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Abstract

Single particle tracking is a powerful tool for studying and understanding the motions of biological 

macromolecules integral to cellular processes. In the past three decades there has been continuous 

and rapid development of these techniques in both optical microscope design and in algorithms to 

estimate the statistics and positions of the molecule’s trajectory. Although there has been great 

progress, comparison between different microscope configurations and estimation algorithms has 

been difficult beyond simulated data. In this paper we explore using a piezo actuated microscope 

stage to reproduce Brownian motion. Our goal is to use this as a tool to test performance of single 

particle tracking optical microscopes and estimation algorithms. In this study, Monte Carlo 

simulations were used to assess the ability of piezo actuated microscope stages for reproducing 

Brownian motion. Surprisingly, the dynamics of the stage together with configuration of the 

system allow for preservation of the Brownian motion statistics. Further, feed forward model 

inverse control allows for low error tracking of Brownian motion trajectories over a wide range of 

diffusion constants, varying stage response times, and trajectory discrete time steps. These results 

show great promise in using a piezo actuated microscope stage for testing single particle tracking 

experimental setups.

I. Introduction

The study of biology has utilized microscopes for over a century to understand life at the 

smallest scales. Through both evolving instrumentation and algorithm development, the 

resolving power of these microscopes continues to increase, allowing for cellular processes 

to become the focus of much research. Underlying these process are small molecules, 

proteins, RNA, and other bio-molecules that transduce signals, and shape the response of the 

cell in its environment. Studying the motions of these molecules allow us to understand 

typical cell function and malfunction, which are important in understanding cellular origins 

of disease, understanding mechanisms of viral infection, and other applications. Among the 

techniques, algorithms, and instrumentation to study nature at this level is a class termed 

single particle tracking (SPT). SPT optical microscopes combine photodetectors, light 

sources, optics, actuators, stages, and the sample being studied. Control systems, signal 

processing and estimation techniques all come together to enable SPT to break through the 
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optical diffraction limits, allowing the study of these processes at much smaller lengths 

scales, and with much higher temporal resolution than before. It is now possible to localize 

and track single particles with uncertainties on the order of 1 to 100 nm over long time 

periods. Although comprehensive reviews and comparisons between techniques have been 

done in the past [1], [2], they have relied on physically realistic simulations. One of the main 

benefits of a simulation-based approach is the existence of a known ground truth. However, 

while such simulations can be very accurate and account for a great deal of the experimental 

realities, they are almost by definition unable to capture all the specifics of any one 

experimental setup. Alternatively, one can perform careful, controlled experiments on real 

systems but then typically the knowledge of ground truth is not possible, making 

comparisons beyond simulated data very difficult to do. We would like to start bridging this 

gap by developing techniques to assess performance of both SPT optical microscopes and 

related estimation algorithms. This paper describes the control of a piezo-actuated 

microscope stage to reproduce Brownian motion trajectories. We envision that this may be 

used to assess both SPT optical microscopes as well as localization algorithms.

SPT has developed alongside related techniques termed super-resolution over the last thirty 

years in order to study cell structure and processes at the nanometer scale [3]. These setups 

are based on standard or home-built microscope which focus light onto the sample [4]. 

Fluorescent indicators are added to the cells with targeting sequences enabling the specific 

labeling of proteins, molecules, organelles and other structures within the cell [5], [6]. These 

indicators absorb the incident excitation light and emit incoherent light at longer 

wavelengths. An optical filter then separates the excitation light from the emitted light 

allowing for an image to be formed from only the labeled structures in the cell. One can 

often view this image by eye through the microscopes eyepiece, or by recording the image 

using a scientific camera and saving the resulting images for later analysis. There are two 

general forms of this fluorescence microscope used in SPT. The first, a widefield 

microscope, is one that employs a scientific camera with typically 1–10 megapixels to 

capture an entire field of view simultaneously. The second, a confocal microscope, uses a 

single element optical detector that is coaligned to laser illumination. For confocal SPT, the 

position of the laser in the sample is controlled by a suitable control law based on signal 

feedback from the photodetector [7], [8].

