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Abstract

The factors that influence the diversity and composition of raw milk and fecal microbiota in

healthy commercial dairy herds are not fully understood, partially because the majority of

metataxonomic studies involve experimental farms and/or single factors. We analyzed the

raw milk and fecal microbiota of 100 healthy cows from 10 commercial alpine farms from the

Province of Trento, Italy, using metataxonomics and applied statistical modelling to investi-

gate which extrinsic and intrinsic parameters (e.g. herd, diet and milk characteristics) corre-

lated with microbiota richness and composition in these relatively small traditional farms.

We confirmed that Firmicutes, Ruminococcaceae and Lachnospiraceae families dominated

the fecal and milk samples of these dairy cows, but in addition, we found an association

between the number of observed OTUs and Shannon entropy on each farm that indicates

higher microbiota richness is associated with increased microbiota stability. Modelling

showed that herd was the most significant factor affecting the variation in both milk and fecal

microbiota composition. Furthermore, the most important predictors explaining the variation

of microbiota richness were milk characteristics (i.e. percentage fat) and diet for milk and

fecal samples, respectively. We discuss how high intra-herd variation could affect the devel-

opment of treatments based on microbiota manipulation.

Introduction

For at least the last 5 000 years, many human populations have supplemented their diet by

drinking ruminant milk [1]. It has been known for some time that raw milk from domesticated
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animals has its own unique endogenous microbial community, which impacts the health of

both human and livestock offspring [2, 3]. It has also been shown that during bacterial infec-

tions of the mammary glands, the alpha and beta diversities (richness and composition, respec-

tively) of raw milk microbiota may be drastically reduced but remains resilient, able to restore

itself and offer protection against invading pathogens, in some cases even without antimicro-

bial treatment [4, 5]. Given their role in animal health and productivity, as well as food quality

and safety, characterization of raw milk and gastrointestinal microbiota has become a focus of

interest in livestock research [2, 3, 6]. Thanks to the advent of pyrosequencing, in-depth char-

acterization of microbial communities, both culturable and unculturable components, is now

possible. Although molecular approaches can also introduce their own forms of bias, such as

the ability to detect both viable and inviable bacteria, they currently provide the most potent

tools available for determining the richness and composition of human and animal micro-

biomes [3, 7, 8].

Despite widespread use of this relatively new technology, very little is still documented

about the richness, composition and variation of ruminant raw milk microbiota in healthy

dairy livestock in commercial (as opposed to experimental) farm environments. In one of the

few studies of commercial dairy herds, it has been shown that alpine and lowland herds had

distinct microbiota from each other [9]. In another study, a large intra-individual variation

was detected between samples of healthy cows from two different herds [10]. Even less is

known about the factors that influence variation in microbiota, and the impact of this variation

on milk characteristics and therefore, on milk quality [3]. In dairy cows from experimental

herds, high concentrate diet may lead to changes in milk microbiota composition (but not

richness), with a greater abundance of pathogenic and psychotropic bacteria associated with

mastitis and poor food quality, respectively; however, this study included only four individuals

[11]. Moreover, using pooled samples from one herd of 60 experimental dairy cows, housing

(indoor vs outdoor) and teat preparation have demonstrated to influence the richness and

composition of milk microbiota [12]. However, factors affecting the variation of milk micro-

biota in individual healthy cows from commercial herds has not been explored.

Because fecal collection, unlike ruminal samples, is non-invasive, practical, and widely used

for sampling animals repeatedly, fecal microbiota is commonly used as a proxy for gastrointes-

tinal microbiota in livestock studies [13–18]. The fecal microbiota of cattle not only reflects

condition and productivity, but a better understanding of its richness and composition is

important for understanding how the transmission of foodborne pathogens could be

decreased or avoided [18, 19]. While fecal microbiota in cattle has been already described [20],

factors that influence their richness and composition have only been investigated in a handful

of studies. Two studies in experimental animals [21, 22] concluded that, unlike the ruminal

microbiota, fecal microbiota was not influenced by diet (although the opposite was found for

beef cattle [13, 19]). In the few studies of commercial dairy herds, Tang and colleagues [23]

found that feeding management and country of origin was more important than diet in 18

silage-fed dairy cows (six herds), while Xu and colleagues [24] also noted that fecal microbiota

composition changed with probiotic treatment. In addition, individual variation in fecal

microbiota, even in the same farm, has been noted [20, 25]. Differences observed in studies

that analyzed similar farms from the same regions using similar methodologies suggest that

there may be additional influences on this microbiota [23, 26].

Since raw milk and gut microbiota are not independent, but interact with each other, milk

yield and quality may be influenced by the microbial composition of the rumen and feces and

vice versa [24, 27–29]. For example, raw milk microbiota may originate from the entero-mam-

mary pathway [30, 31] as well as from exogenous sources through the teat apex, including the

animal’s own skin, fecal matter, and the farm environment [2, 32]. On the other hand, the
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nutritional components and biological actions of milk include the establishment of the gut

microbiota, as well as immunological and endocrine competence, which are important for the

development of all mammalian offspring [3, 33–35]. However, up to now, factors potentially

influencing raw milk and fecal microbiota have been considered singularly, and comparison of

milk and fecal microbiota in the same healthy individuals from commercial herds has not yet

been investigated. Therefore, by using metataxonomics, we investigated here the microbial

community composition in raw milk and feces of typical alpine herds of dairy cows on com-

mercial Trentino farms. We then explored which individual milk and environmental factors

could be associated with microbiota variation. This is the first time, to our knowledge, that

such factors have been considered together, using empirical data from commercial rather than

experimental herds.

