SI 

Section 2.

In general, a fully trait-based VBD model or empirical study should contain all of the 

following elements, but with the level of detail and model complexity depending on the 

system and research questions of interest:

1. Transmission compartments for each focal host and vector species: For 

example, the SIR compartments as in the Ross-Macdonald type models (e.g., HS, 
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HR) with additional j host sub-compartments (HJ) specified for particular 

systems.

2. Vector life history compartments: These would include the commonly used 

susceptible and infected (adult) vector sub populations (VS, VI), as well as vector 

juvenile life stage subpopulations, starting at birth (V0) and followed by l 
immature stage compartments (Vl) specified depending on the vector species. In 

adult stages, we include the potential for k additional stages (Vk) leading to 

infectious adults (VI).

3. Species interaction compartments: These represent the abundance of species 

other than the vector or host that influence the VBD dynamic. This necessarily 

adds considerable complexity to the VBD model, but a feasible starting point 

would be to identify single consumer and resource populations (C1, R1) that have 

the biggest impact, either indirectly by modulating vector life history (e.g., 

mortality) or transmission (biting rate) traits, or directly by changing vector 

abundance. This could be altered to include other types of interactions, including 

competition and mutualism.

4. Trait Variation: A suite of traits needed to model trait to parameter mappings 

need to be identified as well as models for variation in those traits along at least 

one dimension (such as with-environment dz/dE) (Figure 1). The extent to which 

these traits affect vector population abundance and transmission rate can be 

determined with iterative model development and trait sensitivity analyses (e.g., 

Figure 3).

5. Mechanistic Links Between Traits: The traits should be mechanistically linked 

such that they covary in a biologically meaningful way. This may be 

accomplished either by developing empirically determined, phenomenological 

models of trait covariation, or by modeling how multiple underlying traits 

together affect a VBD dynamics parameter through shared bio-mechanical and 

metabolic constraints. We note that such covariation may not always be 

important, which can again be understood by iterative model development and 

trait sensitivity analyses.

We do not show explicit linkages between trait variation, consumer-resource, and life history 

sub-compartments in Figure 4 because these will vary with VBD system. For example, in 

the case of most aphid-transmitted diseases, the resource (R) and host (H) are often the 

same. For other vectors, such as Anopheles mosquitoes and Ixodes ticks, the transmission 

relevant hosts (H) may make up only a proportion of the resources (R) that regulate growth 

and reproduction (e.g., LoGiudice et al., 2003; Donnelly et al., 2015). While not all 

compartments presented in Figure 4 are necessary for all VBD systems or questions, the full 

framework provides a means to conceptualize how traits can be incorporated into specific 

systems and scenarios and identify which types of trait variation need to be investigated.
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Implementing Trait-Based Approaches

In practice, a trait-based framework can be broken down into four (sequential) components, 

each a mapping (→) to be quantified through empirical studies coupled with mathematical 

modeling:

1. Trait→Parameter

2. Trait-Variation→Fitness

3. Fitness→Population Dynamics

4. Population Dynamics→Disease Dynamics

We now explain each of these components and consider approaches for tackling them. We 

emphasize that we are not advocating that every study tackle each of these components. 

Specific studies or research programs may focus on all or a portion of these components 

depending on question being addressed and theoretical or data limitations. For example, in 

Section 4, we tackled steps 2–4 without considering species interactions. Additionally, 

tackling component 1 would have entailed deriving the life history traits bpk, μ, etc. and 

transmission traits a, b, etc. explicitly from underlying traits, instead of assuming they have 

particular empirically derived forms as we did (SI Section 4). We did not attempt to map 

traits on to parameters or incorporate species interactions because more data are needed on 

the mechanistic basis of parameters. This lack of data is a major challenge for trait-based 

approaches which we will discuss below.