The application of SPT using either widefield or confocal microscopy is an indispensable 

tool in the study of biomolecular transport. However, comparisons of SPT performance are 

difficult on physical hardware. Both hardware performance and algorithms may potentially 

be assessed using standard piezo-actuated microscope stages to reproduce the motions of 

single particles. Under this scheme, fluorescent particles are fixed on a microscope slide and 

moved along a known Brownian motion trajectory by the piezo stage while the microscope 

is observing and recording their motion. After the localization and estimation is completed 

on the recorded data, it can be compared to the known ground truth of the Brownian motion 

trajectory. This would enable a new way to assess the performance of these systems. The 

first step to realizing this is to understand the limits to which a microscope stage can 

reproduce molecular motions.

Vickers and Andersson Page 2

Proc Am Control Conf. Author manuscript; available in PMC 2020 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The remainder of this paper is organized as follows. In the next section, we briefly review 

Brownian motion and methods for analyzing the statistics of time series data generated by 

such models. In Sec. III, we describe and compare two different feedback structures which 

can generate Brownian trajectories to reproduce the motion of single particles under the 

observation of a microscope. Monte-Carlo simulations were used to understand the systems 

characteristics and analyze their performance. Next, in Sec. IV, we assess the limitations of 

the better performing system in simulating the range of Brownian motion for both confocal 

and widefield microscopes and apply feedforward model inverse control to improve the 

performance of Brownian motion reproduction using a microscope stage. Finally, we 

provide a few concluding remarks in Sec. V.

II. Brownian Motion

Brownian motion was first observed by an ancient philosopher watching dust particles dance 

about in air illuminated by rays of sunlight. However, the topic was not studied to any depth 

until after Robert Brown’s publication of his observations of the motions of pollen grains 

suspended in water [9]. An example of this motion is shown in Fig. 1. In 1905, Einstein 

described Brownian motion as a free unconstrained motion subject to a randomly fluctuating 

force. The theories of Brownian motion were further developed as the fields of applied 

probability, stochastic differential equations, and stochastic signals and systems were 

developed. Many texts now describe Brownian motion alongside treatments on related topics 

such as random walks and Gaussian distributed white noise, laying the groundwork for 

understanding these processes [9], [10].

A particular description of Brownian motion in discrete time is given by

Y n = Y n − 1 + Un, Un ∼ N(0, 2DΔT ), (1)

were Yn and Yn−1 represents the particle position at time point n and n−1 respectively and 

Un is a zero-mean Gaussian random variable with a variance defined by the product of the 

diffusion constant D, the discrete time step ΔT. As time progresses, the variance of the 

distribution of possible positions at time point n given its initial location increases, 

describing a tendency for a particle moving according to (1) to spread out as time increases. 

The diffusion constant, often measured in units of μm2
s  in SPT, describes the rate of change 

of the variance of the PDF, characterizing the speed at which the distribution of the possible 

positions of the particle spreads out in space. In the context of cellular biology, typical 

diffusion constants are in the range of 0.001 − 50μm2
s .

Although the statistics of the generated trajectories of the ensemble motions are very useful 

in understanding subcellular phenomena, each particle traces a particular trajectory in space 

and time. This sample path of an individual particle is also extremely informative. The 

power spectrum, S, of this motion is given by
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S(ω) = S0
ω2 , (2)

and is characterized by a decrease of 20 dB/decade of frequency ω [10]. This indicates that 

more information about the shape of the trajectory is encoded at lower frequencies compared 

to higher frequencies. This may allow for low pass filtering to occur with minimal impact on 

the overall trajectory, smoothing out the small scale motion while keeping the large scale 

shape of the trajectory intact. As the bandwidth of a low pass filter is decreased, the 

trajectory increasingly deviates from the ideal Brownian motion trajectory potentially 

changing the underlying parameters of the Brownian motion, in particular the diffusion 

constant. Since the physical mechanics of a piezo stage act in essence as a low pass filter, it 

is important to characterize the ability of the mechanical system to preserve the underlying 

parameter values when simulating Brownian motion.

