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Abstract

Spectral computed tomography (CT) has a great superiority in lesion detection, tissue 

characterization and material decomposition. To further extend its potential clinical applications, 

in this work, we propose an improved tensor dictionary learning method for low-dose spectral CT 

reconstruction with a constraint of image gradient ℓ0-norm, which is named as ℓ0TDL. The ℓ0TDL 

method inherits the advantages of tensor dictionary learning (TDL) by employing the similarity of 

spectral CT images. On the other hand, by introducing the ℓ0-norm constraint in gradient image 

domain, the proposed method emphasizes the spatial sparsity to overcome the weakness of TDL 

on preserving edge information. The split-bregman method is employed to solve the proposed 

method. Both numerical simulations and real mouse studies are perform to evaluate the proposed 

method. The results show that the proposed ℓ0TDL method outperforms other competing methods, 

such as total variation (TV) minimization, TV with low rank (TV+LR), and TDL methods.
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1. Introduction

As an imaging tool, x-ray computed tomography (CT) has been widely applied in clinical 

diagnosis, industrial detection and security inspections [1,2]. However, there are some 

inherent weaknesses in the conventional CT. First, the traditional CT images have no 

sufficient tissue contrast resolution and material decomposition analysis capability [3]. 

Second, the dose is relatively high which implies high risks especially for children [4]. 

Fortunately, the multi-energy CT (spectroscopic, spectral or color CT) has attracted 
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continuous attentions for its superior performance in term of material decomposition, tissue 

characterization and lesion detection [5,6].

Dual energy CT (DECT), as the simplest spectral CT, has been used in many applications, 

such as material decomposition [7], abdomen angiography detection [8], and pulmonary 

artery sarcoma and pulmonary embolism identification [9]. However, the DECT has two 

main limitations. First, the DECT still utilizes the energy-integrating detectors and results in 

spectral overlap. Second, the DECT only acquires two attenuation intensities at either two 

different x-ray source spectra or two energy windows. Thus, only limited material 

decomposition maps can be discriminated from the dual energy CT data [10].

Different from the DECT, the state-of-the-art spectral CT scanner (e.g. MARS [11]) employs 

photon-counting detectors (PCDs) to record the energy of each individually incoming x-ray 

photon by converting the electronic pulse signal of the quanta to the corresponding peak 

amplitudes of photon energy [12]. Thus, we can obtain the material decomposition maps 

from multiple projection datasets in different energy bins after a series of post-processing 

steps. Indeed, the spectral CT has achieved tremendous successes in low-dose CT [13], 

contrast media imaging [14], and K-edge imaging [15]. However, many physical effects can 

introduce errors in the number and energy of photons measured by the PCD [16]. One non-

ideal effect is that photons are recorded in incorrect energy channels due to cross-talk. 

Another non-ideal effect is the overlap of energy window which means photons with energy 

outside of the window thresholds can contribute to the energy window measurement. All of 

these can result in noisy measured dataset by the PCD. This leads to lower signal noise ratio 

(SNR) measurements and compromises the material decomposition results [17]. As pointed 

out by the MARS’s team [11], it is a primary challenge to generate accurate and clean 

volumetric material images for spectral CT. To further extend the clinical applications of 

spectral CT (breast spectral CT [18], solitary pulmonary nodules spectral CT [19], etc.), in 

this work we will address the low-dose spectral CT reconstruction issue.

To obtain high quality reconstructed spectral CT images from noisy projection datasets, a 

number of image reconstruction methods have been reported. Elbakri et al. constructed a 

penalized-likelihood function for the multi-energetic model and further developed an 

ordered-subsets iterative method to estimate the unknown material for each voxel [20]. Xu et 

al. considered each channel spectral projection data as an independent traditional dataset and 

applied the total variation (TV) penalty to reconstruct interior ROI spectral images [21]. To 

suppress the disturbance of global intensity and protect the image edge, a PRISM (prior 

rank, intensity, and sparsity model) technique was utilized for multi-energy CT 

reconstruction [22,23]. Xu et al. developed dictionary learning methods for the conventional 

low-dose CT image reconstruction and spectral CT reconstruction [24]. To achieve high-

quality spectral breast CT images from few-view projections, a tight-frame based iterative 

reconstruction (TFIR) technique was investigated in [25]. Sawatzky et al. explored a multi-

channel penalized weighted least squares (PWLS) estimator to improve image quality [26]. 

Rigie and La Rivière incorporated a total nuclear variation (TVN ) into the Chambolle and 

Pock primal-dual algorithm for spectral CT [27]. Because a small patch often contains only 

one or two materials, a patch-based low-rank penalty was proposed for sparse-view kVp 

switching-based spectral CT [5]. Xi et al. designed two types of united iterative 
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reconstruction (UIR) algorithms to characterize the structure correlations of images in the 

energy domain [28]. To suppress noise within a narrower energy bin in spectral imaging, a 

high-quality spectral mean image as prior information was introduced into the prior image 

constrained compressed sensing (PICCS) algorithm [29] and then generated spectral PICCS 

[30]. To exploit the correlations among all the dimensions simultaneously and edge-

preserving/enhancement, Semerci et al. combined a tensor nuclear norm (TNN) with TV for 

multi-energy reconstruction [31].

The tensor dictionary learning (TDL) was derived from the conventional vectorized 

dictionary [32] learning by extending vector-matrix to higher tensor data for obtaining better 

image classification results [33]. A decomposable nonlocal tensor dictionary learning 

(DNTDL) further considered the non-local similarity of tensor patch for multispectral image 

(MSI) denoising [34]. An orthogonal tensor dictionary learning was developed for dynamic 

texture recognition [35]. Considering the image similarity of reconstructed images among 

different time frames, the TDL was also applied to 4D CT reconstruction [36]. Recently, a 

TDL method was developed by considering the similarity of spectral CT images from 

different energy channels [37]. Although such TDL for spectral CT reconstruction algorithm 

can obtain a relatively better performance in preserving fine structures, it is not good at 

preserving edge information.

As a regularization term, the image gradient ℓ0–norm minimization was introduced in image 

smoothing [38] and then was applied to image segmentation [39], sparse linear hyperspectral 

unmixing [40], sparse blind deconvolution [41,42], image restoration [43] and breast tissue 

classification [44]. To maintain the inherent image edges and reduce limited-angle artifacts, 

the ℓ0-norm of image gradient was introduced into limited-angle CT reconstruction [45]. 