Trait→Parameter

A key component of any trait-based framework is the mapping of trait values onto 

mathematical VBD model parameters (Figure 4). Deconstruction of parameters into their 

underlying traits bounds the parameter’s feasible range (parameter space) and reveals how 

different parameters are linked (e.g., two parameters may share an underlying trait) and 

therefore may covary. Advances in biomechanical and metabolic approaches offer an 

opportunity to link physical and performance traits (e.g., size-scaling) and naturally link 

traits together mechanistically (e.g., using metabolic rates; Charnov, 1993; Brown et al., 

2004; McGill et al., 2006; Amarasekare and Savage, 2012; Pawar et al., 2015b). For 

example, body size drives not just adult vector biting rate, but also its fecundity and 

mortality rates. Recent advances in metabolic modeling also offer an opportunity to 

determine encounter rate parameters between vectors and hosts (Dell et al., 2011, 2014; 

Pawar et al., 2012, 2015a; Gilbert et al., 2014; Rizzuto et al., 2018) and even capture within-

host parasite dynamics (Kirk et al., 2018). To illustrate the potential of such approaches and 

the fundamental importance of Trait→Parameter mappings, we derive vector biting rate 

mechanistically using a combination of biomechanics and ecological metabolic theory (SI 

Section 2.1). This allows us to deconstruct biting rate into component traits, yielding new 

insights into how biting rate may vary with adult vector body size at emergence, and how it 

may co-vary with other traits such as fecundity and mortality rate. Empirical studies on 

specific vectors are crucial for validating such trait-parameter models. Ideally, such studies 

should measure multiple traits simultaneously (for example biting rate, fecundity, 
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development time, and mortality rate) so that covariances between traits can also be 

validated.

Trait-Variation→Fitness

The second key component is to use Trait→Parameter mappings to quantify how variation 

in a vector’s traits affects its population-level fitness: the weighted average of fitness values 

across its trait variants. For example, variation in and covariation between in biting rate, 

fecundity, and mortality would together affect population fitness (e.g., rm). Mapping any of 

the three types of trait variation (Figure 1) onto vector population fitness requires the re-

definition of the parameters as functions (e.g., p(z), dz/dt, dz/dE; Figure 4), ideally 

constructed mechanistically using Trait-Parameter mappings (previous component). Our 

example (SI Section 3) serves to illustrate this, as we explicitly derived population fitness 

using environment-driven trait variation. Here again empirical studies on specific vectors 

that measure multiple traits simultaneously so that they can be related to vector fitness (e.g., 

by mapping them to maximal growth rate, rm, as we have done in Section 3) are crucial 

(Ohm et al., 2016).

Fitness→Population Dynamics

The third component is to quantify how trait variation determines vector population 

abundance or dynamics over time through fitness. This requires the construction of dynamic 

models for stage-structured vector population dynamics that incorporate trait variation 

(Figure 4). Initial progress can be made by empirically measuring trait variation (in contrast 

to deriving Trait→Parameter and Trait-Variation→Fitness mappings) and plugging it into 

stage-structured population dynamics models (e.g., Brand et al., 2016). In our example trait-

based model (Figure 2), we took such an approach, mapping empirically validated (Sharpe-

Schoolfield type) temperature-dependent trait variation onto a vector fitness and abundance 

model. To derive more analytically sophisticated methods, two promising approaches are 

trait-driver theory and integral projection models. Trait driver theory uses methods inherited 

from quantitative genetics to study how trait variation drives abundance dynamics (Norberg 

et al., 2001; Webb et al., 2010; Enquist et al., 2015), but has not yet been applied to stage-

structured population growth. Integral projection models (Coulson, 2012; Rees et al., 2014; 

Metcalf et al., 2016) are a promising approach to tackling this challenge (Smallegange et al., 

2017; Struckman et al., 2019). For example, because body-size is a key physical trait that 

affects multiple traits and also changes with life stage (over time), integral projection models 

that incorporate size-driven changes in life history traits across stages would be a promising 

avenue for applying these methods to vector population dynamics. After initial theoretical 

development in this direction, additional realism such as carryover (e.g., maternal) effects 

across life stages may be incorporated for specific VBD systems (Lorenz and Koella, 2011).

One important element of realism that affects stage-structured population growth that we 

have included as optional compartments in our general framework is the effect of species 

interactions (Figure 4). There is increasing interest in incorporating species interactions into 

VBD dynamics (Keesing et al., 2010). This is an area of ongoing investigation not just in 

VBD research, but in ecology in general. Species interactions impact life history traits, 

especially fecundity and mortality, by shifting them from the baseline, interaction-
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independent values (Roux et al., 2015). For example, in consumer-resource interactions, 

fecundity increases with availability of the vector’s resources (vector-resource or vector-host 

interaction), and mortality with the vector’s consumers (vector-predator interaction). 

