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Abstract

We propose an evolutionary state space model (E-SSM) for analyzing high dimensional brain 

signals whose statistical properties evolve over the course of a non-spatial memory experiment. 

Under E-SSM, brain signals are modeled as mixtures of components (e.g., AR(2) process) with 

oscillatory activity at pre-defined frequency bands. To account for the potential non-stationarity of 

these components (since the brain responses could vary throughout the entire experiment), the 

parameters are allowed to vary over epochs. Compared with classical approaches such as 

independent component analysis and filtering, the proposed method accounts for the entire 

temporal correlation of the components and accommodates non-stationarity. For inference 

purpose, we propose a novel computational algorithm based upon using Kalman smoother, 

maximum likelihood and blocked resampling. The E-SSM model is applied to simulation studies 

and an application to a multi-epoch local field potentials (LFP) signal data collected from a non-

spatial (olfactory) sequence memory task study. The results confirm that our method captures the 

evolution of the power for different components across different phases in the experiment and 

identifies clusters of electrodes that behave similarly with respect to the decomposition of different 

sources. These findings suggest that the activity of different electrodes does change over the 

course of an experiment in practice; treating these epoch recordings as realizations of an identical 

process could lead to misleading results. In summary, the proposed method underscores the 

importance of capturing the evolution in brain responses over the study period.

Key words and phrases:

Auto-regressive model; brain signals; spectral analysis; state-space models; time-frequency 
analysis

Supplementary File
Technical proofs, additional simulation and data analysis results are provided in the supplementary file.

HHS Public Access
Author manuscript
Stat Sin. Author manuscript; available in PMC 2021 July 01.

Published in final edited form as:
Stat Sin. 2020 July ; 30(3): 1561–1582. doi:10.5705/ss.202017.0420.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

The goal of this paper is to develop a novel statistical model for investigating the evolution 

of a brain process duration of a learning experiment. To infer brain neuronal activity, 

electrophysiological recordings such as local field potentials (LFPs) and 

electroencephalograms (EEGs) are commonly used to indirectly measure electrical activity 

of neurons. In this paper, we consider LFPs from multiple electrodes that capture the 

integration of membrane currents in a local region of cortex (Mitzdorf et al., 1985).

In practice, LFPs are the observed spatio-temporal signals at different tetrodes. In a 

motivating example, an olfactory (non-spatial) sequence memory experiment has been 

performed in a memory laboratory to study how neurons learn the sequential ordering of 

presented odors (Allen et al., 2016). In this study, LFP recordings in a rat are obtained from 

an implanted plate with 12 electrodes. One epoch corresponds to about 1 second in physical 

time. We further study the behavior of these LFPs by examining their spectra. In Figure 1, 

we plot the boxplots of the log periodograms across all the epochs from one electrode. These 

plots reveal that LFPs contain power at distinct bands: delta (0–4 Hertz), alpha (8–12 Hertz) 

and the high-beta low-gamma (30–35 Hertz) bands. As an exploratory step, we divide the 

entire experiment into three phases, early, middle, and late phases. In each phase, we 

compute the average periodogram (averaged across epochs) and present them on the left side 

of Figure 2. On the right side, we plot the relative periodogram (obtained by rescaling the 

periodogram so that the relative periodogram for each frequency sums up to 1) and find that 

the spectral power evolves during the course of experiment. During the early phase, power 

has a broad (rather than concentrated) spread across bands. However, at the late phase, 

power seems to be more concentrated at the lower beta band.

In summary, preliminary results suggest that there exists a strong similarity of the LFP 

waveforms across many electrodes. Moreover, the spectra of the LFPs appear to change 

across the epochs in the experiment. In a recent study, Gao et al. (2018) proposed a matrix 

data clustering approach and the results also indicated the existence of spectra heterogeneity. 

Therefore, statistical models that are capable of describing LFP signals’ evolution over the 

course of epochs are largely needed to help understand how the rat learns the sequence of 

the odor presentation.

In the literature, LFPs and other electrophysiological signals are commonly characterized as 

mixtures of different underlying brain oscillatory processes and there have been a number of 

approaches used to estimate these latent independent sources (Whitmore and Lin, 2016; 

Einevoll et al., 2007; Prado and Lopes, 2013). For example, data-adaptive methods such as 

independent components analysis (ICA) and principal components analysis (PCA) can 

provide estimates for the unobserved cortical sources. However, they usually do not take into 

account the spectral structure within underlying sources that could evolve over the course of 

the experiment given multiple epochs. Moreover, without any constraint on the structure of 

the sources, it is extremely difficult to pool information across the epochs in the experiment. 

Recently, Fiecas and Ombao (2016) studied the dynamics of LFPs during the course of 

experiment via Cramér representations. Their approach does not consider low-dimensional 
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representations, which are indispensable to modeling these high dimensional multi-electrode 

LFPs.

To overcome the aforementioned limitations, we develop an evolutionary state space model 

(E-SSM) that explicitly captures the evolutionary behavior in high dimensional time series. 