Very recently, Yu et al. proposed an iterative reconstruction method based on the image 

gradient ℓ0–norm minimization to recover the image from incomplete datasets smeared by 

sparse-view and limited-angle artifacts [46]. The main advantage is the image gradient ℓ0-

norm penalizes the number of non-zero image gradient rather than the image gradient 

magnitudes. As a result, the proposed method is less sensitive to the intensity changes, and it 

can reserve edge directions and recover fine structures. The image gradient ℓ0-norm also 

emphasizes image spatial sparsity, which can reduce artifacts and improve the ability of 

denoising for the proposed algorithm.

To overcome the aforementioned limitations of the TDL method, we combine the image 

gradient ℓ0-norm minimization and the TDL technique to generate an ℓ0TDL algorithm. The 

contributions of this work are mainly threefold. First, to suppress the staircase artifacts and 

overcome the parameter selection issue derived from the TV constraint, we incorporate the 

image gradient ℓ0-norm into the functional of the TDL method to generate the ℓ0 TDL 

algorithm. Second, an efficient alternating direction minimization method (ADMM) is 

developed for the proposed ℓ0TDL model for low-dose spectral CT iterative reconstruction. 

Third, the ℓ0TDL parameters are optimized with extensive experiments. The proposed ℓ0TDL 

method has the following advantages: (i) introducing the image gradient ℓ0-norm to 

encourage the TDL-based method to recover fine structures and edge information; (ii) 

improving the image sparsity to further suppress noise and reduce image artifacts.
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The rest of this paper is organized as follows. In section II, we briefly review the traditional 

TDL algorithm and image gradient ℓ0-norm minimization. In section III, we establish the 

ℓ0TDL mathematic model and the corresponding split-bregman solution, and the parameters 

for ℓ0TDL method are also analyzed. In section IV, both numerical simulations and 

preclinical mouse studies are performed to evaluate the developed algorithm. In section V, 

we discuss some related issues and conclude the paper.

2. Reconstruction method

2.A. Tensor dictionary learning

A tensor is a multidimensional data array. A Nth order tensor can be defined as 

X ∈ ℛI1 × I2 × … × IN, whose element is xi1 × i2 × …iN, 1 ≤ in ≤ In and n = 1, 2, …, N. 

Particularly, if N equals 1 or 2, the corresponding tensor would be degraded into a vector or 

matrix. A tensor can also be multiplied by a vector or a matrix. Therefore, the mode-n 

product of a tensor X by a matrix H ∈ ℛJ × In can be defined by 

X ×n H ∈ ℛI1 × I2 × … × In − 1 × J × In + 1 × … × IN, whose element in 

ℛI1 × I2 × … × In − 1 × J × In + 1 × … × IN can be calculated by in = 1
In xi1 × i2 × …iNℎj × in. In 

this work, we only consider the case that X is a 3rd tensor.

Suppose that there are a set of 3rd-order tensors X t ∈ ℛI1 × I2 × I3 and t = 1, 2, …, T. The 

tensor-based dictionary learning can be converted to solve the following optimization 

problem:

argminD, αtt − 1

T
X t − D ×4 αt F

2 s . t . αt 0 ≥ L, (1)

where D = D k ∈ ℛI1 × I2 × I3 × K is the tensor dictionary, and K and L represent the 

number of atoms in the dictionary and the sparsity level, respectively. ‖ • ‖F and ‖ • ‖0 

represent the Frobenius- and ℓ0-norm, respectively. The K-CPD algorithm can be employed 

to train a tensor dictionary [47]. The solution of objective function (1) can be obtained by 

using the alternative direction minimization method (ADMM). The first step is to update the 

sparse coefficient matrix by using the multilinear orthogonal matching pursuit (MOMP) 

technique and fixing the tensor dictionary D[47]. Then, the second step is to update the 

tensor dictionary with fixed sparse coefficient matrix. With the alternative update 

procedures, the desired tensor dictionary and the corresponding sparse representation 

coefficients can be achieved simultaneously.

2.B. Tensor dictionary learning for spectral CT

The TDL model for 2D spectral CT reconstruction can be expressed as follow [37],
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arg min
X, αr, mr s = 1

S
Axs − ys 2

2 + λ
r

ℤr X − Dm ×4 mr − D ×4 αr F
2 +

r
κr αr 0

.
(2)

where X ∈ ℛI1 × I2 × S and Y ∈ ℛJ1 × J2 × S are respectively the 3rd-order reconstructed 

image and projection data tensors, I1 and I2 are width and height of the reconstructed image, 

J1 and J2 present the number of detector and projection views, S is a number of energy 

channels, xs and ys are respectively the vectorized sth image and projection, A is the system 

matrix which depended on the system scanning structure and calculation method, mr 

presents the mean vector of each channel, the operator ℤr is used to extract rth small tensor 

block (N × N × S) from X and αr ∈ ℛK is the sparse representation coefficient of rth tensor 

block. The D = D k ∈ ℛN × N × S × K is the trained tensor dictionary and 

D = D k ∈ ℛN × N × S × S represents the mean removal process [48]. The parameters of κr 

is a factor to modulate representation precision and the sparsity level, and λ is designed to 

balance the data fidelity term and the sparse representation regularization. The system 

matrix A from specified scanning configuration has a large impact on the parameter λ. To 

make parameter λ more stable, it can be expressed as follow

λ =
ηS

i1 = 1

I1
i2 = 1
I2 ATA i1i2

r s = 1

S

i1 = 1

I1
i2 = 1
I2 ℤr

Tℤr i1i2

, (3)

where the symbols [·]i1i2 and [·]i1i2s represent the (i1, i2)th element of a matrix and (i1, i2, s)th 

element of a given tensor, respectively. The parameter η is a scaled parameter to balance the 

data fidelity term and sparse representation regularization term. To solve the optimization 

problem (2), an alternating minimization strategy for X, mr and αr was proposed in [37] and 

the method can be divided into three steps. The first step aims to minimize X by updating X 
using Eq. (4)

Xi1i2s
n + 1 = Xi1i2s

n

−
AT Axsn − ys i1i2 + λ rℤr

T ℤr Xn − Dm ×4 mrn − D ×4 αrn i1i2s

ATA i1i2 + λ rℤr
Tℤr i1i2s

,
(4)

where the operator ℤr
T rearranges a tensor patch into the reconstructed image tensor space. 