Tackling this challenge will require mathematical models paired with complementary 

empirical studies that tractably include the impacts of species interactions on baseline life 

history parameters, especially fecundity and mortality. One relatively simple way to make 

progress in this direction is allow life history parameters (e.g., development rate, fecundity, 

and mortality) to be affected by species interactions, circumventing the complexity of 

explicitly adding consumer-resource dynamics to vector population and disease dynamics.

Population Dynamics→Disease Dynamics

The final component is to combine trait-based vector population dynamics and transmission 

rates into a model of VBD disease dynamics (Figure 4). To achieve this, two theoretical 

issues in particular need to be addressed. First, how trait variation determines the timescale 

of vector population fluctuations relative to the timescale of disease dynamics needs to be 

modeled and empirically validated. Our example (Section 4) illustrates this issue. A trait-

based approach that derives the timescales of population fluctuations mechanistically would 

“naturally” be able to reveal whether and when the separation of the timescales of 

population and disease dynamics, implicit in classical (compartment-type) VBD models, is 

valid. In our worked example, this separation was clearly not justified. Second, in addition to 

vector traits that affect vector population dynamics, models and data are needed on 

transmission traits (e.g., biting rate a, P, b, and c in eqn. 1). In many cases, these 

transmission traits will be the same as those determining fitness. For example, both, 

encounter rate with host and with the vector’s resources (or predators) are determined by 

body size through velocity and detection distance (SI Section 2.1). Indeed, the host is the 

primary or sole resource in many vectors (e.g., aphids) which links transmission parameters 

directly to the vector’s fitness though biting and feeding rate.

KEY CHALLENGES

The above components for implementing a trait-based VBD modeling approach share four 

key challenges to differing degrees: data- how to prioritize experiments and report data; 

parameterization- how to link model components to empirical data; model selection and 

validation- how to choose and validate the most parsimonious models at each step.

Data

Data availability is a serious constraint on model development. New data collection efforts 

are underway in several disease systems. To achieve the most from trait studies, data should 

be reported at the most disaggregated level possible, including multiple, individual-level 

measurements over time where possible. Beyond individual studies, consolidating datasets 

with individual measurements into common formats would allow for the identification of 

gaps and coordinated data collection efforts to specifically target the traits and conditions 

that are data-poor. Toward this goal, we have recently launched a hub for storing and 

accessing vector trait data (www.vectorbyte.org) and a platform for coordinating data 

collection efforts (www.vectorbite.org).
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Parameterization

Accurately quantifying trait variation in vectors at the population level is a major barrier to 

developing models that map trait values onto vector population and disease dynamics. In 

addition to identifying and incorporating empirical trait measurements from the literature to 

match model parameters, the variation and uncertainty in the traits must be quantified. Using 

approaches that allow quantification and propagation of uncertainty from traits through to 

population and disease dynamics, such as Bayesian inference, is critical (Clark, 2007; 

Johnson et al., 2015). In addition, parameter sensitivity and elasticity analyses in trait-based 

models (Figure 3) are needed to provide insights into the variation in and covariation 

between traits driving VBD dynamics, and determine which traits are particularly important. 

For example, trait variation in both juveniles and adults may need to be incorporated 

simultaneously into VBD dynamics models (Figure 3).

Model Validation and Selection

A fundamental goal of trait-based VBD research should be to determine the conditions and 

systems in which vector traits drive significant variation in disease dynamics and spread 

(e.g., through R0). This requires validation of models, ideally with data on the spatial or 

temporal distribution of traits or environmental drivers as predictors. In contrast to inference 

or calibration of a model, validation is the process of assessing how well a parameterized 

model can replicate data that was not used for parameter inference or calibration (i.e., out-

of-sample prediction) (Hooten and Hobbs, 2015). Validation of the entire framework will 

require data on trait variation and population growth rates, abundance variation and disease 

incidence data over space and/or time. It is not realistic for one study to accomplish this. 

However, the advantage of this component-based approach is that each component embodies 

a meaningful research direction that can stand alone.

Ultimately, much of the potential complexity across all the components of a trait-based VBD 

modeling approach arises from the number of trait and variation types that need to be 

considered for building a minimal adequate model for a given system and scenario. This 

reemphasizes the importance of sensitivity analyses to determine the adequate level of 

complexity.

Overall, model complexity is a major hurdle that trait-based approaches will need to tackle. 