The E-SSM shares a similar form with the classical state-space model (as in Shumway and 

Stoffer (2013)) but differs in that the parameters are varying across epochs and the mixing 

matrix is unknown and therefore has to be estimated. Moreover, E-SSM manages to capture 

the temporal correlation of each of the latent sources by characterizing them using second 

order autoregressive [AR(2)] processes. The reason for choosing AR(2) is due to its ability 

to capture the precise oscillatory behavior of these latent sources. In particular, by 

parameterizing these sources as AR(2), we can easily constrain the power of each source to 

center at pre-specified frequency bands such as delta (0 – 4 Hertz), alpha (8 – 12 Hertz) and 

high-beta gamma (> 30 Hertz) bands, where the choice of these particular frequency bands 

is due to the standard convention in neuroscience based upon previous electrophysiological 

data analysis (Deuschl et al., 1999). The use of AR(2) mixture here can be viewed as an 

analogy of Gaussian mixture models for classical density estimation problems. Compared to 

the classical methods such as ICA and PCA, the sources produced by E-SSM are more 

directly interpretable in terms of oscillatory properties.

The main contributions of this paper are as follows: (1) The proposed E-SSM model 

provides a rigorous framework in modeling brain activity, connectivity and their dynamic 

behavior during the course of experiments. In particular, our model accounts for the 

temporal evolution/dependence of the spectrum power for particular frequency bands across 

the entire experiment as well as the temporal structure among the latent sources. (2) E-SSM 

gives interpretable results by modeling particular predominant frequency bands that are 

associated with various brain functional states through AR(2) processes. (3) In theory, we 

show that the spectrum of arbitrary weakly stationary time series can be approximated by the 

spectrum of AR(2) mixtures, which gives a theoretical justification of the use of AR(2) 

mixtures. We also give a strong consistency result for the MLE of E-SSM. (4) By applying 

the E-SSM model, one can easily conduct analysis on both of time and frequency domains 

and thus provide a complete characterization of the underlying brain process. (5) Finally, the 

E-SSM model and the proposed estimation method, in general, are intuitive and can be 

implemented easily thanks to the existing theory and algorithm for state space model. 

However, the key difference is the generalization of the multiple epochs setting which allows 

pooling information across epochs and a flexible mixing matrix estimation step.

2. Evolutionary State Space Model (E-SSM)

In this section, we discuss models for inferring latent structures in LFPs and their evolution 

across epochs over the entire experiment. We shall first describe the model for a single 

epoch and then discuss the extension to treat multiple epochs.

2.1 State Space Model for a single epoch

Denote t = 1, ⋯ , T as the time points in a single-epoch and Yt = (Yt(1), ⋯ ,Yt(p))′ as the 

observed LFPs where p is the number of electrodes. For any fixed time point t, we assume 
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that Yt is a mixture of q latent independent source signals St = (St(1), ⋯ , St(q))′, where q is 

the number of spatial source signals. We assume p ≥ q. Then the model can be presented as 

Yt = MSt + ϵt, where M is the mixing matrix, ϵt = (ϵt(1), ⋯ , ϵt(p))′ is noise that follows 

N(0, τ2Ip) and Ip is an identity matrix of dimension p. Each of the independent latent signals 

St(l), l = 1, ⋯ , q models the source that represents oscillatory activity at a set of pre-

specified frequency bands (e.g., delta, alpha and gamma).

Modeling the source signals St—One important parameterization in our model is to 

constrain the sources to have an AR(2) structure such that each represents a particular 

oscillator: delta (δ: 0 – 4 Hertz), theta (θ: 4 – 8 Hertz), alpha (α: 8 – 12 Hertz), lower beta 

(β: 12 – 18 Hertz) and gamma (γ: > 30 Hertz). Recall that an autoregressive operator of 

order 2 is defined by

ϕ(B) = 1 − ϕ1B − ϕ2B2, (2.1)

where B is a backshift operator defined by BℓSt = St−ℓ, and ϕ1, ϕ2 are the corresponding 

coefficients. It can be shown that the spectrum of an AR(2) process with noise level σω is 

fS(ω) =
σw2

1 − ϕ1exp( − 2πiω) − ϕ2exp( − 4πiω) 2  To illustrate its use in practice, we plot the 

spectrum of an AR(2) process with ϕ1 = 1.976, ϕ2 = −0.980, σw = 0.1 in Web Figure 20. It 

can be seen that there is a peak at frequency ω = 10 Hertz, which means that the frequency 

band around ω = 10 Hertz dominates the process and thus produces the most power. This 

property of AR(2) model makes it potentially useful for characterizing brain signals (such as 

LFPs) with oscillations at either broad or narrow frequency band.

We now explain the connection between the AR(2) coefficients and the spectrum (i.e., the 

location and spread of the peak). First, the process is causal when the roots of the 

polynomial in Equation (2.1) have magnitudes greater than 1. Furthermore, under causality, 

Jiru (2008) and Shumway and Stoffer (2013) demonstrate that when the roots of the 

polynomial in Equation (2.1) are complex-valued with magnitude greater than 1, then the 

spectrum attains a peak that is centered around the phase of the roots. Moreover, when the 

magnitude of the roots become larger than 1, the peak becomes less concentrated around the 

phase.