Then, mrn + 1 can be updated by calculating the following sub-problem

mrn + 1 = arg min
mr

ℤr Xn + 1 − Dm ×4 mr − D ×4 αrn F
2 . (5)

In the last step, the sparse representation matrix αrn + 1 can be updated as Eq. (6)
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αrn + 1 = arg min
αr

ℤr Xn + 1 − Dm ×4 mrn + 1 − D ×4 αr F
2 + κr αr 0 . (6)

2.C. Image gradient ℓ0-norm minimization

Image gradient ℓ0-norm, different from the natural image ℓ0-norm, has been proposed to 

enhance image smoothing [38] and extended to image segmentation, visual enhancement, 

etc. It also has been applied to the limited-angle and sparse angle problems, resulting high-

quality CT images [45,46]. The ℓ0-norm of image gradient can be denoted as

∇xs 0 = p # p ∂xxsp + ∂yxsp ≠ 0 , (7)

where #{·} is a counting operator and p (p = 1, 2, …, I1 × I2) index the location of (i1,i2)th 

element in the image. The ∂xxsp and ∂yxsp represent (xs(i1,i2) − xs(i1 − 1, i2)) and (xs(i1,i2) − 

xs(i1,i2 − 1)), respectively. If |xs(i1,i2) − xs(i1 − 1, i2)| + |xs(i1,i2) − xs(i1,i2 − 1)| ≠ 0, the 

counting operator would add 1. Eq. (7) shows that the gradient magnitude is not considered 

by the ℓ0-norm. That is to say, greater gradient magnitudes are not penalized by the image 

gradient ℓ0-norm which results in an effective preservation of edge information and fine 

structures.

3. ℓ0TDL reconstruction method

3.A. ℓ0TDL mathematic model

Because the image edges and fine structures are corrupted by severe noise in low-dose 

spectral CT reconstruction, the TDL may fail to recover high-quality edge information from 

such an undersampling dataset. To achieve a better image with more accurate edge 

information and less noise suppression, it is natural for us to combine the image gradient ℓ0-

norm minimization and TDL technology. As a result, we formulate an image reconstruction 

framework as follow:

arg min
x, αr, mr s = 1

S
Axs − ys 2

2 + μ
s = 1

S
∇xs 0

+ λ
r

ℤr X − Dm ×4 mr − D ×4 αr F
2 +

r
κr αr 0 .

(8)

3.B. Solution

Because Eq. (8) contains three searched-for variables, we further divide it into three sub-

problems:

Xn + 1 = arg min
x s = 1

S
Axs − ys 2

2 + μ
s = 1

S
∇xs 0

+ λ
r

ℤr x − Dm ×4 mrn − D ×4 αrn F
2 ,

(9a)
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mrn + 1 = arg min
mr

ℤr Xn + 1 − Dm ×4 mr − D ×4 αrn F
2 , (9b)

αrn + 1 = arg min
αr

ℤr Xn + 1 − Dm ×4 mrn + 1 − D ×4 αr F
2 + κr αr 0 . (9c)

Eqs. (9b) and (9c) can be easily solved by following the same steps in [37]. Eq. (9a) contains 

the ℓ0-norm of image gradient and tensor dictionary based sparse representation, which is 

non-convex and non-deterministic polynomial hard (NP-hard) problem. To solve this 

optimization problem effectively, we employ an alternating direction minimization method 

(ADMM). First, we introduce an auxiliary variable us. Eq. (9a) can be re-expressed as a 

constrained optimization model:

arg min
X s = 1

S
Axs − ys 2

2 + λ
r

ℤr x − Dm ×4 mrn − D ×4 αrn F
2

+ μ
s = 1

S
∇us 0, s . t . us = xs,

(10)

where us is an auxiliary matrix in ℛI1 × I2 for the sth energy channel which is an element of 

tensor U in ℛI1 × I2 × S. Thus, the scaled augmented Lagrangian function of problem (10) 

[49] can be written as

arg min
X, U, T s = 1

S
Axs − ys 2

2 + λ
r

ℤr X − Dm ×4 mrn − D ×4 αrn F
2

+ μ
s = 1

S
∇us 0 + β

s = 1

S
xs − us − ts F

2 ,
(11)

where ts is an auxiliary variable in ℛI1 × I2 for the sth energy channel which is a cell of 

tensor T in ℛI1 × I2 × S. In fact, the ADMM method is utilized to iteratively and alternately 

solve Eq. (11) with respect to X, U and T. β is the Lagrangian multiplier for all energy 

channel. The split-bregman algorithm of Eq. (11) contains the following three steps:

Xn + 1 = arg min
x s = 1

S
Axs − ys 2

2 + λ
r

ℤr x − Dm ×4 mrn − D ×4 αrn F
2

+ β
s = 1

S
xs − usn − ts

n
F
2 ,

(12)

Un + 1 = arg min
U

μ
s = 1

S
∇us 0 + β

s = 1

S
xsn + 1 − us − ts

n
F
2 , (13)
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Tn + 1 = Tn + Un + 1 − Xn + 1 . (14)

In this work, the solution of Eq. (12) can be given by the separable surrogate method and the 

form can be expressed as follow:

Xi1i2s
n + 1 = Xi1i2s

n

−
AT Axsn − ys i1i2 + λ rℤr

T ℤr Xn − Dm ×4 mrn − D ×4 αrn i1i2s + β xsn − usn − ts
n

i1i2
ATA i1i2 + λ rℤr

Tℤr i1i2s + β
.