We emphasize that previous studies have lacked the massive data on both traits and 

abundances that are now becoming available. There has been a recent burst in the 

development of methods to predict population dynamics by using traits such as metabolic 

rate, fecundity, mortality and inter-species interaction rates, to constrain model parameters. 

We are advocating for a more concerted effort to use these advances in the field of VBD 

research. Depending on the availability of data (e.g., on species’ traits from a particular 

location) and the goal of the forecasting (e.g., short- vs. long-term) researchers and 

practitioners need to be equipped to switch between approaches lying in the spectrum from 

fully mechanistic trait-based (therefore complex) models, through simpler classical 

compartment and Anderson-May type models, to purely phenomenological and statistical 

modeling. For example simple first order auto-regressive linear models work surprisingly 

well for short term forecasting (Johansson et al., 2019; Li et al., 2019). But for forecasting 
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over longer spatio-temporal scales, trait-based approaches will be needed. These approaches 

are particularly important in the face of ever-increasing underlying regime shifts in VBD 

dynamics as well as external controls on vector populations.

Efforts to develop hierarchical model validation methods for the types of complex trait-

based dynamical models described here are ongoing (LaDeau et al., 2011; Johnson et al., 

2013, 2014; Sun et al., 2015). These include Bayesian methods, which allow quantification 

of uncertainty and the incorporation of prior data (Clark, 2007; Hooten and Hobbs, 2015). 

Not only do the statistical methods for VBD dynamical systems need to be refined, but as 

they are developed it is important that these methods are made accessible for non-

statisticians doing research in this area. This requires training a new generation of 

researchers in both the new modeling techniques so they can develop models that include 

details such as behavior, as well as statistical techniques appropriate for parameterizing and 

validating the models as they are developed. It is inevitable and useful that multiple models 

will be built to address the same question within any of the compartments of a trait-based 

framework (Johnson and Omland, 2004). For example, there are multiple ways to predict 

population growth from underlying life history traits (Amarasekare and Coutinho, 2013). 

Comparing the predictions from multiple models allows us to identify which models are 

most appropriate for a particular questions and systems. The VBD community can facilitate 

this critical step in creating useful models by making validation data sets and code used to 

generate models publicly available and accessible, and standardized metrics of goodness-of-

fit or similar should be reported for all models against validation sets (Johansson et al., 

2019). These steps would enable model comparison and multi-model ensembles to be used 

for future predictions.

CONCLUSION

Building a fully trait-based approach to modeling VBD dynamics is not the “quick and easy 

path” (Kershner and Lucas, 1980). It is data-hungry and requires extensive efforts to build 

models that integrate knowledge about processes from the individual to populations and 

beyond. However, in comparison to phenomenological approaches (e.g., correlative or data 

mining approaches such as high-dimensional regression analyses) taking a more mechanistic 

approach, in general, provides a better way to extrapolate dynamics across time or space 

(Bayarri et al., 2009). Moreover, multiple modeling approaches should be compared (Shaw 

et al., 2019), and simulation and mathematical modeling approaches can be combined 

(Perkins et al., 2013). Mechanistic understanding and extrapolation are critical goals in light 

of the rapid rates of disease emergence and changes in climate and other environmental 

drivers, beyond regimes that have historically existed on Earth. By explicitly modeling the 

variation in a given trait and its effect on evolutionary fitness, population dynamics, and 

transmission, trait-based approaches could be used to incorporate trait evolution into 

transmission models. For instance, although we have focused on traits that directly affect 

vector population growth in idealized conditions, the addition of other traits that are 

mediated by human intervention, such as insecticide resistance, is also possible within this 

framework. The evolution of insecticide resistance is arguably the largest challenge to 

sustainable management of vector-borne diseases. A trait-based approach has the potential to 

better predict the implications of both current (e.g., chemical pesticides) and emerging 
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control measures (e.g., genetically altered vectors) that inherently alter traits, while 

suggesting innovative and nuanced ways to apply control in a way that to anticipate changes 

driven by the inherent complexities of these systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1 |. 
Types of trait variation found in all VBD systems. (A) Across-individuals: variation in a trait 

(z) within a population within a temporal snapshot, here illustrated using the probability of 

biting of individuals in a population at a particular age (Cator et al., 2013). (B) Individuals 

over time: for example, biting probability may vary over an individual vector’s lifespan 