Motivated by this result, we will fix the phase (or argument) of each AR(2) polynomial root 

to model each of the particular bands obtained from previous study results. As noted, fixing 

the phase is consistent with neuroscience standard and thus will not be a constraint in 

practice. In the field of neuroscience, neural oscillations are widely captured at all levels 

such as LFPs, EEG and neuro spike trains (Busch et al., 2009). To characterize those 

oscillatory patterns, one typical approach is to convert the original electrophysiological 

signals to the spectrum domain by Fourier transformation. In this way, oscillations can be 

represented by modulus and phases. Among all the frequencies, the first interesting 

frequency band (alpha band) is introduced by Gerrard and Malcolm (2007). Later on, other 

bands including delta, theta, beta, gamma are being studies from various perspectives. As 

shown in the motivating example in Section 1, our collaborators from neuroscience studied 

the frequency domain behavior and concluded that “low-gamma oscillations were more 
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strongly modulated by temporal context and performance than theta oscillations “ (Allen et 

al., 2016). Thus, by fixing the phase in our model, we are able to maintain consistent with 

neuroscience standard and thus will not be a constraint in practice. To model the evolution 

across epochs, we allow the modulus of the AR(2) polynomial roots to change among 

epochs. As a result, as the phase of the roots for each of the latent independent source 

signals is fixed, the AR(2) process is uniquely determined by the modulus and the variance. 

In practice, the value of modulus controls the spread of the spectrum curves. For an AR(2) 

process St = ϕ1St−1 + ϕ2St−2 + wt, the modulus ρ and phase ψ of the roots of the polynomial 

have the relationship that ϕ1 = 2ρ−1cos(ψ) and ϕ2 = −ρ−2. This result can be seen as an 

analogy of the use of Gaussian mixture model (or any location-scale mixture in general) for 

density estimation.

Generalized state-space model—Following the previous discussion, the latent 

independent spatial source signals are modeled as multivariate AR(2)s, St = Φ1St−1 + Φ2St−2 

+ ηt, where Φ1 = diag(ϕ11, ⋯ , ϕq1), Φ2 =  diag ϕ12, ⋯, ϕq2 ∈ ℝq × q are diagonal matrices, 

and the noise ηt = (η1(t), ⋯ , ηq(t))′ ~ N(0, σ2Iq). The final model can hence be viewed as a 

generalized state-space model:

Y t = MXt + ϵt,
Xt =  ΦXt − 1 +  ηt,

(2.2)

Where Xt = St′, St − 1′ ′,  M = (M, 0) ∈ ℝp * 2q,  Φ =
Φ1 Φ2
Iq 0 , and ηt = ηt′, 0 ′. Note that the 

residual ϵt is assumed to be independent across time t. It implies that all the temporal 

correlations are characterized by the underlying latent signals St. The model in (2.2) is not a 

regular state-space model since the mixing matrix M is unknown. Moreover, following the 

aforementioned discussion, the coefficients of the autoregressive processes are determined 

by the modulus ρ = (ρ1, ⋯ , ρq) and phase ψ = (ψ1, ⋯ , ψq) of the autoregressive 

polynomial roots. Since we are in terested in particular frequency bands, we fix the phase ψ 
and the state equation in (2.2) is parameterized by ρ and σ2.

2.2 Evolutionary State Space Model for multiple epochs

Next, we generalize the model in Section 2.1 to accommodate multiple epochs. We assume 

that across epochs, the mixing matrix M is fixed and the latent independent autoregressive 

processes evolve through the modulus ρ. This assumption implies that the cortical structure 

remains unchanged across epochs for each individual. We denote r = 1, ⋯ , R as the epochs 

in the experiment, then the model is given by

Y t
(r) = MXt

(r) + ϵt
(r), Xt

(r) =  Φ(r),
Xt − 1

(r) +  ηt
(r),

(2.3)

where the definition of Y t
(r),  M, Xt

(r),  Φ(r), ϵt
(r),  ηt

(r) are similar as in Equation (2.2) except the 

additional superscript r for each epoch r.
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In the proposed model, we assume an autoregressive structure that evolves across epochs. 

This assumption is inspired by the preliminary analysis in Section 1 showing that the power 

spectrum evolves during the course of the experiment. Accordingly, the evolutionary 

spectrum of each latent source will be easily captured in an explicit form 

f(r)(ω) =
σw

2(r)

1 − ϕ1
(r)exp( − 2πiω) − ϕ2

(r)exp( − 4πiω)
2  We also assumed that the mixing matrix is 

invariant to epochs. This is due to the fact that the network structure of subjects is not 

changing across phases of experiments. To reiterate, non-stationarity will be captured by the 

AR(2) coefficients.

In the literature, there have been numerous discussions on the identifiability issues of state-

space models (Hamilton, 1994). Indeed, for a general state-space model, the same 

representation can be obtained by applying an orthogonal transformation on matrices. Zhang 

and Hyvärinen (2011) proposed a non-Gaussian constraint to avoid the identifiability issue. 