Materials and methods

Sample collection

Ten herds of typical mixed-breed dairy cows (i.e. Holstein Friesian, Brown Swiss, Pezzata

Rossa Italiana) from farms in the Province of Trento (Italy) were selected for sampling. For

five herds, cows were fed a traditional diet (TF) of dry forage, principally sun-dried locally cut

meadow grass (abbreviated hereafter as: TF1, TF2, TF3, TF4, TF5), while five herds were pro-

vided with total mixed ration with silage, or unifeed (UF; hereafter as: UF1, UF2, UF3, UF4,

UF5), with an overall forage to concentrate ratio of about 0.55:0.45. Other than this difference

in diet, all the dairy herds were family-owned with a similar non-intensive, free-ranging man-

agement (<100 milking head per herd) with individual cubicles. The cows were milked twice a

day by milking machine. During a period between April-July 2015, from each of the ten herds,

ten primiparous cows at 90 to 180 days of lactation were chosen for sampling. Based on medi-

cal history and veterinary checks by EP (a registered veterinarian), all dairy cows were consid-

ered healthy and hence included in the current investigation. Animals that presented clinical

signs suggestive of any disease were excluded from the study (S3 Table and S4 Table). No anti-

biotic treatments were administered 20–30 days to or during the sampling period.

Raw milk and fecal sample collection

Using disposable gloves to handle the udder, immediately before each manual milk sampling,

all four teats were cleaned and disinfected with cotton wool soaked in 100% ethanol. The initial

three streams of milk from each teat were discarded, and two aliquots (pools of all four quar-

ters) were collected from each cow. For microbiota analysis, a first aliquot (10 ml) was col-

lected in a sterile 15 ml plastic tube (Starstedt, Verona, ITA). For standard milk analyses, a

second aliquot (15 ml) was collected in the same type of tube with the addition of methylene

blue. All milk samples were immediately refrigerated at 4˚C and transported on ice to the Fon-

dazione E. Mach within 3 hours of collection. The aliquots destined for metataxonomic analy-

sis were immediately stored at -80˚C until DNA extraction. The aliquots destined for standard

analyses were kept refrigerated at 4˚C and sent to the Associazione Regionale Allevatori della

Lombardia (ARAL) laboratory (Crema, Italy), for a somatic cell count (SCC), total bacterial

count (TBC) and percent fat, protein and lactose estimates. Twenty-four milk samples with an

SCC (cells/ml milk) greater than 200 000 cells/ml (an indication of mastitis: [36]) were

excluded from further analysis.

Fecal samples were collected non-invasively directly from the rectum of each cow using a

disposable glove, immediately refrigerated at 4˚C, and transported to the Fondazione E. Mach

on ice, where they were aliquoted; at least one aliquot of 25 mg was stored at -80˚C until DNA

extraction, while another (7 g) was kept at 4˚C until parasitological analysis.
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DNA isolation and purification

One milk sample from each cow was thawed on ice and homogenized by inverting the tubes

three times. Total genomic DNA was isolated from a 1 ml aliquot using a commercially avail-

able kit (PowerMax Soil DNA Isolation Kit, MOBIO Laboratories Inc., Carlsbad, CA, USA)

following manufacturer’s instructions with the following modifications: elution was carried

out with 2 ml of buffer and following a 5-minute incubation of the columns with buffer at

room temperature. One ml of eluted DNA preparation was further purified using the Ami-

con1Ultra-2 mL 30K centrifugal filters (Millipore, Cork, IRL). After a centrifugation at 7 500

g for 20 min, concentrated DNA was obtained in a final volume of 50 μL. Concentration of iso-

lated DNA was evaluated using the Qubit dsDNA High Sensitivity (HS) Assay Kit (Invitrogen,

ThermoFisher Scientific, Waltham, MA, USA). Total DNA was extracted from one 25 mg

fecal sample per cow using a Mixer Mill MM 200 (Retsch, Haan, Germany) and the PowerSoil

DNA Isolation Kit (MO BIO Laboratories Inc., Carlsbad, CA, USA) following manufacturer’s

instructions. Concentration of isolated DNA was evaluated as above.

Library construction and sequencing

The V3-V4 hypervariable regions of the bacterial 16S rRNA gene were amplified using specific

primers 341F (5’ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG) and 805R (5’ GTCTC
GTGGGCTCGGAGATGTGTATAAGAGACAG) with overhang Illumina adapters. The PCR reac-

tions for each sample were carried out in a total volume of 25 μl containing 0.2 μM of each

primer, 12.5 μl of Kapa HiFi Ready Mix (Kapa Biosystem, Wilmington, MA, USA) and 12.5 ng

of genomic DNA, as suggested by the Illumina protocols [37]. Thermal cycling was performed

on a GeneAmp™ PCR System 9700 instrument (Thermo Fisher Scientific, MA, USA) with two

different thermal protocols depending on sample type. For milk samples: initial denaturation

at 95˚C for 5 min, followed by 35 cycles at 95˚C for 30 s, 57˚C for 30 s and a final extension at

72˚C for 5 min. For fecal samples: initial denaturation at 95˚C for 5 min, followed by 25 cycles

at 95˚C for 30 s, 55˚C for 30 s, extension at 72˚C for 30 s, and a final extension at 72˚C for 5

min. At least one negative control was included for each extraction and each PCR run. In addi-

tion, genomic DNA from the Microbial Mock Community B (Staggered, Low Concentration)

v5.2L (BEI Resources, Manassas, VA, USA) was amplified once for each sample type to act as a

positive control during sequencing. The PCR products were checked on 1.5% agarose gel and

free primers and primer dimers were removed using the Agencourt AMPure XP system (Beck-

man Coulter, Brea, CA, USA) following the manufacturer’s instructions. Subsequently, dual

indices and Illumina sequencing adapters Nextera XT Index Primer (Illumina) were attached

using seven PCR cycles [37]. After purification with the Agencourt AMPure XP system (Beck-

man), the final libraries were analyzed on a Typestation 2200 platform (Agilent Technologies,

Santa Clara, CA, USA) and quantified using the Quant-IT PicoGreen dsDNA assay kit

(Thermo Fisher Scientific) on the Synergy2 microplate reader (Biotek, Winooski, VT, USA).