(15)

Eq. (13) includes the ℓ0-norm minimization of image gradient, resulting in a non-convex and 

NP-hard problem. Fortunately, an approximate method was proposed in [38] to solve this 

problem. For the approximate method, another two auxiliary variables (ℎs
p, vsp) corresponding 

to the gradients (∂xusp, ∂yusp) are introduced. Therefore, Eq. (13) can be converted into the 

following problem

usn + 1 = arg min
us, ℎs, νs p

xsp
n + 1 − usp − ts

p n
F
2

+ λ ∗ Γ hs, vs

+ τ ∂x usp − ℎs
p 2 + ∂y usp − νsp

2 ,
(16)

where λ ∗ = μ/β, Γ ℎs, νs = p ℎs
p + νsp ≠ 0 , (xsp)n + 1 and (tsp)n are components of the pth 

pixel in (n + 1) and n iterations, and τ aims to balance the similarity between (hs,vs) and 

(∂xusp, ∂yusp). Γ(hs,vs) can be expressed as:

Γ hs, vs = pΛ ℎs
p + νsp , (17)

where

Λ ℎs
p + νsp = 1if ℎs

p + νsp ≠ 0
0otherwise

. (18)

Because Eq. (16) contains three variables, we also employ the split-Bregman scheme, i.e. 
updating one or multiple variables and fixing others. Thus, the optimization problem of Eq. 

(16) can be divided into the following two steps:

hs
m + 1, vsm + 1 = arg min

hs, vs p
∂x usp

n − ℎs
p 2

+ ∂y usp
n − vsp

2

+ λ∗

τ Γ hs, vs ,
(19)
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usn + 1 = arg min
us p

xsp
n + 1 − usp + ts

p n
F
2

+ τ ∂x usp − ℎs
p m + 1 2

+ ∂y usp − vsp
m + 1 2

(20)

Substituting Eq. (17) into (19), we have:

hs
m + 1, vsm + 1 = arg min

hs, vs p
∂x usp

n − ℎs
p 2 + ∂y usp

n − vsp
2

+ λ∗

τ Λ ℎs
p + vsp

(21)

Because each pixel usp is considered independent in the iterative process of (21), we can 

separate each pixel so that it can be addressed independently. Thus, Eq. (21) can be rewritten 

as

ℎs
p m + 1, vsp

m + 1 = arg min
hs, vs p

∂x usp
n − ℎs

2 + ∂y usp
n − vs

2

+ λ∗

τ Λ ℎs + vs .
(22)

For Eq. (22), the energy function can easily reach its minimum with the optimization criteria 

as follows:

ℎs
p m + 1, vsp

m + 1 = 1 ∂x usp
n 2

+ ∂y usp
n 2

≤ λ∗

τ
0otℎerwise

. (23)

Now, let’s consider Eq. (20). Because the function is quadratic, even a gradient descent 

method can make it shrink to a global minimum solution. Alternatively, we employ a fast 

analytic technique [46,50] which integrates diagonalization derivative operators after Fast 

Fourier Transform (FFT). Therefore, the solution of formula (20) reads,

usn + 1 = F−1 F xsn + 1 − ts
n + τ F∗ ∂x F∗ℎs

m + 1 + F∗∂y F∗vsm + 1

F 1 + τ F∗ ∂x F∗∂x + F∗ ∂y F∗∂y
. (24)

Where F  and F∗ represent Fourier transform and conjugate Fourier transform respectively. 

The Eq. (13) can be solved by employing the gradient image ℓ0-norm minimization 

algorithm. In summary, the corresponding pseudo code is presented in Algorithm 1.

In order to unify the ℓ0-norm gradient term parameter β and the parameter λ of tensor 

dictionary term, the parameter β can be given as follow,
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β =
σS

i1 = 1

I1
i2 = 1
I2 ATA i1i2

r s = 1

S

i1 = 1

I1
i2 = 1
I2 ℤr

Tℤr i1i2

, (25)

where σ is a scaled parameter to balance the ℓ0-norm gradient term and the data fidelity term 

and dictionary learning term. To perform the proposed ℓ0TDL algorithm for low-dose 

spectral reconstruction, we summarize the main workflow as Algorithm 2.

3.C. Selection of parameters

The minimization problem in Eq. (8) includes two regularization terms which need a number 

of parameters for optimization. First, the TDL term mainly includes three parameters: sparse 

level L. precision level ε and the number of atoms K. In fact, K can be fixed by satisfying 

K>N×N×S (N is the patch size) and K is set as 1024 [37] in this work. Second, the image 

gradient ℓ0-norm based optimization framework mainly depends on the smoothness control 

factor λ* in this study [46]. To balance the functions of two regularization programs, the 

regularization parameters σ and η are introduced. Different choices of these parameters may 

lead to different reconstructed images. To study the performance of the ℓ0TDL algorithm 

with respect to different parameters, we only relax one or two free parameters while other 

parameters are fixed. To quantitatively evaluate the performance of different parameters for 

the proposed algorithms, the indexes of root means square error (RMSE), feature similarity 

(FSIM) and structural similarity (SSIM) are employed on parameter selection, reconstructed 

channel images and decomposed material images.

(1) Regularization parameters σ and η: In this study, we explore the influence of 

different regularization parameters on the image quality by extensive experiments. Fig. 2 

shows that the differences are small with respect to different σ in term of RMSE. The greater 

the parameter σ is, the higher the SSIM and FSIM are, especially for high energy channels. 

However, a greater σ can make the reconstructed image blur and further lose finer structures 

(see Fig. 3). Because a great σ value is set, the composition of image gradient ℓ0-norm results 

in an over-smoothing image. Therefore, it is very important to make a trade-off between σ 
and image quality based the specified reconstruction requirements. The parameter η controls 

the proposition of TDL in the model. The stronger relationship among different energy 

channels is, the bigger parameter η is. To demonstrate the effect of η on the image quality, 

we set η as a series of values. Fig. 3 presents the image quality with respect to different η 
values. From Figs. 3 and 4, we can infer the parameter η may have little impact on image 

quality when it is compared with σ. It is necessary to emphasize that the regularization 

parameters σ and η are dep endent each other. Again, if the image gradient ℓ0–norm part is 

fixed, we can reach an optimization solution by empirically adjusting the parameter η.

(2) TDL parameters ε and L: It is observed from Figs. 3 and 5 that the parameter ε 
plays an important role in controlling the final reconstructed images. A greater ε can 

improve the image quality to some extent, but it will also induce the loss of finer structures. 

A smaller ε may have poor performance in anti-noising and results in some salt and pepper 
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noises, especially for high-energy channels. To investigate the effect of the sparsity level L 
on image quality, a series of different L values are selected and the assessment results are 

displayed in Fig. 6. From Figs. 3 and 6, we can observe that a lower sparsity level may 

results in better results in terms of protecting the image edge-information. Contrary to 

general expectation, a higher sparsity level may lose finer structure information.