The simulation accuracy and performance of Brownian motion can be characterized in a few 

different ways. These methods can be collected into broader catagories such as: statistical 

distance of single time step probability distribution (SSPDF), mean squared displacement 

(MSD), trajectory similarity, frequency domain analysis, and analysis of tracking error over 

time. In our study we used the Kullback-Leilbler divergence (KL) to assess statistical 

distance between SSPDFs as well as the MSD and stage tracking error to understand how 

well a piezo-actuated stage can reproduce Brownian motion. (It should be noted that in the 

biophysical community, perhaps the most common approach to analyze SPT trajectories is 

to use the MSD.) An ideal Brownian motion will have a Gaussian distributed SSPDF with a 

variance that is a function of the diffusion constant D (specifically, a variance kDΔT). A 

motion that does not exhibit this behavior indicates a departure from ideal Brownian motion 

and will result in a KL divergence larger than 0. Since the KL divergence is not a true 

distance measure, it gives a different value depending on the order of distributions used. We 

used the discrete formulation of KL divergence

KL fStage ∣ fTraj = ∑fStageln
fStage
fTraj

, (3)

where fstage and fTraj represents the SSPDF of the stage motion and the trajectory 

respectively. The MSD assesses the variance of the particle’s displacement as a function of 

time [11]. For an ideal Brownian motion, the MSD is a linear function with a slope related to 

the diffusion constant of the single particle and an intercept of zero,

MSD[n] = 〈 Y n − Y 0
2〉 = 2DΔTn . (4)

Any deviation from the functional relationship indicates departure from idea Brownian 

motion. Note that in this work we are ignoring the measurement noise on the trajectories 

when calculating the MSD since we are working with ground truth. Such noise can be 

included by shifting the intercept of the MSD by 2σN
2  where σN

2  is the variance of the 

measurement noise, typically assumed to be zero mean and Gaussian.
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III. Simulation of Brownian Motion Filtered by Dynamical System

A. System Description

As illustrated in Fig. 2, simulating Brownian motion with a physical setup can take many 

forms depending on the placement of the piezo stage within the system. We focus on two 

physically realizable configurations that we call the accumulator and the tracker. In both 

configurations, the input U(z) is a sample path from a zero-mean Gaussian white noise 

process with a variance proportional to the diffusion constant of the Brownian motion. 

Feedback of the output is shifted by one time step and then summed with the input. The key 

difference of these two systems is where the filtering from the piezo-actuated microscope 

stage occurs relative to the branch point of the feedback with the stage placed before the 

branching point for the accumulator and after for the tracker. This difference has a large 

impact on the resulting errors of the systems, especially when the system time constant is 

larger than the discrete time step. We note that it is of course possible to introduce more 

complexity in the system to achieve a better physical simulation. However, keeping the 

overall system as simple as possible may be advantageous in getting researchers in the 

biophysical community to adopt these methods. We note also that in general the transfer 

function P(z) represents the physical piezo-stage as well as any closed-loop controllers.

B. Simulation

Monte-Carlo simulations were employed in two distinct phases in order to understand these 

two systems and their performance in terms of capturing an ideal Brownian motion. The first 

phase compared the two systems using the MSD and the tracking error. As discussed in Sec. 

III.C below, this phase indicated that the tracker was the better-performing structure. The 

second phase then focused on the tracker, analyzing its performance to different kinds of 

parameters. All simulations used 10,000 sets of inputs of 5000 samples each. In the first 

phase, the inputs represent Gaussian white noise, and were generated by creating an array of 

normally distributed random numbers multiplied by the motion model variance (1). In the 

second stage, the array of normally distributed random numbers were cumulatively summed 

to create Brownian motion sample paths. These paths were then input directly to P(z). In 

these simulations, the piezo-actuated microscope stage was modeled as a first order system. 