In this paper, to ensure the uniqueness of the solution, we require that each component of the 

latent independent source signals S(t) to have unit variance and the entries of M are positive.

3. Inference for E-SSM

3.1 Estimating E-SSM

For E-SSM with single epoch, we propose an iterative algorithm that comprises of Kalman 

filter and least squares for parameter estimation purpose. More details are given in Section 3 

of the Supplementary File.

Next we extend the previous method to the multiple epoch setting in Equation (2.3). The 

major challenge lies in pooling information from different epochs in estimating the epoch-

invariant mixing matrix. Inspired by the resampling approach used for modeling time series 

with Gaussian process (Gao et al., 2017) and linear mixed model (Cheng et al., 2014), we 

propose a blocked resampling based approach. The key idea can be summarized as follows: 

we first divide the epochs into blocks; then for each block we estimate the corresponding 

mixing matrix and the epoch-specific AR(2) parameters. These blocks retain the temporal 

sequence of the epochs and the final estimate at a previous epoch serves as the initial 

estimate of mixing matrix at the current epoch. The final estimates of the mixing matrix 

obtained from each block are averaged to produce the estimate for the common mixing 

matrix. For the next step, given the estimated mixing matrix, we follow Algorithm 1 to 

obtain estimates of the epoch-specific AR(2) parameters. The approach is summarized 

below.

II.A We fix the length of the blocked resampling sampler as l. We draw the starting 

epoch index s from the set {1, 2, ⋯ , R−l +1}. Then at current iteration, the blocked 

resampling sampler is Y t
(s)

t = 1
T , ⋯, Y t

(s + l − 1)
t = 1
T

.

A.1. Starting with epoch s, we implement the approach for single epoch in 

Section 2.1 on Y t
(s)

t = 1
T

 to obtain estimates M s .
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A.2. Staring with epoch s + 1 and the initial value M s , we repeat A.1 to obtain 

estimates M s + 1 .

A.3. We repeat A.2 until the last epoch s + l − 1: We denote the final estimates 

M s + l − 1  as the ultimate estimates of resampling sampler 

Y t
(s)

t = 1
T , ⋯, Y t

(s + l − 1)
t = 1
T

. The pipeline of the procedure is summarized 

below.

Y1
(s)

Y2
(s)

⋯

YT
(s)

 M(s)

Y1
(s + 1)

Y2
(s + 1)

⋯

YT
(s + 1)

 M(s + 1)⋯

Y1
(s + l − 1)

Y2
(s + l − 1)

⋯

YT
(s + l − 1)

 M(s + l − 1)

II.B. Repeat II.A until a sufficient number of resampling estimates is obtained. 

Compute the average of those estimates, defined by Mg, as the global estimate of M.

II.C. Plug the global estimate Mg into every single epoch. Following Algorithm 1 for 

single epoch, we obtain the estimates of ρ(r), σ2(r), τ2(r), r = 1, ⋯ ,R.

The over-all work flow is given in Web Figure 10 (Supplementary File). Note that since the 

mixing matrix M are the same across epochs, we use the blocked resampling strategy to get 

the global estimates sequentially. Given that estimate, we proceed to make inference on 

every single epoch. For the choice of the length l, we recommend starting from l = CR1/k 

and then increasing l until a stable result is obtained, where k = 3, 4, C is a constant and R is 

the number of epochs.

3.2 Testing for difference across epochs

Inspired by the preliminary results shown in Figure 3, we assumed that all the epochs can be 

divided into different phases, among which there exist discrepancies in Φ(r). In order to test 

whether such a difference in Φ(r) is significant across different phases, we propose a 

permutation test by shuffling epochs between phases and then implementing E-SSM to 

obtain parameter estimates and their reference distributions. We give a simulation example 

to demonstrate its use in Section 6.

4. Theory

We start with a strong consistency result for the MLE of the proposed E-SSM model. Denote 

Θ = M,  Φ(1), …,  Φ(R)  as the collection of parameters in the multiple epoch model (2.3). Let 

Θ and Θ0 = M0, Φ0
(1), …, Φ0

(R)  be the MLE and the true value of ϴ, respectively. Theorem 1 

below states that under mild conditions, Θ is a strongly consistent estimator for ϴ0.
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Theorem 1.

Suppose that the AR(2) process in the definition of St
(k) (2.3) is causal for every epoch k = 1, 

… ,R. Assume M0 is of full column rank, (Φ0
(1), …, Φ0

(R)) is of full row rank, and every 

parameter (matrix) in ϴ0 belong to a known compact support. Then Θ converges to ϴ0 

almost surely.

The assumptions in Theorem 1 are easily satisfied for many situations. For example, in our 

case, Φ0
(i), i = 1, … ,R are diagonal matrices with elements being AR(2) coefficients centered 

at pre-specified frequency bands. As long as these bands are different, this assumption is 

satisfied. The consistency result also applies for single epoch model (2.2) by letting the 

number of epochs R = 1. The proof of the theorem, which we defer to the Supplementary 

File, is based on the consistency results for general hidden Markov model in Douc et al. 