(3) Smooth factor λ*: The parameter λ* is designed to control the smoothness of the 

reconstructed image. A greater λ* not only improves the image quality but also protects the 

image edge, which is validated by the experiment results shown in Figs. 3 and 7. According 

to Eq. (23), it is easy for us to understand that the parameter λ* can not be continuously 

increased without any limitation. Otherwise, the reconstructed image will be oversmoothing 

and the edge information will be lost.

4. Experiment results

In this study, we employ both numerical simulations and real spectral data to validate and 

evaluate the proposed algorithm. The traditional filtered back-projection (FBP), TV 

minimization, TV+LR and TDL algorithms are implemented and chosen as comparisons. 

The FBP and TV were done on all energy channels one-by-one. All the aforementioned 

approaches are carried out on a PC (16 CPUs @3.40 GHz, 32.0 GB RAM) in Matlab 

(2017b). For all the iterative methods, the initial images are set as FBP reconstruction, the 

iteration number is 200 for numerical simulations and 100 for real experiments. Moreover, 

we employ the ordered subset SART (OS-SART) technique [51] to accelerate the 

convergence, where the subset number is fixed to 10. For the TDL and ℓ0TDL methods, the 

full-projection-based FBP reconstruction is employed for global tensor dictionary training. 

Finally, the optimized parameters of the proposed method are listed in Table 1 for 

reconstruction.

4.A. Numerical simulations

4.A.1. Sparse-view image reconstruction—In the numerical simulations, we 

employ a simulated mouse thorax phantom, where 1.2% iodine contrast agent is injected to 

the blood circulation (Fig. 8) [52]. A 50 KVp x-ray spectrum is utilized, and it is divided 

into 8 energy channels: [16, 22) keV, [22, 25) keV, [25, 28) keV, [28, 31) keV, [31, 34) keV, 

[34, 37) keV, [37, 41) keV, and [41, 50) keV [37]. The geometrical protocol is as follows: the 

distances from x-ray source to the PCD and rotation center are 180 mm and 132 mmr 

respectively; the PCD consists of 512 units and each of which is 0.1 mm; the size of 

reconstructed channel image is 256 × 256 × 8 and each pixel covers an area of 0.15 × 

0.15mm2. We collect 640 projections for each full scan, and the default photon number is 

500 0 for each x-ray beam. For all the simulations, Poisson noises are superimposed on the 

obtained projections.

To demonstrate the advantages of our proposed algorithm in recovering high-quality images 

from sparse-view projections, reconstructed images from 160, 106 and 80 views are shown 

in Figs. 9–11, along with the counterparts from other competing algorithms. For simplicity, 

we only show the reconstructed images for the first energy channel.
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To fairly compare the image quality for different algorithms, the parameters in the 

competing and proposed methods are optimized based on the RMSE minimization strategy, 

and the cases with minimal RMSEs are selected for further comparison. The reference 

image is reconstructed by the FBP algorithm from full noise-free data. From the results in 

Figs. 9, 10 and 11, one can see that the proposed method can obtain the best image quality 

compared with other competing techniques. Compared with the FBP, TV, TV+LR and TDL 

algorithms, our algorithm can not only remains the image edge information but also has 

good performance in improving the capability of anti-noising and further recovering minor 

structures. The magnified regions of interest (ROIs) (Figs. 9–11) and the corresponding 

gradient images confirm the huge advantages of the developed ℓ0TDL technique. To 

quantitatively evaluate the performance of different techniques in sparse-view 

reconstruction, the results of RMSE, SSIM and FSIM are listed in Table 2. The quantitative 

analysis results of FBP are omitted in Table 2. Table 2 shows that the ℓ0TDL method has the 

smallest RMSE in all the representative channels (1st, 4th and 8th channels) over all 

different sparse view projections, followed by the TV+LR method which has slightly smaller 

RMSE than the TDL for lower energy channels. The TDL algorithm slightly outperforms 

the TV+LR method for higher energy channels. Obviously, the TV minimization based 

iterative algorithm has the largest RMSE in all channels. Comparing the images from 

different sparse views, we can observe that the greater the number of projections is, the 

higher the image quality is. Especially, when the projection number equals to 160, it 

becomes clear for the fine soft tissues and the surrounding of bony structures. The same 

conclusions are made from the indexes of FSIM and SSIM, which usually measure the 

similarity between two images. As we can see from Table 2, with the increase of energy 

channel index, the signal noise ratio decreases and the image quality becomes worse.

The attenuation coefficients of three basis materials (soft, bone and iodine) and the relative 

biases are compared for 80 views. A relative bias is computed as the ratio between the 

absolute bias and the corresponding mean value of the reference in an energy channel. For 

simplicity, we demonstrate the results from 80 views with different iterative algorithms in 

each channel in Fig. 12. The reference mean values of different materials are generated by 

FBP algorithm from noisy-free projection dataset. The TV method tends to smooth small 

structures and results in the greatest relative bias for bone (up to 10.0% in channel 8) in 

sparse views reconstruction. Of course, the disadvantage remains in the TV+LR algorithm 

where the greatest relative bias can reach 9.2% in 8th channel. The mean values of bone 

ℓ0TDL images are the most accurate and the relative biases are below 1.8% in all channels. 

The next one is the TDL algorithm. For the iodine contrast agent, because of the spectral 

flattening effect near the K-edge of iodine, the TV+LR has a poor performance with a 14.9% 

relative bias in channel 6, and the relative biases from other techniques are no more than 

2.5%. Particularly, the relative biases of iodine from the ℓ0TDL are below 1.6%. Regarding 

the soft tissues, the relative bias in energy channel 8 from the TV+LR reaches 3.6%. 

However, the relative biases of the TV and ℓ0TDL methods are only below 0.8%. From the 

corresponding mean values of different algorithms for the soft tissue, one can see the ℓ0TDL 

has minimal values compared with other methods in lower energy channels, and it is 

comparable with the TV based method in higher energy channels.
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To evaluate the performance of the proposed ℓ0TDL method on the decomposition accuracy 

of three basis materials, the reconstructed spectral images from 80 projections by the TV, TV

+LR, TDL and ℓ0TDL are decomposed into bone, soft tissue and iodine contrast agent, 

respectively. The decomposed results of three basis materials and the corresponding color 

images are shown in Fig. 13. From the first row of Fig. 13, we can see the TV, TV+LR and 

TDL methods wrongly classify the bony region, and the ℓ0TDL has a unique advantage on 

the most accurate bone components. For the soft-tissue component decomposition, the 

results with the proposed ℓ0TDL provide much finer structures compared with other 

competing techniques (2nd row in Fig. 13). As for the iodine decomposition, it seems the 

TDL and ℓ0TDL offer similar accuracy in contrast with the TV and TV+LR algorithms.