Finally, all libraries were pooled in an equimolar way in a final amplicon library and analyzed

on a Typestation 2200 platform (Agilent Technologies). The barcoded library was sequenced

on an Illumina1MiSeq (PE300) platform (MiSeq Control Software 2.5.0.5 and Real-Time

Analysis software 1.18.54.0).

Bioinformatic processing

16S rRNA gene sequences were processed using the open-source MICCA (v1.6) software [38].

Overlapping paired-end reads were assembled using the procedure described by Edgar and

Flyvbjerg in 2015 [39]. Pairs with an overlap length smaller than 80 bp and with more than 32

mismatches were discarded. After primer trimming, forward reads shorter than 400 bp and
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with an expected error rate higher than 0.75% were discarded. Reads with less than 60% iden-

tity to the sequences present in the Greengenes database (v. 13_8) [40] clustered at 85% simi-

larity were discarded. OTUs were inferred using a de novo, greedy strategy using a cutoff of

97% similarity. Resulting representatives of each OTU were classified using the Ribosomal

Database Project classifier (RDP classifier, version 2.12 [41]).

Parasitological analysis of feces

For each fresh fecal sample, the presence of helminth eggs and protozoan cysts was assessed

using a standard floatation procedure. Each sample was mixed in a pestle with 30 ml floating

medium (a saturated solution of sugar and sodium nitrate), passed through a 1 mm filter and

centrifuged at 4 000 rpm for five minutes in a 15 ml glass tube. Two tubes were prepared for

each sample. After centrifugation, floating medium was added until the tubes were filled

(approx. 1 ml). Eggs were collected from the surface of each tube using a glass slide. The slides

were observed at 10X and 40X magnification using an optical dissecting microscope, and eggs

were identified to species using keys provided by Soulsby [42] and Sloss and Kemp [43].

Data processing and statistical analyses

Downstream analyses were performed using R with the phyloseq [44] and vegan packages.

After subclinical mastitis milk samples were removed (see above), the remaining samples

were rarefied (without replacement) at 2 000 reads per sample resulting in seven additional

samples being discarded. Fecal samples were rarefied (without replacement) at 18 500 reads

per sample resulting in one sample being discarded. Estimation of standard alpha and beta

diversity indices, and Principal Coordinate Analysis (PCoA) were performed using the R phy-
loseq library.

A comparison of the variation in the Inverse Simpson diversity index values between milk

and fecal samples was carried out using a Linear Mixed Model (LMM) fitted using the R statis-

tical software version 3.5.0 [45] and the lme4 package [46]. The response variable was the

Inverse Simpson diversity index, the covariate was ‘sample type’, and ‘herd’ was included as

random effect to take into account unknown differences in management that may occur

between sampled herds. Secondly, two separate LMMs were developed to investigate which

intrinsic and extrinsic parameters influence milk and fecal microbiota composition. For both

these models, the response variable was the Inverse Simpson diversity index; ‘herd’ was

included in the models as a random effect. For milk samples, the explanatory variables were

initially i) diet (TF vs. UF); ii) calving date; iii) breed; iv) SCC; v) TBC; vi) percentage fat; vii)

percentage protein; and viii) percentage lactose (S3 Table). For fecal samples, explanatory vari-

ables included i) to iii) as above and iv) presence of coccidia (other parasites rather than coc-

cidia were rare in our samples) (S4 Table). Collinearity among independent variables was

assessed using variance inflation factors (VIF) with a cut-off value of 2. Given the VIF results,

variable viii) ‘percentage lactose’ was excluded from further analysis of the milk samples while

variable iii) ‘breed’ was excluded from both models. Following the exclusion of collinear vari-

ables, the two full models were considered for further model selection. All quantitative vari-

ables were standardized, and following a multi-model inference procedure, all possible sub-

models were compared and ranked using the Akaike Information Criterion (AICc) with small

sample bias adjustment [47]. Model averaged values and the relative importance of each

explanatory variable were computed over the whole model set. Finally, a direct comparison of

Inverse Simpson diversity index values among herds was carried out by including ‘herd’ as a

covariate in two new linear models (LM) after removing ‘diet’ due to collinearity.
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Ethics statement

This study was conducted with samples from ten commercial dairy farms situated in Trentino

with permission from participating farmers. For on-farm non-invasive research, no ethical

committee oversight is required under Italian and Provincial laws. Authors confirm they did

not disturb the animals in any way, and both raw milk and fecal sampling was conducted

using non-invasive methods in accordance with approved guidelines of the farm veterinarians.

All applicable institutional and/or national guidelines for the care and use of animals were

followed.