(2011). Next we give an AR(2) decomposition theorem stating that the spectrum of any 

weakly stationary process can be approximated by that of a linear mixture of AR(2) 

processes. This result provides a theoretical justification for representing individual sources 

by AR(2) models due to their ability to present each source signal at pre-specified frequency 

bands.

Theorem 2.

Let Yt be a weakly stationary time series with zero mean and continuous spectrum fY (ω). 

Let 0 = ω0 < ω1 < ⋯ < ωJ = 1/2, and ξ = maxj = 1
J ωj − ωj − 1 . Denote St

(j), j = 1, ⋯ , J as 

independent AR(2) processes with unit variance and spectrum of fS(j) (ω) such that the phase 
of its AR polynomial roots, denoted by ψ(j), satisfies ψ(j) ∈ [ωj−1, ωj). Consider a family of 

processes Qt, J J = 1
∞  defined by Qt, J = Σj = 1

J  ajSt
(j) with non-negative coefficients aj j = 1

J

and let ℱJ be the collection of spectrum of {Qt,J}. Assume that ξ → 0 as J → ∞, then

inf
f ∈ ℱJ

fY − f
2

0 as J ∞ .
(4.4)

Moreover, if fY is Lipschitz continuous, and ωk = k/(2J) for k = 0, … , J. Then for any 
sufficiently large J and some positive constant C,

inf
f ∈ ℱJ

fY − f
∞

< CJ−1 . (4.5)

Theorem 2 states that the minimum approximation error of the spectrum from a class of 

finite mixture AR(2) models is negligible given the number of terms J goes to infinity. In 

other words, the AR(2) mixture gives a consistent estimate for the spectral density given that 

J is chosen sufficiently large. Moreover, if we assume that the frequencies ωk’s are equally 

spaced, then the convergence rate is essentially equivalent with that of the equally-spaced 

Fourier series based on Jackson-type of inequality. The convergence rate for finite Fourier 

series with non-uniformly spaced frequency bands is still unknown to the best of our 

knowledge (Epstein, 2005). The proof of theorem is given in Section 2 of the Supplementary 

File.
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5. A Comparison to Existing Methods

We discuss a few major differences between our method and the existing state-of-art 

approaches including ICA and classical state-space models.

ICA has been widely used in single/between-subject electrophysiological exploratory 

analysis. For example, Makarova et al. (2011) proposed an ICA method to segregate 

pathways with partially overlapped synaptic territories from hippocampal LFPs. To 

investigate the variability across different subjects or subgroups, Guo (2011) proposed a 

general group probabilistic ICA (pICA) framework with its extensions (Wang and Guo, 

2018; Lukemire et al., 2018) to accommodate cross-subject structure in multi-subject 

spatial-temporal brain signals. Although these methods work well under certain settings, 

there is still plenty of room for improvement in modeling electrophysiological signals. First, 

they do not have a mechanism for capturing how the parameters (and spectral properties) of 

the latent source signals evolve across epochs over the entire experiment. Most of the 

existing methods are based on concatenating the signals from different epochs and 

estimating parameters as though these signals are realizations of the same underlying 

process. However, since the “reconstructed” latent sources vary across epochs, there is no 

rigorous framework for modeling how these parameters could change across epochs. 

Second, existing methods do not take into account the temporal structure of the latent 

sources. In fact, these sources are estimated for each time point independently of other time 

points. Third, current ICA methods for source modeling may not produce interpretable 

results from spectral analysis of electrophysiological signals. In fact, brain researchers have 

observed association between power at different frequency bands and brain functional states 

(Michel et al., 1992). Thus, it is necessary to develop a framework that accounts for the 

evolution of the power at these frequency bands over many epochs. Lastly, there are 

limitations in the connection between time and frequency domain analysis. Methods from 

time and frequency domain are developed almost exclusively from each other, which is 

counter-intuitive since these two approaches ought to be used concurrently in order to give a 

complete characterization of brain processes.

6. Simulation Studies

6.1 Results on single epoch analysis

We first evaluate the proposed E-SSM under single epoch setting. We simulate data from 

three independent AR(2) processes that corresponds to delta (δ: 0–4 Hertz), alpha (α: 8 – 1 

2 Hertz), and lower beta (β: 12 – 18 Hertz). We randomly generate a positive “mixing” 

matrix M and fix the number of electrodes of the observational brain signals to be 20. In 

summary, following the notation in Section 2.1, we have: p = 20, T = 1000, q = 3, τ2 = 1, σ2 

= .1, (ρ1, ψ1) = (1.0012, 2), (ρ2, ψ2) = (1.0012, 8), (ρ3, ψ3) = (1.0012,15).

We implement the proposed method in Section 2.1 and plot the periodograms of the true and 

reconstructed signals in Web Figure 1 (supplementary file). The estimated source signals 

share exactly the same shape as the true signals. We also compare the results with those of 

ICA in Web Figure 11. It is clear that ICA is unable to recover the three latent bands while 
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our method manages to separate different spectral components very accurately. These results 

are consistent with our discussion on the possible drawbacks of ICA.