In order to investigate the convergences of the proposed ℓ0TDL and other competing 

methods, the convergence curves in terms of averaged RMSEs vs. iteration number are given 

in Fig. 14. Compared with other competing algorithms, the ℓ0TDL method can converge to 

an optimized solution quickly with a smaller RMSE. From Fig. 14, for the ℓ0TDL method, 

one can see that the RMSE decreases rapidly at first and then it is subsequently stable after 

40 iterations.

All the reconstruction algorithms are implemented under the same condition. For the case of 

80 projections, the TV, TV+LR, TDL and ℓ0TDL methods take 4.60, 4.70, 5.54, 10.68 s per 

iteration, respectively. The proposed ℓ0TDL optimization needs longer time than other 

competing methods due to the image gradient ℓ0–norm minimization. Given the fact that the 

image gradient ℓ0–norm optimization process is implemented channel by channel, this 

process can be implemented in parallel on GPU.

4.A.2. Low-dose reconstruction—To evaluate the performance of the proposed ℓ0TDL 

algorithm for low-dose reconstruction, we generate low-dose projection datasets by reducing 

the photon number of each x-ray path. The photon number from the source are set as 4 × 103 

and 3 × 103 to simulate different low-dose levels, respectively. Because the photon number 

of each x-ray is reduced, the projection dataset will be further smeared by Poisson noise. 

Fig. 15 presents different channel images reconstructed from low-dose projection datasets 

with 80 views using different methods. From Fig. 15, we can see that our proposed ℓ0TDL 

method can provide much finer structures compared with other methods.

Algorithm 1

Image gradient ℓ0-norm minimization.

Input: W ← Xn+1 – Tn, m ← 0, Un ← 0, λ*, τ(0) = 2 λ*, τmax = 105;

Output: Un+1;

While (τ ≤ τmax)

 do

  For s=1:S

  Updating {(ℎs
p)m + 1, vsp)m + 1} using Eq. (23);

  Updating usm + 1 by employing Eq. (24);
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  end

  τ ← 1.1 × τ,m ← m + 1;

end while

Un+1 ← Um

Returning the intermediate result Un+1

Algorithm 2

ℓ0TDL.

Input:

TDL parameters: η, ε, K: = 1024, L and other parameters.

ℓ0–norm minimization parameters: σ, λ*, τ0 ← 2λ, τmax ← 105.

Initialization of X(0), U ← 0, T ← 0;

Output: reconstructed low-dose image X

Part I: Dictionary training

 Normalizing the full projection datasets;

 Obtaining reconstruct images utilizing FBP from full projection noisy datasets or real datasets;

 Extracting patches and training a global tensor dictionary D using the K-CPD.

Part II: low-dose image reconstruction

 While the stopping criteria are not satisfied

 do

  Updating Xn+1 by Eq. (15);

  Updating Un+1 utilizing algorithm I;

  Updating Tn+1 by Eq. (14);

  Updating mn+1 based on Eq. (5);

  Updating αn+1 by adopting the MOMP algorithm;

 Positive constraint on Xn+1;

 end while

 Denormalizing the reconstructed image.

Returning the final result X

To quantitatively analyze the performance of our proposed algorithm for low-dose 

reconstruction, the averages of RMSE for different channel are given in Table 3. For the 

photon number 4 × 103, the average RMSE of different channels using the analytic FBP 

method is greater than other iterative techniques. The TV-based regularization algorithm has 

a maximum RMSE value, followed by the TDL and TV+LR. Of course, our proposed ℓ0TDL 

can reach a minimal RMSE among all the competing methods. In terms of SSIM and FSIM, 

the ℓ0TDL method always has the maximal values compared with other methods.

To test the performance of our proposed algorithm for accuracy of basis material 

decomposition, the RMSEs between the reference image, which is reconstructed by FBP 

algorithm with normal dose and noisy-free projection data, and reconstructed image from 

low-dose projection reconstruction with all iterative methods were given in Table 4. From 
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the results, we can see the ℓ0TDL algorithm always obtains the minimal RMSEs of all basis 

materials.

4.B. Realistic mouse dataset reconstruction

To demonstrate the advantages of the proposed ℓ0TDL algorithm for low-dose spectral 

reconstruction in practical applications, an injected gold nanoparticles (GNP) mouse is 

scanned by a CT system including one x-ray source and one photon counting detector. In 

this system, the distance from the x-ray source to the PCD is set as 255 mm, the distance 

between the x-ray source and rotation axis is 158 mm, and 371 projections are uniformly 

acquired over a full scan circular trajectory. The energy spectrum of x-ray source is divided 

into 13 channels via multiple scans, i.e., 13 images can be reconstructed for one slice. The 

PCD consists of 512 elements, each of which covers a length of 0.11 mm, and the radius of 

FOV is 9.21 mm. The detector offset for this datasets was 1.0 mm. Fig. 16 shows some 

representative channel images reconstructed by the FBP algorithm from full projections, 

where each channel image is a matrix of 512 × 512 covering an area of 18.41 × 18.41mm2. 

From Fig. 16, we can see the reconstructed images include severe artifacts, implying that the 

real dataset is severely tainted by noise and the result in the dataset has a low signal noise 

ratio (SNR). This case can be considered as the low dose real projection dataset. Thus, we 

only investigate the sparse view reconstruction for this real dataset.

To validate the performance of proposed the ℓ0TDL method on sparse views reconstruction, 

Fig. 17 demonstrates the results from 120 views of the channel 1. From the two extracted 

ROIs A and B, we can observe the proposed method has the best ability of protecting image 

edge. From the magnified ROI B, we can see the x-ray beam-hardening artifacts can be 

further reduced using our method. The image gradient ℓ0–norm can penalize the sparsity in 

image gradient domain, which may result in reduced beam-hardening artifacts. Fig. 18 

shows three basic material decomposition of Fig. 17. From Fig. 18, one can see the most 

accuracy material decomposition can be obtained by the proposed algorithm compared with 

other competing techniques. In terms of the rendered color image, the image edge of the 

ℓ0TDL method is more clearly than other algorithms.