This representation was chosen because many controllers/amplifiers of the piezo-actuated 

stages incorporate proportional-integral control to mitigate drift and hysteresis of the piezo 

actuators and achieve good tracking of the reference input. As a result, the closed-loop 

system is close to first order at lower frequencies. The continous dynamics of the stage were 

modeled using an exact discretization given by

P [z] = 1 − e− ΔT
τ

z − e− ΔT
τ

. (5)

It is important to highlight that using the exact discretization means that the piezo system is 

essentially moving continuously in the simulations, not at the simulation time step.

Using the stage transfer function together with each system configuration results in 

difference equations for the Accumulator given by
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Y n = e− ΔT
τ Y n − 1 + (1 − e− ΔT

τ )Y n − 2 + (1 − e− ΔT
τ )Un − 2 . (6)

and for the Tracker given by

Y n = (1 + e− ΔT
τ )Y n − 1 − e− ΔT

τ Y n − 2 + (1 − e− ΔT
τ )Un − 1 . (7)

C. System Comparison

Using a Monte Carlo approach, we compared how well the two systems can match the 

Brownian motion trajectory over time by analyzing their MSD and error. A discrete time 

step of ΔT = 100 ms, a system time constant of τ =100 ms, and a diffusion constant of D =1 

μm2/s were used (first line in Table I).

The results are shown in Fig. 3. We can see that both systems initially exhibit MSD curves 

that are substantially different from Brownian motion. However, the tracker MSD slope 

converges to that of Brownian motion. In contrast, the accumulator asymptotically converges 

to a value that is different for both the MSD and the MSD slope. As a result, the tracker will 

reproduce Brownian motion with the desired diffusion constant, while the accumulator will 

give Brownian motion with a diffusion constant that is different than the desired value. In 

addition, while the accumulator and tracker have error variances that start out approximatly 

the same, the error on the accumulator grows without bound while the tracker quickly 

reaches an asymptotic value. While it is possible that modifications to the accumulator 

system may mitigate these issues, further complexity may hinder adoption in the SPT 

community.

The difference in the performance between these two systems centers on the location of the 

branching point relative to the plant. The system input can be regarded as a series of step 

inputs and the response of the stage, is described by a first order system at a time equal to 

the discrete time step ΔT, giving a basic exponential response for the error ϵ, where the 

effective time constant is the ratio of the simulation step and the system time constant,

ϵ = e− ΔT
τ . (8)

For the accumulator, the output of the stage is then fed back and summed with the next 

input. This allows the error to compound every time step making the error grow without 

bound as the system tries to “catch up” to the Brownian motion trajectory. The resulting 

output fails to capture the statistics of the input, leading to a different effective diffusion 

coefficient.

By contrast, the tracker converges quickly to the desired value of the diffusion constant and 

the error reaches a steady state value. This can again be understood through looking at U[n] 

as a sequence of step inputs. The system essentially only sees the difference between its 

current location, regardless of its current error, and the next position. Since the system is 

LTI, the error at the end of ΔT is then defined only by the step size. Since the step sizes are 
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Gaussian distributed, the errors become so as well, converging to a constant variance. The 

net result is that the tracker system better captures the diffusion characteristics than the 

accumulator structure, with its effectiveness dependent on the relative values of ΔT, τ, and 

D. We explore this dependency in the next section.

IV. Analysis of the Tracker System

The tracker configuration initially showed promising results in representing Brownian 

motion with an MSD that approaches that of the input trajectory (see Fig. 3). Here we 

analyze this system through simulation to understand its performance with respect to a range 

of settings in both ΔT
τ  and D (second row of Table I). Next, feed forward model inverse 

control is considered to improve the trajectory following performance of the system with the 

goal being to see if the system can perform to a range of parameters larger that encompasses 

those found in SPT experiments.