6.2 Results on multiple epoch analysis

We then evaluate the performance of the proposed method for multiple epochs. We choose 

20 electrodes and 3 latent independent AR(2) processes. To model the evolution across 

epochs, we allow the modulus (ρ1
(r), ρ2

(r), ρ3
(r)) increase from (1.001, 1.001, 1.001) with an 

increment of 0.00005 as the epoch r propagates. All the remaining parameters are the same 

as in Section 6.1. Web Figure 2 (Supplementary File) shows the heatmap of periodogram 

from electrode 1 as epochs evolve. The results look satisfactory. Web Figure 3 shows the 

periodograms of the true and estimated signals from the three underlying AR(2) processes. 

For the delta, alpha, and lower beta bands, we can see the peaks at the corresponding 

dominating frequency from the true and estimated signals. As the epochs evolve, we find 

that both the true and estimated periodograms spread out around the dominating frequency, 

which indicates that the pattern of the periodograms from the reconstructed AR(2) process is 

consistent with that of the true AR(2) process.

We also applied ICA to the simulated dataset and presented the results in Web Figures 12 

and 13. As expected, ICA hardly separates the three underlying latent sources and rarely 

captures the spread of power as epoch evolves. This phenomenon coincides with our 

previous discussion that ICA neglects the dynamics across epochs.

6.3 Results for settings derived from the data

Here we simulate the data using parameter setting from the motivating sequence memory 

study example. We use the estimated modulus (ρ1
(r), ρ2

(r), ρ3
(r)), variances (σ2(r), τ2(r)) and 

mixing matrix M to generate signals across 12 electrodes among 247 epochs. To evaluate the 

performance of E-SSM, we also apply the classical state space model (SSM) estimation 

methods as a benchmark in comparison with E-SSM. Specifically, we fit SSM for each 

single epoch and obtain the epoch-specific parameter estimates. Note that this is the 

approach that most of the existing methods will use when analyzing signals with multiple 

epochs. As an alternative, we also compute the average of epoch-specific estimates.

We compare mean of sum of square errors (MSE) of the parameters obtained from E-SSM 

and SSM. In Table 1, it is clear that E-SSM successfully captures the evolution of 

parameters compared to classical state space models. Among all the frequency bands, the 

benefits are dramatic. These results highlight the advantages of using E-SSM when signals 

are comprised of multiple epochs. Meanwhile, it also indicates the potential loss of 

information if we naively average over all the epochs when conducting analysis.

As a comparison, we also applied ICA to the simulated dataset. The results in Web Figures 

14 and 15 suggest that our method manages to estimate the mixing matrix very accurately, 

while ICA misses most of the patterns across electrodes. Web Figures 16 and 17 show the 

periodograms obtained from our method and ICA. Again, ICA is unable to recover the true 

signals or identify the dynamics across epochs.
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6.4 Results on permutation test

Following similar strategies in previous simulations, we generated 5 latent AR(2) processes 

corresponding to delta, theta, alpha, lower bet and gamma bands. We assumed that there 

were two phases with 40 epochs in total. In Scenario A, we fixed modulus ρi
(r) = 1.001, i = 1, 

⋯ ,5, r = 1, ⋯ , 20, in Phase 1. We then changed the values of ρ2
(r), ρ5

(r) in Phase 2 and 

denoted δ(ρ) as the module difference between phases. In Scenario B, we allowed the 

modulus slowly increase by 5 × 10−5 staring from 1.001 in Phase 1 and various values in 

Phase 2. All the other parameters remained the same as previous simulation settings. Table 2 

summarizes the proportion of rejecting the null hypothesis based on 1500 replications. It can 

be seen that the Type I error rates are close to the nominal level .05 and the power increases 

up to 1 rapidly under both scenarios.

6.5 Sensitivity analysis

We have conducted extensive sensitivity analysis to investigate the performance of the 

proposed E-SSM when the underlying model assumption is violated, including when the 

number of AR(2) mixture components is mis-specified, and when the underlying singal 

deviates from AR(2) process. The discussions are presented in the Supplementary File, 

Section 4.

7. Analysis of LFP data from olfaction sequence memory study

7.1 Data description

The LFP dataset was obtained from an experiment searching for direct evidence of coding 

for the memory of sequential relationships among non-spatial events (Allen et al., 2016). 

During the course of the experiment, rats were provided with series of five odors multiple 

times. During the experiment, as rats performed the tasks, LFPs were recorded in the CA1 

pyramidal layer of the dorsal hippocampus. The LFPs data set in this study comprise of 12 

electrodes and 247 epochs. Each epoch is recorded over 1 second, aligned to port entry, 

sampled at 1000 Hertz and thus has T = 1000 time points.

7.2 Exploratory analysis

We are interested in addressing two questions: (1) to determine how the original high-

dimensional signals can be sufficiently represented by lower dimensional summary signals; 

and (2) to assess if and how the spectral properties of the LFP signals evolve across epochs 

during the experiment.

To address the first question, we note the assertion in other studies (e.g., Makarova et al. 