Fig. 19 shows the relative results of 80 projections from different methods. From the first 

row, we can observe that the images reconstructed by the FBP and TV methods contain 

severe artifacts. The TV-based method can induce staircase artifacts in the reconstructed 

image and further smeared some finer structures. The TV+LR method can not distinguish 

the structures indicated by the red and yellow arrows. For the TDL method, the region 

indicated by the yellow arrow is polluted by severe artifacts. It is very difficult to distinguish 

the bone edge. As indicated by the red and yellow arrows, the edge information is well 

protected in the reconstructed image from the ℓ0TDL method.

To further investigate the behavior of the ℓ0TDL algorithm in sparse views reconstruction, 

the reconstructed results from only 40 projections using different methods are given in Fig. 

20. From the magnified ROIs A and B, we can see the ℓ0TDL has a great potential in 

preserving image edge, which is confirmed by bone boundaries indicated by red arrows. 

From the viewpoint of material decomposition, the TV+LR method can make wrongly bone 
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material decomposition. The edge of boneusing the ℓ0TDL method is protected very well 

compared with other iteration algorithms.

5. Discussion and conclusions

To penalize the image gradient for preserving image edge information from each channel 

and improve the anti-noising capability of the TDL method, we develop an ℓ0TDL algorithm 

for low-dose spectral CT reconstruction. By incorporating the image gradient ℓ0–norm into 

the TDL based reconstruction framework, the image quality of channel reconstructions is 

dramatically improved, especially in the cases of low-dose and sparse-view reconstruction. 

Both numerical simulations and realistic preclinical mouse study confirm that the proposed 

ℓ0TDL algorithm outperforms the TV, TV+LR, and TDL methods.

The fine image structure and sharp image edge provide relatively greater image gradient 

magnitude, which can be easily smoothed during the course of the total variation 

minimization. However, the number of non-zero components of the sharp image edge is 

always a constant. Because the image gradient ℓ0–norm only concentrates on calculating the 

number of non-zero values contained in reconstructed gradient image, it implies that the 

image gradient ℓ0–norm can protect image edges and keep fine structures. The ℓ0TDL 

algorithm also has advantages in suppressing ring artifacts. Fig. 21 shows the full-

projection-based images by the TDL and ℓ0TDL approaches. The artifacts (indicated by the 

red arrows) can be reduced by our algorithm around the bone region. We also show the 

difference images reconstructed from different number of projections (Fig. 21), where a full-

projection-based reconstruction image by the ℓ0TDL is chosen as reference. Comparing the 

difference images, we can see the outstanding performance of our proposed algorithm in 

sparse view reconstruction.

A natural question is that if the proposed ℓ0TDL outperform the TV based TDL method. 

That is, what will happen if we relax the ℓ0-norm to ℓ1-norm for the image gradients. To 

further explore the advantages of the ℓ0TDL in preserving image edges, we also implement 

the TV+TDL and compare it with our ℓ0TDL algorithm. Fig. 22 shows the results for the 

case of 80 views of numerical simulations. From Fig. 22, we can easily find that the ℓ0TDL 

method can better recover fine structures and protect image edge information than the TV

+TDL method. Meanwhile, the realistic experiments demonstrate consistent conclusions. 

Note that the number of non-zero components of each energy-channel is almost equal. 

Compared with the TV based TDL method, the regularized parameter of the ℓ0-norm term in 

the ℓ0TDL can be set as a uniform value.

Although exciting results have been achieved by using the developed ℓ0TDL method, there 

are still some issues. First, numerous parameters in the ℓ0TDL method, including the 

regularization and control parameters, need to be optimized. In this work, we select the 

parameters empirically based on extensive experiments. This indicates the parameter 

influence in light of image quality assessment. However, the theoretical analyses and 

optimizations are still open problems that need to be further investigated. In addition, in our 

proposed ℓ0TDL algorithm, the global tensor dictionary is trained from prior image 

reconstructed by the FBP from full projections. However, such a global tensor dictionary is 

Wu et al. Page 16

Appl Math Model. Author manuscript; available in PMC 2020 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not available in some cases. For those circumstances, we have to utilize sparse-view 

projection based reconstruction image or other similar images to train the tensor dictionary, 

which may compromise the image quality. In this case, we may employ the adaptive 

dictionary learning technique to train and update the tensor dictionary during the iteration 

process from low-dose datasets with more computational cost.

In conclusion, we propose an ℓ0TDL algorithm based on a global tensor dictionary and 

image gradient ℓ0for low-dose spectral CT reconstruction. The developed ℓ0TDL method can 

not only well maintain fine structures and image edges, but also reduce beam-hardening 

artifacts especially in the areas of bone. This will be extremely meaningful for low-dose 

spectral CT reconstruction.
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Fig. 1. 
The flowchart of the ℓ0TDL method.
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Fig. 2. 
Image quality assessments of the reconstructed images for the ℓ0TDL method with respect to 

different σ.
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Fig. 3. 
Representative image slice of the mouse thorax phantom (channel 1) reconstructed by the 

ℓ0TDL algorithm with different parameter settings. Each column represents different values 

of the same parameter and the rest parameters are fixed. The display window is [0 3] cm −1.
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Fig. 4. 
Same as Fig. 2 but for different η.
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Fig. 5. 
Same as Fig. 1 but for different ε.
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Fig. 6. 
Same as Fig. 2 but for different L.
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Fig. 7. 
Same as Fig. 2 but for different λ*.
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Fig 8. 
The mouse thorax phantom (left) and the corresponding gradient image (right).
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Fig. 9. 
Reconstruction results of the modified mouse thorax phantom. The first two rows are the 

reconstructed and gradient images from 160 projections and the last two rows are the 

magnified images of ROIs A and B. The display window of the reconstructed images is [0 3] 

cm−1 and the gradient images are in [0 0.8] cm −1.
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Fig. 10. 
Same as Fig. 9 but from 106 projections.
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Fig. 11. 
Same as Fig. 9 but from 80 projections
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Fig. 12. 
Mean values and the corresponding relative biases for bone (1st column), iodine contrast 

agent (2nd column) and soft tissue (3rd column).
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Fig. 13. 
Material decomposition results of images reconstructed by different algorithms from 80 

projections. The 1st to 3rd rows are the decomposed bone, soft tissue and iodine contrast 

agent components, respectively. The 4th row is the true color images where red, green and 

blue regions represent the three basis materials. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)