(Cator et al., 2013). Such variation can be represented as a continuous time-dependent 

function dz/dt, where dz is the differential change in trait variation change with time (dt) of 

an individual. (C) Environmentally driven: For example, biting rate varies unimodally with 

temperature (Dell et al., 2011; Mordecai et al., 2013). Such variation is quantifiable as a 

continuous environmental state-dependent function, dz/dE. (D) Combined variation: The 

three types of trait variation may appear in combination. For example, across individuals in 

the population, trait variation may change over time both in terms of trait mean and variance 

(upper line) or just the mean (lower line). Although we use derivatives to represent over-

time, with-environment and combined types of trait variation, in reality, it may not always be 

possible to express these as smooth functions for empirical reasons.
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FIGURE 2 |. 
An example trait-based model for malaria transmission. We illustrate here the contrast in 

models and resulting dynamics produced from trait-based vs. phenomenological approaches. 

Both models cover a time scale of one year and seek to predict the fluctuation in 

transmission risk or rate (R0) during that period. Full details of both models can be found in 

SI section 3.
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FIGURE 3 |. 
An example vector trait sensitivity analysis. (A) The temperature-dependence of maximal 

growth rate (rm) (black line) and its sensitivity to adult (peak fecundity bpk, age-related 

fecundity decline rate κ adult mortality rate μ; red dashed line) and juvenile traits (juvenile 

development time α and mortality μJ; blue dashed line) combined. When juvenile traits are 

held constant with respect to temperature, the temperature dependence of rm changes more 

substantially (deviation of the blue dashed curve from the black one) than when adult traits 

are held constant (deviation of the red dashed curve). Thus juvenile traits have a stronger 

influence than adult traits in shaping the response of population fitness to temperature. The 

vertical dashed line marks the thermal optimum of fitness. To the left of this temperature the 

fitness of the population is increasing (when rm > 1 the population is growing). To the right 

of the thermal optimum the fitness of the population starts to decrease (when rm < 1 the 

population is declining). (B) The sensitivity of rm’s temperature dependence to that of each 

underlying trait can be assessed by decomposing the derivative of rm with respect to 

temperature (black line) into partial contributions (the differently colored lines) of each 

trait’s temperature dependence (using the relationship 
drm
dT =

∂rm
∂bpk

∂bpk
∂T +

∂rm
dα

dα
dT +

∂rm
dμ

dμ
dT +

∂rm
dμJ

dμJ
dT + ∂r

dk
dk
dT . Here the curves of the traits closest to 

the black curve contribute more to the temperature sensitivity of rm (thus, development rate 

and juvenile mortality have the strongest contributions). When a curve has a positive value 

on the y-axis (positive derivative), it means that the trait increases with temperature in that 

temperature range (as can be seen in A; also see SI section 4.1). Temperatures where the 

curve is negative are temperatures at which the trait value is decreasing as temperature 

increases. (C) The same result as B, but traits combined by life stage, as in A. Full details of 

the trait sensitivity analysis are in SI Section 4.
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FIGURE 4 |. 
The trait-based framework for vector-borne disease systems. For illustration, we have used 

mosquitoes as the vector, but this framework can be applied to any vector with distinct stage 

or age classes (further details in SI). Arrows between panels represent parameters 

(potentially with underlying traits) that determine population or disease dynamics. Disease 

dynamics compartments: Number of Susceptible (S), Infected (I), and Recovered (R) hosts 

(HS, HI, HR, respectively; additional compartments, HJ, can be added) and number of 

Susceptible, Infected, and Exposed (E) vectors (VS, VI, VE respectively). Vector population 

dynamics compartments: number of vector individuals at egg, larval pupal and adult stages 

(V0, V1, V2, VS respectively; additional compartments Vk can be added); Species interaction 

compartments: Abundance of a single resource species (R1) that is the primary energy 

source of the vector population (may actually be the host itself, i.e., R1 = HS), and a single 

consumer species (C1) that is the primary source of mortality for the vector population 

(additional species can be added); Trait variation: A suite of trait to parameter mappings that 

determine vector population fitness (e.g., vector mortality, fecundity and biting rates), and a 

single type of trait variation, such as variation with an environmental factor (dz/dE; e.g., 

temperature; see Figure 3). For developing a mathematical model of such a system, the most 

common tool would be ordinary differential equations (ODEs), as illustrated in SI Sections 

1–2.
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