(2014)) that the natural geometry of these neuronal assemblies gives rise to possible spatial 

segregation. This suggests that it is plausible to represent LFP data by lower dimensional 

summaries. In this nonspatial sequence memory study, we observe similar pattern across all 

the 12 electrodes. In Web Figure 21, although the power varies within each electrode, the 

synchrony of pattern across electrodes is still critical. For example, electrodes T13 and T14 

behave almost identically. Electrodes T7, T8 and T9 also follow the same pattern during the 

course of experiment. Moreover, as part of this exploratory analysis, we implemented 
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spectral principal component analysis (Brillinger, 1964), which is widely used in the 

exploratory analysis of brain imaging data (Wang et al., 2016). Web Figure 7 

(Supplementary File) presents the boxplots of the percentage of variability accounted by the 

first one and the first three components respectively. It can be shown that 3 components 

(mixture of delta, alpha and gamma bands) account for roughly 92% of the variability with 

the first component accounting for 70%. All these findings validate the assumption that the 

original LFPs can be projected into low dimensional source signals without substantial loss 

of information. In this paper, we will build on this preliminary analyses by giving a more 

specific characterization of these signal summaries or components using the AR(2) process.

To gain insights into addressing the second question, we examined the log periodogram 

boxplots in Figure 1 across all the frequencies, we notice that the powers are quite spread 

out, especially at lower frequencies and the two peaks around delta and slow gamma bands. 

The heatmap in Figure 2 demonstrates the dynamics from early, middle, and late stages of 

the whole session. Web Figure 21 shows the evolving of the power across all the electrodes 

particularly on delta, alpha, and gamma bands. It shows that higher frequency bands 

dominate in early stage, while lower frequency bands capture more power during the 

evolution of experiment. In Figure 3, an interesting pattern emerges: the burst of gamma 

activity on Phase 1 of the epochs is not replicated at other phases. One possible 

interpretation is that odor sequence (on which the animals have had extensive training) is re-

encoded early in each session, which requires high frequency (gamma) activity, but later in 

the session, gamma activity is regulated and other lower frequencies (delta and alpha) 

become more prominent. Promoted by all these results, a further study is necessary to 

uncover the latent lower dimensional source signals that drive the observed LFPs.

7.3 Results and Discussion

We applied our proposed E-SSM method to this study. Web Figure 8 (Supplementary File) 

shows time series plots of modulus (root magnitudes) corresponding to each of the three 

frequency bands as epochs evolve. In this plot, we could clearly identify the evolution of 

each individual module and a strong temporal dependence. Figure 4 displays the power of 

three latent source signals evolving during the period of experiment. We observe that the 

delta band captures the most power among all bands and is persistent across all phases. The 

alpha band attains its maximum power during the early phase and diminishes quickly in the 

middle stage and obtains more power in the end. There appear to be discontinuities in the 

delta, alpha and gamma power across the entire experiment. One interpretation to these 

results from the E-SSM analysis is that these on-off patterns could be just random variation. 

Another is that these are actual resetting of neuronal responses. This phenomenon of phase 

resetting in neurons is also observed in many biological oscillators. In fact, it is believed that 

phase resetting plays a role in promoting neural synchrony in various brain pathways. In 

either case, it is imperative to be cautious about blindly assuming that the neuronal process 

behaves identically across epochs. Doing so could produce misleading results.

We also study the mixing matrix to investigate how electrodes are associated across the three 

frequency bands. From Figure 5, at delta band, electrodes T13, T14, T16, T19, T22, T23 are 

likely to be linked in terms of large power. Electrodes T15, T2, T7, T8 and T9 share the 
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lowest power. At the alpha band, electrodes T16, T22 and T23 maintain the most power in 

contrast with electrodes T15, T2, T7–9 that obtain the lowest power. This pattern of 

association may result from the anatomical connections. Similarly, at gamma band, 

electrodes are connected in the same way as alpha band. We also used a cluster analysis on 

the entries of “mixing” matrix to understand the connection among electrodes. Similar to the 

results shown in Figure 5, we are able to identify the same pattern in Figure 6, through the 

visualization of cluster analysis. At delta band, electrodes T13, T14, T16, T19, T20, T22, 

T23 share the same pattern while T3, T7–9 are in the same cluster. Clusters at the alpha and 

gamma bands are roughly identical, which coincide with the results in Figure 5. To the best 

of our knowledge, this approach (i.e., clustering of electrodes or nodes) has not be used 

previously for this kind of analysis. This has the potential for future explorations on 

synchrony among neuronal populations. Finally, we note here that the specific parametric 

AR(2) structure in our E-SSM has facilitated ease of interpretation of the oscillatory activity 

of these sources.

Model validation and diagnostics were done using sample auto-correlations (ACF) and 

partial auto-correlations (PACF) calculated from the residuals. Web Figure 9 (Supplementary 

File) shows an example of those values obtained from a representative electrode. We could 

easily observe the un-correlated structure among the residuals. A p-value of 0.75 based on 

the Ljung-Box test also provides some evidence to suggest white noise residuals and thus 

conclude that the proposed E-SSM fits this LFP data well.