A. Simulation study of the basic tracker

The temporal nature of the reproduced Brownian motion is very important when considering 

it for use in testing algorithms and specific SPT experimental setups. The microscope 

acquisition rate can vary by orders of magnitude between different SPT implementations and 

experiments. In particular, acquisition times for widefield SPT experiments can vary from 

1ms to 500 ms, though they are typically around 100 ms corresponding to a ΔT
τ  value of 

about 10 for a reasonably fast stage with a time constant of τ = 10. One important 

experimental reality for long exposure times (which can help with the signal-to-noise ratio) 

and fast diffusion coefficients is that of motion blur where the particle moves throughout the 

exposure period. To recreate this, a ΔT
τ  value of about 0.1 is required so that accurate motion 

inside a single exposure period can be recreated. For confocal based SPT systems, 

integration times can be as small as a tens of microseconds corresponding to ΔT
τ  value of 

about 10−3. This necessitates understanding how the system performs under a wide range of 

temporal conditions.

As only the relative time scale matters, we describe our results using the ratio ΔT
τ  rather than 

the individual values. In these comparison simulations, the diffusion coefficient was fixed at 

D = 1 μm2/s. The results in terms of the KL divergence between the true Brownian motion 

SSPDF and that of the tracker system, as well as the MSD comparison, are shown in Fig. 4. 

At small values of the ratio ΔT
τ , the KL divergence increases indicating that the SSPDF no 

longer matches that of the ideal Brownian motion. Once the ratio reaches unity, the KL 

divergence is essentially zero. At these large ratios, the time ΔT is large relative to the 

system time constant and thus the stage can settle to the reference position defined by the 

Brownian motion sample path. When viewed at the sampling points, then, the input and 

output trajectories look identical and the distributions match.

For the MSD, Fig. 4 highlights three scenarios, ranging from small to large ratios of the time 

constants. All three cases converge to the ideal Brownian motion. However, the time it takes 
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to converge varies and is longer for smaller ΔT
τ . At the steady state condition, the stage 

motion MSD slope matches the desired one, indicating that the stage motion accurately 

reproduces the original motion in terms of MSD statistics (and, as noted above, in terms of 

KL divergence). In a practical implementation, this implies that the experiment should wait 

until the stage is at steady state before data collection starts.

The temporal effects of small ΔT
τ  values become readily apparent when the stage response is 

compared with the input Brownian motion trajectory, shown in Fig. 5. As expected, the low-

pass nature of the stage dynamics filters out the highest frequency motions of the true 

Brownian motion sample path. This smoothing effect grows larger as the KL divergence 

grows larger. However, despite the filtering, the stage still follows the general shape of the 

trajectory preserving the MSD and MSD slope with minimal error. As the value of ΔT
τ

continues to grow smaller, the stage has more difficulty following the general shape, 

resulting in larger initial errors in both the MSD and the MSD slope to occur and a longer 

transient period before the system settles to accurate statistics.

This effect can also be seen by looking at the SSPDF (data omitted for space reasons). At 

very small ratios ΔT
τ  the stage has very little time to respond to the step input before a new 

step is applied. As a result the stage steps are very small since a new command is given 

while the system is still in the transient period and the distributions have a very small 

variance. As this ratio gets larger, so that ΔT is large relative to the system time constant τ, 

the stage has sufficient time to respond and the step size distribution approaches that of the 

true Brownian motion.

The previous simulations were done for a moderate diffusion constant of 1 μm2/s but did not 

explore the performance at different values of D. As it is reasonable to expect that the ability 

to faithfully represent trajectories of a given diffusion constant will depend on the time scale 

of the system, we simulated the system over a large range of both D and ΔT
τ . The diffusion 

coefficient was varied from 10−6 – 106 μm2/s, much larger than the expected range in 

biophysical phenomena, which are typically in the range 10−3 – 102 μm2/s. The KL 

divergence is insensitive to D, and the relationship of ΔT
τ  follows what was previously seen 

in Fig. 4a. Similarly, the MSD slope follows the same trend as before, converging to the 

same slope as the pure diffusion after a transient period that depends on the ratio ΔT
τ . These 

results indicate that it is possible to reproduce Brownian motion of any value of D within the 

limitations of the hardware, such as slew rate and saturation at the amplifiers limits. Even 

with a fast time step and a slow stage response, the stage still converges to the desired value 

of D after a period of time. However, in this range of values, the trajectory still deviates from 

the desired trajectory resulting in a large KL divergence.