Results

Taxonomic classification of raw milk and fecal microbiota

Out of 76 milk samples, a total of 70 were successfully sequenced and after rarefaction, 63 were

available for bioinformatic analyses. Among the 25 phyla taxonomically identified in raw milk

samples, the dominant ones were Firmicutes (median abundance 55.3%), followed by Bacter-

oidetes (13.7%), Proteobacteria (11.6%) and Actinobacteria (11.3%). The remaining phyla

were characterized by a relative abundance of less than 1% (S1 Table). At the family level (Fig

1A), Ruminococcaceae (median abundance 14.1%) were the most abundant, followed by Lach-
nospiraceae (8.8%) and Staphylococcaceae (5.7%). While dominant genera included Staphylo-
coccus (median abundance 4.7%) and Corynebacterium (4.5%), followed by Clostridium XI

(2.1%), Bacteroides (2.1%), Clostridium XIVa (1.8%), Acinetobacter (1.6%) (Fig 2A). Non-clas-

sified OTUs in milk at this level were 39.8%, far less than those in feces (65.2%).

All 100 fecal samples were successfully sequenced, and only one sample was removed after

rarefaction. Sixteen phyla were taxonomically assigned in feces (S2 Table), with Firmicutes

(median abundance 51.2%) and Bacteroidetes (38.4%) representing the two most dominant

phyla, followed by Proteobacteria (2.6%) and Spirochaetes (1.3%). At this level, very few non-

classified OTUs were detected (3.3% vs. 2.1% in raw milk). Similar to raw milk, Ruminococca-
ceae (24.7%) and Lachnospiracee (10.4%) were the two most abundant families in fecal samples

(Fig 1B), followed by Prevotellaceae (7.6%) and Bacteroidaceae (7.4%). All other families were

present at less than 5%; the non-classified OTUs at this level were 28.6% (vs. 13.8% in raw

milk). The genera Bacteroides (7.3%), Alistipes (3.9%), Clostridium XIVa (2.7%), Paraprevotella
(2.2%), Phascolarctobacterium (1.7%), Prevotella (1.5%), Treponema (1.3%) and Roseburia
(1%) dominated (Fig 2B) fecal samples. The non-classified OTUs at the genus level were 65.2%

(vs. 39.8% in raw milk).

Microbiota richness of raw milk and fecal samples

Estimates of richness (alpha diversity) varied widely between individuals; the total number of

observed OTUs in raw milk samples ranged from 76 to 609 (Fig 3A; S3 Table), while values of

the Inverse Simpson index ranged from 1.6 to 130.3 (Fig 4; S3 Table).

Fecal samples also showed high intra-individual variation in microbiota richness, repre-

sented by both the number of observed OTUs (ranged between 714 and 1 581; Fig 1B; S4

Table), and the Inverse Simpson index (21.5 to 167.1; Fig 4; S4 Table). The mean values of

Inverse Simpson indices of raw milk are significantly lower than those of feces (mean = 86.4;

df: 151.6, t-value: -5.575, P<0.0001).

Factors affecting microbiota richness of raw milk and fecal samples

According to the results of the multi-model inference procedure (estimates of model-averaged

parameters over the full set of models and their importance), the most important predictors
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explaining microbiota richness (alpha diversity expressed by Inverse Simpson index) in raw

milk samples were percentage fat, following by diet and TBC (Table 1). Pearson’s correlation

between observed and fitted values computed using model-averaged parameters was 0.35

(df = 61, P = 0.004) and the root mean squared error (RMSE) was 30.5. If the computation of

the fitted values also included the random effect estimate for each herd, the correlation

between observed and fitted values almost doubled (estimate = 0.67, df = 61, P< 0.001) while

RMSE decreased to 23.8.

Instead, fecal microbiota richness was explained by diet, on average UF diet was associated

with greater diversity, followed by calving date and infection with coccidia (Table 2). Pearson’s

correlation between observed and fitted values computed by model-averaged parameters was

0.33 (df = 97, P < 0.001) and the RMSE was 30.3. If the computation of the fitted values also

included the random effect estimate for each herd, the correlation observed and fitted values

Fig 1. Taxonomic classification by family of raw milk and fecal microbiota from dairy cows. Relative abundances of the most abundant families of Alpine dairy cow

raw milk (a) and fecal (b) samples. Median relative abundances are represented in the upper panels, while their variability expressed as interquartiles (IQR) are shown in

the lower panels.

https://doi.org/10.1371/journal.pone.0237262.g001
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greatly increased (estimate = 0.79, df = 97, P< 0.001) while RMSE decreased to 19.7. Model-

averaged residuals of both LMMs did not show any violation of model assumptions.

The LM analysis of microbiota composition (also based on the Inverse Simpson Index)

showed that explicitly considering ‘herd’ as a covariate (S5 Table and S6 Table) improved

model performance for both milk (Pearson’s correlation = 0.68, df = 61, P<0.001 and

RMSE = 23.8) and fecal (Pearson’s correlation = 0.79, df = 97, P<0.001; RMSE = 19.5) models,

and confirms that intrinsic characteristics of each herd are highly correlated to the individual

microbiota composition of the constituent cows.

Factors affecting microbiota composition of raw milk and fecal samples

We inferred differences in microbiota composition of both raw milk and fecal samples with

Bray-Curtis dissimilarity indices (beta diversity). The PCoA of raw milk microbiota

Fig 2. Taxonomic classification by genus of raw milk and fecal microbiota from dairy cows. Relative abundances of the most abundant genera of Alpine dairy cow

raw milk (a) and fecal (b) samples across ten herds either fed traditionally (TF) or with unifeed (UF) within the Province of Trento, Italy.

https://doi.org/10.1371/journal.pone.0237262.g002
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composition did not show correlations between any factors investigated. However, when we

applied the Permutational Multivariate Analysis of Variance (PERMANOVA), ‘herd’

explained the differences in milk microbiota composition between cows (P< 10−4; Fig 5A; S7

Table). The first principal coordinate (PC) of the PCoA (outlying cows on the left side of Fig

5A) is mainly driven by a greater abundance of Staphilococcaceae (Fig 5B), while the majority

of the other cows (cluster in top right Fig 5A) have a greater abundance of nine other families,

especially Ruminococcaceae, Bacteroidaceae and Prevotellaceae (Fig 5B). The second PC is

mainly driven by differences in three bacterial families Xanthomonadaceae, Pseudomonada-
ceae and Flavobacteriaceae (Fig 5C).