Wu et al. Page 32

Appl Math Model. Author manuscript; available in PMC 2020 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 14. 
The convergence curves in terms of average RMSE vs. iteration number.
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Fig. 15. 
Reconstructed images from low-dose projections. The 1st and 3rd columns are channel 1 

images in a display window [0 3] cm−1, and the 2nd and 4th columns are channel 8 images 

in a display window [0 0.8] cm−1. The first two columns are reconstructed from datasets 

with 4 × 103 photons, and the last two columns are reconstructed from datasets with 3 × 103 

photons. From the 1st to 5th rows, the images are reconstructed by the FBP, TV, TV+LR, 

TDL and the proposed ℓ0TDL algorithms, respectively.
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Fig. 16. 
From the left to right columns, images are reconstructed for the 1st, 4th, 9th and 13th 

channels and the display window is [0, 0.8] cm−1
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Fig. 17. 
Same as Fig. 9 but reconstructed from the 120 projections of realistic mouse dataset. The 

first column is the originally reconstructed image using the FBP algorithm from full 

projections. The display window of the reconstructed images is [0, 0.8] cm−1 and the 

gradient images are in [0, 0.4] cm−1.
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Fig. 18. 
The three basic material decomposition of Fig. 17. From the first to third rows present the 

decomposition of bone, soft tissue and GNP. The fourth row is the fusion color image, where 

the red, green and blue represent the bone, soft tissue and GNP respectively. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 19. 
Same as the Fig. 17 but reconstructed from the 80 projections. The second row images are 

color images instead of gradient images.
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Fig. 20. 
Same as the Fig. 19 but reconstructed from 40 projections.
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Fig. 21. 
Reconstructed images and the corresponding difference images for 1st channel with respect 

to different views using the TDL and ℓ0TDL methods. The display windows of the 

reconstructed images and difference images are [0, 0.8] cm−1 and [−0.3, 0.3] cm−1, 

respectively.
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Fig. 22. 
The first two columns represent the reconstructed and corresponding gradient images from 

the 4th channel of numerically simulated mouse dataset using the TDL and ℓ0TDL methods. 

The display window of the reconstructed image is [0, 0.8] cm−1. The last two columns are 

the same as the first two columns but from the 13th channel of the realistic dataset and the 

display window of gradient images is [0, 0.4] cm−1.
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Table 1

Image reconstruction parameters for both numerical simulation and realistic dataset.

Photon Number Views σ η ε λ* L

Numerical simulation 5 × 103 160 4.80 1.10 1.10 × 10−3 1.80 × 10−4 13

106 5.30 1.40 1.25 × 10−3 2.45 × 10−4 12

80 5.70 1.60 1.50 × 10−3 2.60 × 10−4 11

4 × 103 80 5.80 1.60 1.60 × 10−3 2.60 × 10−4 11

3 × 103 80 6.10 1.90 2.10 × 10−3 3.10 × 10−4 9

Realistic dataset 120 3.20 1.10 7.00 × 10−4 6.50 × 10−5 12

80 5.00 1.40 7.00 × 10−4 8.00 × 10 −5 11

40 5.40 1.60 9.00 × 10−4 1.20 × 10−4 10
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Table 2

Quantitative evaluation of different projection views reconstruction results.

Views RMSE SSIM FSIM

Channel 1st 4th 8th 1st 4th 8th 1st 4th 8th

80 TV 0.1975 0.0677 0.0346 0.9037 0.8988 0.8472 0.8993 0.8908 0.8464

TV+LR 0.1828 0.0633 0.0319 0.9247 0.9184 0.8882 0.9141 0.9102 0.8850

TDL 0.1854 0.0638 0.0285 0.9246 0.9164 0.8893 0.9019 0.9044 0.8770

ℓ0TDL 0.1757 0.0603 0.0269 0.9357 0.9305 0.9050 0.9247 0.9209 0.8957

106 TV 0.1912 0.0679 0.0331 0.9169 0.9039 0.8614 0.9079 0.8976 0.8655

TV+LR 0.1804 0.0629 0.0330 0.9263 0.9235 0.8963 0.9158 0.9146 0.8900

TDL 0.1800 0.0620 0.0275 0.9302 0.9229 0.8958 0.9170 0.9113 0.8849

ℓ0TDL 0.1754 0.0587 0.0267 0.9378 0.9320 0.9087 0.9271 0.9238 0.8986

160 TV 0.1908 0.0661 0.0315 0.9257 0.9097 0.8736 0.9167 0.9023 0.8757

TV+LR 0.1769 0.0617 0.0347 0.9349 0.9287 0.9003 0.9244 0.9195 0.8939

TDL 0.1775 0.0612 0.0271 0.9330 0.9254 0.9008 0.9222 0.9163 0.8932

ℓ0TDL 0.1751 0.0579 0.0264 0.9409 0.9360 0.9124 0.9282 0.9243 0.9031
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Table 3

The quantitative assessment of reconstructed image quality with low-dose projection data (unit: 10−2).

FBP TV TV+LR TDL ℓ0TDL

4 × 103 RMSE 56.02 9.77 9.09 9.13 8.68

SSIM 34.10 88.33 90.71 90.86 92.20

FSIM 48.42 87.99 90.08 89.46 91.27

3 × 103 RMSE 63.91 10.22 9.23 9.68 8.74

SSIM 33.00 85.89 90.38 89.75 91.90

FSIM 47.15 86.11 89.78 88.43 90.96
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Table 4

The RMSEs of different decomposed components (unit: 10−4) with low-dose datasets.

TV TV+ LR TDL ℓ0TDL

4 × 103 Soft tissue 2.9898 3.3274 2.8581 2.7486

Iodine 1.6665 2.2706 1.2139 1.1220

Bone 1.6819 1.6335 1.6732 1.5881

3 × 103 Soft tissue 3.0963 3.3647 3.0116 2.7806

Iodine 1.7836 2.3120 1.3398 1.1974

Bone 1.6929 1.6671 1.7752 1.5993
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