8. Concluding remarks

In this paper, we have proposed an evolutionary state space model (E-SSM) that allows the 

latent source signals to evolve across epochs. Although the results reported in this paper are 

quite promising, nevertheless, modeling the evolution/dynamics across epochs still remains a 

challenge in general. For example, we ignored the subject specific random effects in the 

current paper, which should be taken into account in a future work.

In the simulation studies, we set the phase parameter to be the true values used in simulating 

the data. We also tried using the estimates from true data. This is done by first calculating 

the periodograms for each channel and trial, and then choosing the frequencies whose peaks 

were located as the phase parameters. Although these estimated phase parameters deviated 

slightly from the true ones in some cases, the estimated periodograms were able to capture 

the structure of the true latent sources. These findings are consistent with the results from the 

sensitivity analysis.

In the paper, we choose to fix the location of spectrum peaks at pre-determined values. In 

frequency domain analysis, there are basically two approaches to obtain the power for 

particular bands: average and integral (Delorme and Makeig, 2004). To be more specific, 

average is more straight-forward but neglects the range of frequency bands (e.g. theta: 4 – 8 

Hertz vs lower beta: 12 – 18 Hertz). Integral is more complicated and more sensitive to the 

choice of range of frequency bands. A common observation in practice is that lower beta 

bands are usually more “flatten-out” than theta bands when using average approach. The key 

point to both approaches is to find a “center” for each frequency band. Back to our model, 
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since each latent AR(2) corresponds to one particular band, we choose the center of range as 

the exact phase parameter for each frequency bands. For example, we fix the phase at 10 

Hertz for alpha band. There are a few reasons to do so: (1) From the existing literature, the 

power spectrum of particular frequency bands mostly achieve their peaks at the center within 

the range (Buzsaki, 2006). (2) By fixing the peak beforehand, we can avoid identifiability 

issues. If we “let the data drive the estimates of the location” as suggested in the comment, 

we could run into identifiability problem easily, i.e., we can change the columns of the 

mixing matrix and their corresponding AR(2) sources to get the same observed signals. (3) 

We have conducted some sensitivity analysis on different peaks within each particular bands. 

The results show that the “constructed” signals are quite similar to the original ones. (4) It is 

reported from other recent studies (e.g., Allen et al. (2016)) that the approach of using 

centers of the range produces consistent and interpretable results. In the future research, it 

will be of interest to develop more flexible methodology that takes account the data 

uncertainty in determining the location of spectrum peaks.

It is worth mentioning that the spectrum of a weakly stationary process being approximated 

by the spectrum of an AR(2) mixture does not necessarily imply that the original process is 

approximated by the AR(2) mixture. The focus of this paper is motivated by the frequency 

domain analysis of the imaging data, where the actual LFP values are not as important as 

their frequency domain implications. It will be of interest in the future research to develop 

new models based on AR(2) mixture process (or any other meaningful basis in practice) 

within the time domain framework.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The log periodogram boxplots for each frequency obtained by all 247 epochs at electrode 

T22.
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Figure 2: 
Left: The heatmap of the averaged periodogram among Phase 1 (epochs 1 – 80), Phase 2 (81 

– 160) and Phase 3 (161 – 247) respectively at electrode T22. The original signals were 

rescaled to unit variance. Right: The heatmap of the relative periodogram (summing up to 1 

for each frequency). Spectral power (decomposition of waveform) evolved across phases of 

the experiment.
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Figure 3: 
The evolution of power spectrum among delta (0–4 Hertz), alpha (8–12 Hertz) and gamma 

(30–35 Hertz) bands. Each band was averaged over all the electrodes.
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Figure 4: 
The periodograms of estimated latent AR(2) processes corresponding to delta (top), alpha 

(middle) and gamma (bottom) bands.
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Figure 5: 
The estimated mixing matrix. Darker color represents heavier weights given by the latent 

processes (delta, alpha, gamma) on the LFPs.
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Figure 6: 
Cluster analysis results among all the three frequency bands. Same color indicates the same 

cluster.
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Table 1:

MSE obtained from E-SSM and SSM (benchmark)

Parameters E-SSM SSM (average) SSM (single)

Φ (delta band) 3.33 × 10−5 7.27 × 10−5 5.53 × 10−5

Φ (alpha band) 1.41 × 10−5 3.23 × 10−5 2.89 × 10−5

Φ (gamma band) 1.69 × 10−5 8.07 × 10−5 2.00 × 10−5

τ2 9.31 × 10−6 2.03 × 10−4 1.91 × 10−4

σ2 1.93 × 10−1 1.93 × 10−1 1.91 × 10−1
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Table 2:

Type I error / power table of the proposed permutation test.

δ (ρ) = 0 δ (ρ) = 1 δ (ρ) = 2 δ (ρ) = 3 δ (ρ) = 4

Scenario A
ρ2 0.056 0.110 0.586 0.966 0.924

ρ5 0.046 0.112 0.600 0.992 0.955

Scenario B
ρ2 0.050 0.108 0.418 0.844 1.000

ρ5 0.047 0.268 0.586 1.000 1.000
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