Similarly, for fecal samples, the PERMANOVA test showed that among all the parameters

considered, only ‘herd’ was statistically significant (P <10−4; Fig 6A; S8 Table). The first PC

(outlying cows on the right side of the Fig 6A, mainly from herds TF3, TF4 and TF5) is

explained by a greater abundance of Lachnospiraceae and Succinivibrionaceae, whereas the

majority of cows clustered on the left are characterized by a greater abundance of Bdellovibrio-
naceae, Verrucomicrobiaceae, Desulfovibrionaceae and Rikenellaceae (Fig 6B). Moreover, the

feces of dairy cows at the top left of the graph (mainly from herds UF2, UF3, UF4 and TF5 in

Fig 6A) are characterized by a greater number of Bacteroidaceae and Prevotellaceae, while

those from herds TF2 and UF5 have more Desulfovibrionaceae, Bdellovibrionaceae and Verru-
comicrobiaceae. Measures of bacterial richness showed that fecal samples with a greater num-

ber of OTUs (Fig 6D) also have a greater Shannon entropy (Fig 6E).

Discussion

To our knowledge, this is the first large assessment of raw milk and fecal microbiota in com-

mercial (non-experimental) dairy cows. We investigated almost 100 healthy cows from 10

small (non-intensive) Alpine farms, and explored how intrinsic and extrinsic factors may

influence their microbiota richness and composition. Although variation between individual

cows for both sample types was evident, we showed that ‘herd’ is the most important factor

influencing individual differences in microbiota richness and composition in both raw milk

and feces. Such knowledge could affect the use of microbiota manipulation for economic or

veterinary purposes.

Fig 3. Estimates of microbiota richness. Violin plot of the total number of observed OTUs of Alpine dairy cow raw milk (a) and fecal (b) microbiota.

https://doi.org/10.1371/journal.pone.0237262.g003
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Despite belonging to different farms, breeds and feeding regimes, all raw milk and fecal

samples of this study were dominated by the phylum Firmicutes, followed by Bacteroidetes

and Proteobacteria. This result is in line with previously published studies of bovine raw milk

[2, 4, 11, 48] and fecal samples [16, 18, 21, 24] in experimental herds or much smaller numbers

of dairy cows. Furthermore, these three phyla are the most abundant in a variety of different

mammalian species, such as human and non-human primates, laboratory mice [49–53], as

well as wild herbivores (giant panda [54]; sika deer [55]; forest musk deer [56]). In addition,

the low relative abundance of Proteobacteria found in the fecal samples of this study (2.5%)

compared to Firmicutes and Bacterioides (89.6%), may reflect the health status of the cows.

Healthy cows have reported to have less than 4% of Proteobacteria, while an increase of this

relative abundance has been associated with subacute ruminal acidosis [24, 57, 58].

Fig 4. Estimates of microbiota richness of raw milk (white bars) and fecal samples (grey bars) of commercial Alpine dairy cows. Boxplot of observed values of the

Inverse Simpson Index for milk and fecal microbiota across ten herds either fed traditionally (TF) or with unifeed (UF) in the Province of Trento, Italy. Horizontal

dashed lines represent the mean values for each corresponding microbiota. Dots are observations not included between the whiskers.

https://doi.org/10.1371/journal.pone.0237262.g004
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In our fecal samples from healthy cows, more than 50% of OTUs were Firmicutes while

about 40% were Bacteroidetes (mean overall Firmicutes/Bacteroidetes (F/B) ratio = 1.34). Pre-

vious studies have shown that the F/B ratio in fecal samples often varies as a result of diet, in

relation to digestion efficiency. For example, in humans, Firmicutes is primarily associated

with energy harvest from food, while Bacteroidetes is linked to the production of short chain

fatty acids, which provide cellular energy, maintain the epithelial barrier of the gut and modu-

late the immune system [52]. Elevated F/B ratios have also been linked to the development of

obesity and metabolic disease in humans and genetically obese mice [59–62]. However, other

studies were unable to confirm this correlation, and more recent reports concluded instead

that such variation is influenced by several other factors [52, 63], and might be an evolutionary

constraint of a particularly efficient gut [64]. Although the F/B ratio found in our healthy cows

was within the range of previous investigations of commercial bovine herds [0.8 to 5.99; 18, 19,

23, 25], we did not find any correlation between the F/B ratio and other factors, such as diet

(TF vs UF). Therefore, although the F/B ratio would be a simple and useful indicator of health,

this correlation in domestic livestock has yet to be adequately investigated.

At the family level, Ruminococcaceae and Lachnospiraceae dominated both milk and fecal

samples. Despite their important role in degradation of starch and fiber [15, 18], these two

families are associated with gut health in various mammalian species, including horses [65],

cats and dogs [66, 67] and laboratory mice [48, 68], as well as bovines [21]. Interestingly,

despite variation between individuals and farms, we note for the first time that the same domi-

nant families are also found in raw milk, which has important implications for calf and human

gut health and nutrition. Other abundant families we reported in raw milk were Staphylococca-
ceae, commonly recovered from dairy cows [69], and Corynebacteriaceae, which has a wide

range of fermentative capacities [70]. Among the most abundant families in feces, we found

Table 1. Mean LMM estimates of multi-model inference parameters of raw milk microbiota composition.