B. Feed forward Model-Inverse Control

The results above tell two stories. The first is that if only the statistics of motion are of 

interest, then a piezo stage of any time constant and a sampling time of any value can be 
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used with the only penalty to be paid being an initialization time while the statistics 

stabilize. The second, however, is that if accurate tracking of the trajectory is desired, then 

the stage should be as fast as possible. This can be done through effective feedback control 

of the stage, giving the closed loop plant the highest bandwidth possible given other 

constraints on the system. Here we highlight that this can be combined with feedforward 

methods, notably model inverse control, as shown in Fig. 2d. It is important to note that one 

challenge to this approach is that many piezo systems have non-minimum phase zeros, 

though this can be overcome with the appropriate choice of feedforward controller [12].

For simplicity here, we ignore any possible right-half plane zeros and took the simple 

continuous time model

F (s) = τs + 1
kΔTs + 1 . (9)

Using matched pole-zero mapping, this transfer function was translated into a discrete time 

transfer function

F (z) = 1 − e−k

1 − e− ΔT
τ

z − e− ΔT
τ

z − e−k (10)

and included this in the Monte Carlo simulations. The parameter k in the feed-forward 

controller was included to tune the filter’s frequency response to allow balancing the stage 

error and the amplifier’s output to avoid saturation. In these simulations, the tuning 

parameter was set to k = 6. To compare the performance of the tracker with feedforward 

control to the plain tracker, we used the KL divergence as shown in Fig. 6. As expected, in 

the range where ΔT
τ ≤ 1, the feedforward scheme shows an enormous improvement over the 

simpler tracker formulation. As ΔT
τ  increases to the point where the dynamics of P are 

sufficiently fast, the difference between the two goes away. These results indicate that the 

use of feed forward may be a key element in producing the temporal resolution needed to 

reproduce the fastest trajectories accurately, allowing us to reproduce both fast diffusion as 

well as capturing motion blur.

V. Conclusion

In this work we have explored through simulation the ability of a piezo actuated stage to 

faithfully recreate two different aspects of Brownian motion, the statistics and the detailed 

trajectory. Our results indicate that, when using an appropriate choice of implementation, the 

stage motion can accurately reflect the motion statistics for any diffusion coefficient 

independent of the time constant of the stage (subject only to practical limitations such as 

power, slew rate, and nonlinearities) after an initial transient period. For accurately 

producing the detailed trajectory, the time constant of the stage of course matters and here 

feed forward control can be used (in combination with feedback control) to push the stage 

bandwidth higher. Our results indicate that there is great potential in using piezo actuated 
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stages to test and characterize SPT microscopes and algorithms with a known ground truth 

motion.
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Fig. 1. 
An example of Brownian motion
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Fig. 2. 
Discrete time block diagrams for modeled systems
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Fig. 3. 
Comparison between Accumulator (dashed) and Tracker (dotted) models. (a) Comparison of 

MSD against a true Brownian motion sample path trajectory. (b) Slope in the MSD curve 

and (c) variance in tracking error of the system output and the Brownian motion sample 

path.
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Fig. 4. 
Tracker performance in terms of (a) KL divergence between the SSPDFs of a true Brownian 

motion and the tracker output and (b) the MSD.
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Fig. 5. 
Sample path of a Brownian motion (solid line) and filtered by the stage dynamics (dashed 

line).
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Fig. 6. 
KL divergence of both the tracker and tracker with feed forward model inverse control 

implemented
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TABLE I

Simulation Parameters

Simulation D (μm2/s) ΔT (ms) τ (ms)

System Comparison 1 100 100

ΔT
τ  sweep

1 1–1000 1–1000

Diffusion Rate sweep 10−6 – 106 1–1000 1–1000

Feed Forward Control 1 1 12.5
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