Parameter Mean estimate (95% confidence interval) Importance

Intercept 58.90 (42.26–75.54) -

Percent fat 5.79 (-6.05–17.63) 0.62

Diet (UF) 5.22 (-15.17–25.62) 0.36

TBC 1.14 (-4.25–6.54) 0.31

SCC 0.94 (-4.34–6.21) 0.29

Calving date 0.30 (-3.58–4.17) 0.24

Percent protein 0.01 (-4.52–4.54) 0.24

Parameters include intrinsic (i.e. calving date, total bacterial count (TBC), somatic cell count (SCC), percentage fat,

percentage protein) and extrinsic (i.e. diet and herd) factors. UF: Unifeed diet or total mixed ration with silage.

https://doi.org/10.1371/journal.pone.0237262.t001

Table 2. Mean Linear Mixed Model (LMM) estimates of multi-model inference parameters of fecal microbiota

composition.

Parameter Mean estimate (95% confidence interval) Importance

Intercept 80.13 (58.98–101.29) -

Diet (UF) 12.19 (-18.08–42.46) 0.53

Calving date -1.41 (-5.78–2.96) 0.45

Coccidia 0.08 (-5.72–5.87) 0.25

Parameters include intrinsic (i.e. calving date, presence of Coccidia) and extrinsic (i.e. diet and herd) factors. UF:

Unifeed diet or total mixed ration with silage.

https://doi.org/10.1371/journal.pone.0237262.t002
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Prevotellaceae, which varies widely in response to dietary treatments [19, 71], and Bacteroida-
ceae, including some Bacteroides species that are known to break down cell wall components

[72].

Among the abundant genera found in raw milk, we confirmed the presence of Staphylococ-
cus, which is frequently found in other studies of bovine milk, as well as human milk from

healthy individuals [11, 73, 74], despite the genus including well known pathogens like S.

aureus, as well as many opportunistic disease agents. Although the roles of other milk and fecal

genera are relatively unknown in bovines, Bacteroides and Clostridium XIVa have also been

found in the intestinal tracts of most healthy mammals [72]; however, like Corynebacterium,

their roles in milk have not been elucidated. Taxonomically heterogeneous Clostridium XI

includes pathogenic species like the C. difficile which is commonly found on dairy farms. How-

ever, it does not apparently cause the increasing number of human cases of intestinal disease

related to this pathogen [75]. Instead, Acinetobacter has previously been associated with masti-

tis [21, 76]. Notably, the composition of the core genera in raw milk varies widely between

studies [4, 10, 11, 77] emphasizing that the role and function of specific taxa requires further

investigation. Although we could identify a common core microbiota for all analyzed samples,

we found high individual variation in terms of relative abundance of various taxa, even

between animals belonging to the same herd. For example, some individual milk samples are

clearly dominated by one genus (notably Staphylococcus or Enterococcus), whereas others

Fig 5. Estimates of raw milk microbiota composition of commercial Alpine dairy cows. (a) Principal Coordinate Analysis (PCoA) of the between samples distances

measured using Bray-Curtis dissimilarity; Families that drive variability in raw milk microbiota composition in the first (b) and second (c) principal component.

Colored dots identify cows from ten different herds either fed traditionally (TF) or with unifeed (UF) from the Province of Trento, Italy.

https://doi.org/10.1371/journal.pone.0237262.g005
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displayed a more balanced profile (Fig 4A). Such intra-herd variation has already been

reported by other authors [4, 23, 25].

In feces, the dominant genera included Bacteroides, Alistipes, Prevotella and Paraprevotella
(Bacteroidetes); as well as Clostridium XIVa, Roseburia and Phascolarctobacterium (Firmi-

cutes). In addition, Treponema (Spirochaetes) was also present. All these genera have been

consistently reported for bovine feces in healthy individuals in previous studies. This present

larger study confirms that, even though the relative abundance of the principal genera varies

considerably among the different studies, these taxa could be considered useful biomarkers of

healthy cows [18, 20, 24]. In particular, Bacteroides, Clostridium and Roseburia are known as

‘rumen digestion bacteria’, promoting digestion of complex organic matter and nutrient

absorption [78], although various Clostridium are pathogenic or affect productivity [75, 79].

However, some Clostridium XIVa bacteria produce butyrate, which is responsible for eliciting

an anti-inflammatory response, establishing and reducing intestinal permeability, and may

even be involved in the prevention of colorectal cancer in humans [80–83]. Bacteroides spp.

are also well-known mammalian intestinal bacteria [84, 85], and have been shown to form a

resistance barrier against pathogens such as C. difficile by competing for monomeric sugars

[78, 86], although other strains are pathogenic. Roseburia may contribute to producing buty-

rate that is used as the energy source for the intestinal mucosa [87]. While several studies on

experimental [25, 18, 71] and commercial animals [19] have noted that the relative abundance

of Prevotella and Bacteroides is frequently associated with dietary components, our study of

commercial herds found no correlation between these genera and diet. However, in the cur-

rent study, diets were only different in forage type and processing (hay or silage), not nutri-

tional components.

Fig 6. Measures of fecal microbiota composition of Alpine dairy cows. (a) Principal Coordinate Analysis (PCoA) of the between sample distances measured using

Bray-Curtis dissimilarity; Families that drive variability in fecal microbiota composition in the first (b) and second (c) principal component; Sample distance based on

the number of observed OTUs (d) and Shannon entropy (e). Colored dots identify cows from ten different herds either fed traditionally (TF) or with unifeed (UF)

collected within the Province of Trento, Italy.

https://doi.org/10.1371/journal.pone.0237262.g006
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Interestingly, in fecal samples we observed that samples characterized by a greater number

of OTUs were more similar to each other (tend to cluster together) and have a higher entropy,

whereas samples characterized by fewer OTUs were the most variable, with a lower entropy.

Several authors have shown that more stable and productive communities, including human

gut microbiota [88], but also zooplankton [89, 90] have better pathogen resistance. Other

authors have noted that decreases in microbiota richness often accompany disease, and lower

richness may lead to a more limited ability of the microbiota to respond to different stressors

[91, 92]. However, lower richness is not always correlated with lower fitness in non-human

animals [93, 94], and in fact, we did not find an association with the presence of coccidia and

Inverse Simpson index here. Therefore, the ‘protective’ capacity of a highly diverse microbiota

could depend on the type of pathogen. Further work is needed to elucidate the role of micro-

biota diversity and protection against parasites.

Although there are several studies that attempt to identify the factors that influence the milk

and fecal microbiota in cattle, the majority of these focus on animals from single experimental

farms, and a single or a few factors at a time. Instead, this study modelled simultaneously which

extrinsic and intrinsic parameters correlated with the composition of milk and fecal microbiota

in dairy cows from 10 commercial farms. Despite choosing farms with similar management,

our results showed that every herd had its own characteristic microbial community, and overall,

the farm-to-farm differences seen here confirm previous but much smaller studies of dairy

herds for feces and suggest that local farm management is unique and can significantly influ-

ence diversity and composition even at microbiological level [23, 26]. In fact, the microbiota of

each farm could be influenced by a number of management choices such as sources of dietary

ingredients, water supply, bedding material, hygiene practices, use of outdoor environment (e.g.

pastures and soil types), and milking hygiene. Whereas the impact of individual variants on

fecal and milk microbiota are frequently studied, the influence of management types needs fur-

ther study. Since the understanding of functional microbiota in non-human animals is in its

infancy [93] we can also say very little at this time about the significance of variations in specific

microbiota components. For example, although some Staphilococcaceae may be pathogenic,

Bdellovibrionaceae could have an importance in the defense against animal pathogens [95], and

Desulfovibrionaceae produce cellular energy [96], much work remains to be done to understand

the roles of various microbiota compositions and whether they have an effect on livestock pro-

duction and health. Interestingly, the ‘herd factor’ has recently been shown to be important in

the immune and inflammatory responses in dairy cows [97, 98, 99], thus it would be highly

interesting to test whether the microbiota is involved in these responses, given that it plays a

fundamental role in development of the host immune system [100]. More importantly for veter-

inary medicine, however, these results imply that the effect of antibiotics or probiotics on

microbiota may also vary between farms; that is, both testing and applying new treatments

should take differences in herd microbiota composition into account, since efficacy could been

linked to farm management rather than the effect of the therapy.

Other than herd, important predictors of Inverse Simpson indices were percentage fat for

raw milk, and diet for both raw milk and fecal samples. Interestingly, milk microbiota richness

is associated strongly with milk fat content. Since modern breeds have been selected for higher

milk quantity, this has led to milk with lower fat content. Low fat milk is also considered a

‘healthier’ choice by today’s consumers. Our result suggests the importance of fat in milk

microbiota richness; thus if such diversity is considered beneficial to health, then lowering fat

could have an effect on both animal health and human nutrition. Instead, the link between

richness and diet is not surprising, since many authors consider diet, in terms of diet formula-

tion, feeding management and fecal starch concentration as the greatest factors altering fecal

bacterial communities [13, 18, 19, 71].

PLOS ONE Raw milk and fecal microbiota of commercial Alpine dairy cows

PLOS ONE | https://doi.org/10.1371/journal.pone.0237262 August 6, 2020 14 / 21

https://doi.org/10.1371/journal.pone.0237262


Supporting information

S1 Table. Taxonomic profile at phylum level for raw milk samples.

(PDF)

S2 Table. Taxonomic profile at phylum level for fecal samples.

(XLSX)

S3 Table. Metadata of observed OTUs and Inverse Simpson index associated with raw milk

samples used in this study.

(XLS)

S4 Table. Metadata of observed OTUs and Inverse Simpson index associated with fecal

samples used in this study.

(XLS)

S5 Table. Results of Linear Model (LM) examining the influence of parameters on milk

microbiota composition with ‘herd’ considered as a covariate.

(DOCX)

S6 Table. Results of Linear Model (LM) examining the influence of parameters on fecal

microbiota composition with ‘herd’ considered as a covariate.

(DOCX)

S7 Table. Permanova test: Milk.

(XLSX)

S8 Table. Permanova test: Feces.

(PDF)

Acknowledgments

The authors thank all participating farmers for permission to collect samples. The study was

funded by the Fondazione Cassa di Risparmio di Trento e Rovereto (CARITRO) (Project

MASTIRISK). We also thank M Flythe and an anonymous Reviewer for improving the manu-

script with their helpful suggestions.

Author Contributions

Conceptualization: Francesca Albonico, Heidi C. Hauffe.

Data curation: Davide Albanese.

Formal analysis: Francesca Albonico, Davide Albanese, Mattia Manica, Fausta Rosso, Silvia

Ripellino, Claudio Donati.

Funding acquisition: Francesca Albonico, Alfonso Zecconi, Michele Mortarino, Heidi C.

Hauffe.

Investigation: Alfonso Zecconi.

Methodology: Erika Partel, Silvia Ripellino, Massimo Pindo.

Resources: Heidi C. Hauffe.

Software: Davide Albanese, Claudio Donati.

Supervision: Michele Mortarino, Heidi C. Hauffe.

PLOS ONE Raw milk and fecal microbiota of commercial Alpine dairy cows

PLOS ONE | https://doi.org/10.1371/journal.pone.0237262 August 6, 2020 15 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237262.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237262.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237262.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237262.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237262.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237262.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237262.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237262.s008
https://doi.org/10.1371/journal.pone.0237262


Visualization: Davide Albanese.

Writing – original draft: Francesca Albonico, Alfonso Zecconi, Michele Mortarino.

Writing – review & editing: Francesca Albonico, Claudia Barelli, Davide Albanese, Mattia

Manica, Erika Partel, Fausta Rosso, Claudio Donati, Heidi C. Hauffe.

References
1. Warinner C, Hendy J, Speller C, Cappellini E, Fischer R, Trachsel C, et al. Direct evidence of milk con-

sumption from ancient human dental calculus. Sci Rep. 2014; 4: 7104. https://doi.org/10.1038/

srep07104 PMID: 25429530

2. Quigley L, O’Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF, et al. The complex micro-

biota of raw milk. FEMS Microbiol Rev. 2013; 37: 664–698. https://doi.org/10.1111/1574-6976.12030

PMID: 23808865

3. Addis MF, Tanca A, Uzzau S, Oikonomou G, Bicalho RC, Moroni P. The bovine milk microbiota:

insights and perspectives from -omics studies. Mol Biosyst. 2016; 12: 2359–2372. https://doi.org/10.

1039/c6mb00217j PMID: 27216801

4. Falentin H, Rault L, Nicolas A, Bouchard DS, Lassalas J, Lamberton P, et al. Bovine teat microbiome

analysis revealed reduced alpha diversity and significant changes in taxonomic profiles in quarters

with a history of mastitis. Front Microbiol. 2016; 7: 480. https://doi.org/10.3389/fmicb.2016.00480

PMID: 27242672

5. Ganda EK, Gaeta N, Sipka A, Pomeroy B, Oikonomou G, Schukken YH, et al. Normal milk microbiome

is reestablished following experimental infection with Escherichia coli independent of intramammary

antibiotic treatment with a third-generation cephalosporin in bovines. Microbiome. 2017; 5: 74. https://

doi.org/10.1186/s40168-017-0291-5 PMID: 28701174

6. Pascoe EL, Hauffe HC, Marchesi JR, Perkins SE. Network analysis of gut microbiota literature: an

overview of the research landscape in non-human animal studies. ISME J. 2017; 11: 2644–2651.

https://doi.org/10.1038/ismej.2017.133 PMID: 28800135
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60. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial

ecology. Proc Natl Acad Sci USA. 2005; 102: 11070–11075. https://doi.org/10.1073/pnas.

0504978102 PMID: 16033867

61. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with

obesity. Nature. 2006; 444: 1022–1023. https://doi.org/10.1038/4441022a PMID: 17183309

62. Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut 35 Suppl. 1994;

1: 35–38.

63. Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, et al. Structure and

function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015; 3: 36. https://doi.

org/10.1186/s40168-015-0101-x PMID: 26306392

64. Cheng Y, Fox S, Pemberton D, Hogg C, Papenfuss AT, Belov K. The Tasmanian devil microbiome-

implications for conservation and management. Microbiome. 2015; 3: 76. https://doi.org/10.1186/

s40168-015-0143-0 PMID: 26689946

65. Weese JS, Holcombe SJ, Embertson RM, Kurtz KA, Roessner HA, Jalali M, et al. Changes in the fae-

cal microbiota of mares precede the development of postpartum colic. Equine Vet J. 2015; 47: 641–

649. https://doi.org/10.1111/evj.12361 PMID: 25257320

66. Honneffer JB, Minamoto Y, Suchodolski JS. Microbiota alterations in acute and chronic gastrointesti-

nal inflammation of cats and dogs. World J Gastroenterol. 2014; 20: 16489–16497. https://doi.org/10.

3748/wjg.v20.i44.16489 PMID: 25469017

67. Suchodolski JS, Markel ME, Garcia-Mazcorro JF, Unterer S, Heilmann RM, Dowd SE, et al. The fecal

microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PLoS ONE. 2012;

7: e51907. https://doi.org/10.1371/journal.pone.0051907 PMID: 23300577

68. Hildebrand F, Nguyen TL, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P, et al. Inflammation-

associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation

in common laboratory mice. Genome Biol. 2013; 14: R4. https://doi.org/10.1186/gb-2013-14-1-r4

PMID: 23347395

69. Gill JJ, Sabour PM, Gong J, Yu H, Leslie KE, Griffiths MW. Characterization of bacterial populations

recovered from the teat canals of lactating dairy and beef cattle by 16S rRNA gene sequence analysis.

FEMS Microbiol Ecol. 2006; 56: 471–481. https://doi.org/10.1111/j.1574-6941.2006.00091.x PMID:

16689878

70. Shah HN, Olsen I, Bernard K, Finegold SM, Gharbia S, Gupta RS. Approaches to the study of the sys-

tematics of anaerobic, gram-negative, non-sporeforming rods: current status and perspectives. Anaer-

obe. 2009; 15: 179–194. https://doi.org/10.1016/j.anaerobe.2009.08.003 PMID: 19695337

71. Rice WC, Galyean ML, Cox SB, Dowd SE, Cole NA. Influence of wet distillers grains diets on beef cat-

tle fecal bacterial community structure. BMC Microbiol. 2012; 12: 25. https://doi.org/10.1186/1471-

2180-12-25 PMID: 22364310

72. Gilbert HJ. The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol.

2010; 153: 444–455. https://doi.org/10.1104/pp.110.156646 PMID: 20406913
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